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Abstract. A Trust Management model that provides a measure of the
degree to which a principal is trusted for some action is proposed. At the
heart of the model is the notion that triangular norms and conorms pro-
vide a natural and consistent interpretation for trust aggregation across
delegation chains. It is argued that specifying how trust is aggregated is
as important as specifying a degree of trust value in an attribute certifi-
cate and, therefore, in stating the degree to which a principal trusts an-
other, the principal should also state how that trust may aggregate across
delegation chains. The model is illustrated and has been implemented us-
ing a modified, but backwards-compatible, version of the KeyNote Trust
Management system.

1 Introduction

Trust Management [1,4,9,20], as originally defined by [5], is an approach to con-
structing and interpreting trust relationships between principals such as users,
groups, roles, hardware-devices, etc. These well placed trust relationships [25],
defined in terms of relatively static attributes that are perceived by a trusting
party, are constructed as a graph of credentials encoding the conditions under
which a principal is willing to trust some action. Trust Management systems
are intended to support decentralized security: individual trust statements are
encoded as cryptographic certificates that can be safely distributed across the
network and reasoned over without the need for trusted authorization servers
mediating over centralized policy state.

While a Trust Management system determines whether a principal is trusted
(authorized) for some action, reputation (trust) schemes such as [14,18] are used
to provide some measure of the degree of trust between principals. For example,
Slashdot Karma gives a measure of an individual’s standing in that message
board community. Many Trust Management systems provide a binary decision—
whether or not a principal is trusted—and do not consider the degree to which a
principle is authorized for an action. In this paper a model is developed whereby
a Trust Management decision is given in terms of a measure/degree of trust.

There is much published research on how reputation trust between principals
might be measured and is not the focus of this paper. In this paper we assume



that principals assert subjective measures of well placed trust when defining the
conditions under which they trust another principal. The challenge is then to
determine how these trust values should aggregate across the trust relationships
that make up an attribute certificate delegation graph. We argue that Triangular

Norms provide a natural approach to aggregating trust. Triangular norms and
conorms are classes of well-understood aggregation operators that are used to
combine values in the metric space [0..1] [8,26] and have been used to aggregate
knowledge for a variety of applications such as fuzzy-logic [8], risk management
[11], multimedia databases [10] and medical decision support systems [6].

In this paper, a model of quantitative Trust Management is developed whereby
delegation certificates may specify a degree of trust. Rather than prescribing
specific aggregation operators, the model allows the user to also specify, as part
of the delegation certificate, how the delegated trust may be aggregated. This
model has been implemented in an extended version of the KeyNote Trust Man-
agement system. The extension provides backwards compatibility with the stan-
dard KeyNote system whereby KeyNote compliance values can be considered
to implement degrees of trust, aggregated by Gödel fuzzy logic t-norm/conorm
operators min and max.

The paper is organized as follows. Section 2 considers how triangular norms
and conorms might be used to aggregate trust across a delegation network and
argues that treating the calculation as an inclusion-exclusion or two-terminal net-
work reliability style problem is not appropriate. A model for trust aggregation
is described in Section 3 and Section 4 presents a series of KeyNote credentials to
illustrate its use. Section 5 discusses the implementation of this model. Section 6
reviews related research and discusses the results of the paper.

2 Quantifying Trust

Let the statement A
x
→ B denote an assertion by principal A that she trusts

(delegates trust to) the principal B to a degree x : [0..1]. We assume that A’s
trust of B increases linearly with the value of x, whereby x = 0 represents no
trust and x = 1 denotes complete trust.

A set of trust delegation statements form a directed graph with labeled arcs
between principals representing trust/delegation statements. Figure 1 illustrates

a delegation graph with statements A
0.8
→ B, B

0.9
→ D and so forth. Given such

a graph, we are interested in determining how transitive trust, that is, the im-
plicit degree of trust trust(X, Y ) from a principal X to principal Y , should be
computed. For example, the implicit degree of trust from A to D in Figure 1.

2.1 Trust Aggregation using Max and Min

One strategy for computing trust(X, Y ) in a delegation graph is to compute
the maximum degree of trust over all delegation chains from X to Y , whereby
the degree of trust for a single chain is the minimum of the degrees along its
path. For example, given the graph in Figure 1, the single chain from A to D
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Fig. 1. Quantitative Delegation Graph

results in trust(A, D) = min(0.8, 0.9). The two chains A
0.8
→ B

0.9
→ D

1.0
→ E and

A
0.8
→ B

0.7
→ C

1.0
→ E connect A and E and trust(A, E) = max(0.8, 0.7) = 0.8. This

max-min paths strategy is implemented as a breath first search of the delegation
graph in the KeyNote Trust Management system [4] where (an enumerated set
of) KeyNote compliance values can be effectively interpreted to represent degrees
of trust measures.

The min operator may not always provide an intuitive aggregation of trust
values along the path of a chain. For example, given Figure 1, while B considers
its trust of D and C to be different, this distinction is lost in the calculation of
trust(A, D) = 0.8 and trust(A, C) = 0.8, despite B’s involvement in both chains.
Had A’s trust of B been less that 0.8 then this distinction would be apparent.
An alternative operator for aggregating trust along a chain is the (probabilistic)
product operator×. Using this operator in Figure 1 gives trust(A, C) = 0.64 and
trust(A, D) = 0.72 which could be regarded as better reflecting the knock-on
effect of trust by B. Such use of probabilistic product to aggregate trust along
a chain of trust is proposed as a way to provide more fine-grained treatment for
GnuPGP’s degree of trust measure [15].

Similarly, the max operator does not necessarily provide an intuitive operator
with which to aggregate the degree of trust across multiple delegation chains.
Continuing the example above, E’s trust from B might be considered to be an

accumulation of trust obtained via chains B
0.9
→ D

1.0
→ E and B

0.7
→ C

1.0
→ E,

and therefore, should be greater than trust(B, E) = max(0.9, 08). Computing
trust(B, E) = 0.9+0.8−0.8∗0.9 = 0.98 using probabilistic sum to aggregate trust

across chains B
0.9
→ D

1.0
→ E and B

0.8
→ C

1.0
→ E may be regarded as better reflecting

how E’s trust accumulates from multiple chains. Probabilistic sum is also used
in GnuPGP [15] to aggregate across different chains where the calculation of
trust(X, Y ) is treated as an two-terminal network reliability-style problem [7,22].

2.2 Trust Aggregation using Triangular Norms and Conorms

Computing trust(X, Y ) requires selection of an operator (denoted ⊗) used to
aggregate trust along a chain and an operator (denoted ⊕) used to aggregate
across different chains. We argue that triangular norms and triangular conorms,
respectively provide suitable aggregation operators.

A triangular norm (hereafter referred to as t-norm) operator ⊗ is commuta-
tive and associative; its monotonicity ensures that its use for aggregating trust



values along a delegation chain does not result in an amplification of trust, that
is, x⊗ y ≤ min(x, y) for x, y : [0..1] and min is the largest pointwise t-norm.

We use a triangular conorm (t-conorm) ⊕ to aggregate trust across different
chains. A t-norm has a corresponding t-conorm under the DeMorgan style law:
x ⊕ y = 1 − (1 − x) ⊗ (1 − y). The max operator is the smallest t-conorm and
for any t-conorm operator ⊕, then x ⊕ y ≥ max(x, y) for x, y : [0..1]. Thus,
t-conorm based aggregation of trust chains provides monotonic trust, that is,
adding further trust statements/chains to a delegation graph does not result
in a decrease in the value of trust(X, Y ). The t-norm and t-conorm operators
can be interpreted as forms of fuzzy disjunction and conjunction, respectively
[8]. Table 1 defines a number of common t-norm and their respective t-conorm
operators.

t-norm x ⊗ y t-conorm x ⊕ y

Probabilistic x × y x + y − x × y

Gödel min max

Lukasiewicz max(0, x + y − 1) min(1, x + y)

Drastic
if x = 1 then y

elseif y = 1 then x

else 0

if x = 0 then y

elseif y = 0 then x

else 1
Compensating

Trust(e)
if e ≤ (x, y) ≤ 1
then x × y

else min(x, y)

if e ≤ (x, y) ≤ 1
then x + y − x × y

else max(x, y)
Table 1. Some t-norms and t-conorms.

2.3 Accumulating Trust

The max-min style calculation of trust(X, Y ) as a sum (t-conorm) of products
(t-norm) along the chains between X and Y does not necessarily generalize to
other t-norm/conorm operators. For example, suppose that probabilistic prod-

uct is used as a chain-aggregator ⊗
P

along paths A
0.8
→ B

0.9
→ D

1.0
→ E and

A
0.8
→ B

0.7
→ C

1.0
→ E in Figure 1. This results in trust values 0.72 and 0.64, re-

spectively; using probabilistic sum ⊕
P

to aggregate across these chains results
in calculation trust(A, E) = 0.899. This calculation may not necessarily reflect
the trust intentions of A, for example, E might be owned by B. In Figure 1, A

states that she trusts B to degree 0.8. However, as a consequence of statements
of other principals, using this calculation results in E holding more trust (0.899)
from A even though it originated exclusively via B. In this case the most trust
(from A) that B should be able to delegate to E should be degree 0.8.

Intuitively, we might expect to be able to address this issue by reducing the
subgraph connecting B to E to a single arc and computing:

trust(A, E) = trust(A, B) ⊗
P

trust(B, E) = 0.8⊗
P

(0.8⊕
P

0.9) = 0.78



However, the graph in Figure 2 illustrates that such a rewriting strategy is not
applicable in general. In this case it it not immediately clear how D’s trust
should be proportioned to C and E so as to ensure that E gets the maximal
trust available while ensuring that D does not delegate more trust than the 0.9
degrees obtained from B.
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Fig. 2. Quantitative Delegation Graph

The probabilistic sum operator treats trust as a quantity that can effectively
be accumulated as more statements about trust are made; the more statements
that X makes delegating trust to Y then, the more that Y ’s trust of X accu-
mulates, that is, trust(X, Y ) increases (bounded by 1). This gives rise to the
following principle for computing trust.

Principle of Preservation of Trust A principal may not delegate more trust than
it has accumulated. Note that this principle is expressed as a safety property in
that it does not require conservation of trust (in a liveness sense).

Trust delegation may be treated as a network flow-style problem. However,
we argue that it does not correspond to the two-terminal network reliability
problem [22], nor its variation suggested in [15], as both schemes can result
in a ‘double-counting’ of trust statements. For example, using [15] to compute
trust as the probabilistic sum of the trust along paths ABDE, ABDCE and
ABCE, results in trust(A, E) = 0.989. This result violates the principle of trust
accumulation as it implies that B effectively delegates more trust to E (0.989)
than it accumulated from A (0.8).

In the next section we propose a model in which trust(X, Y ) can be used
with any t-norm for trust aggregation along a chain and with any t-conorm to
aggregate trust across different chains, while preserving the principle of trust
accumulation.

3 A Model of Trust Aggregation

The calculation of trust(X, Y ) treats trust as a material-like quantity that flows
through the delegation graph. In many cases the degree of trust delegated is the
degree of trust that flows, for example, 0.8 degrees of trust ‘flows’ from A to

B as a consequence of the delegation A
0.8
→ B in the graph in Figure 1. Given



this trust held by B, suppose that we consider that 0.9 of this flows to D as

a consequence of B
0.9
→ D (under t-norm ⊗

P
). For the reasons discussed in the

previous section, permitting a further 0.8 (of the trust from A to B) to flow from
B to C will violate the Principle of Preservation of Trust since probabilistic sum
of A’s trust flowing, via B to C and D must be less than or equal to the trust
flowing to B. In this section we define the calculation of trust(X, Y ) in terms of
a search for a set of flow of trust labels for the delegation graph that preserves
the Law of Preservation of Trust.

Let trust(X, Y ) denote a degree of trust that arbitrary principal Y can accu-
mulate from principal X over a delegation graph. Given nodes X , Y and Z and
arc Y

x
→ Z in the delegation graph, then let the value flow(X, Y, Z) represent

some portion (ranging from nothing (0) to everything (trust(X, Y )) of the trust
that Y holds, originating from X , that is passed on to Z by Y .

The value of trust(X, Y ) is a solution to the following constraint problem
and is based on a search for a suitable configuration of the function flow that
ensures the principle of preservation of trust.

– If no directed path exists in the graph from X to Y then trust(X, Y ) = 0.
– The (cross chain aggregation of) flow from principal Y to others cannot

exceed the degree of trust from X that is accumulated by Y .

trust(X, Y ) ≥
⊕

∀Z,x|Y
x

→Z

flow(X, Y, Z).

– A node may not accumulate more trust than the cross chain aggregation of
the trust that it receives from others.

trust(X, Y ) ≤
⊕

∀Z,x|Z
x

→Y

(flow(X, Z, Y )⊗ x).

The intuition behind this calculation is to effectively find flow labelings for the
graph such that a subsequent max-min/network reliability style calculation of
trust(A, B) preserves the principle of preservation of trust accumulation.

As an example, Figure 3 depicts a solution of this problem: each node Z ∈
{C, D, E} is decorated with the value trust(A, Z) and each delegation statement

X
x(y)
→ Y indicates the degree of trust x and the value flow(A, X, Y ) = y. Note

that in this solution, all available trust flows from B to D to E. However, as a
consequence, none of the available trust held by B may flow to C; any higher
proportion and the Principle of Preservation of Trust is violated as the flow from
A to B exceeds 0.8. Note that this is just one solution to the above problem,
it is not necessarily optimal. Figure 4 gives an alternative solution. Section 5
considers the implementation of trust(X, Y ) in practice.

4 Trust Aggregation in QKeyNote

Sections 2 and 3 consider the quantification of unconditional trust, that is, the
degree of trust delegated from one principal to another is not related to any
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particular action or attributes of the principals. In this section quantified condi-

tional trust is considered whereby a delegation statement A
p:x
→ B is interpreted

to mean that a principal A asserts that she trusts another principal B for per-
mission p (related to some action) to a degree x : [0..1]. This section explains how
the KeyNote Trust Management system [4] can be extended to support these
delegation statements thereby providing decentralized support for quantitative
trust management. A KeyNote delegation credential encodes the delegated ‘per-
mission’ as a condition over attribute values. The approach is illustrated using
examples based on a photograph sharing trust policy [13] which uses a proba-
bilistic network to represent trust relationships between variables (attributes).

4.1 KeyNote Compliance Values as Degrees of Trust

A KeyNote credential is a statement that delegates trust from an authorizer to
a licensee constrained by some condition. The condition is given using a C-like
expression syntax in terms of attributes that are used to characterize action(s) for
which the licensee is trusted (by the authorizer). For example, consider a server
that permits trusted users access stored photographs based on image tags. The
server owner specifies that Alice (public key Ka) is trusted to access photographs
tagged as public. This is specified by the KeyNote policy credential:

Authorizer: POLICY

Licensee: Ka

Conditions: App_Domain=="PhotoShare" && Tag == "public";



The condition for this delegation is defined in terms of action attributes App Domain

and Tag. For the purposes of this example we assume that a photograph is tagged
either as public or private. When Alice requests access to a particular pho-
tograph, the application uses the KeyNote query engine to determine whether
there is a chain of trust from POLICY to the requesting key Ka with conditions
satisfying the [App Domain←"PhotoShare"; Tag←"public"].

In practice, the condition on a KeyNote credential evaluates to a value from a
user-enumerated (ordinal) set of compliance values that range from MIN TRUST

to MAX TRUST, for example, the compliance set={false,true}, for the above
policy. When a return value is not specified in the condition field then the default
return value is MAX TRUST when the condition is satisfied, otherwise MIN TRUST

is returned. The following credential, where Alice delegates trust to Bob Kb,
specifies a compliance value of 0.7. This value defines Alice’s degree of trust in
Bob concerning public photographs.

Authorizer: Ka

Licensee: Kb

Conditions: (App_Domain=="PhotoShare"

&& Tag=="public") -> 0.7;

Signature: ....

Compliance values in KeyNote conventionally define an enumerated and dis-
crete datatype, for example, 〈0,0.3,0.5,0.7,1.0〉 with MIN TRUST=0.0 and
MAX TRUST=1.0. A conventional KeyNote query corresponds to a calculation of
the maximum compliance value returned over the minimum compliance value
along all delegation chains whose conditions satisfy the attribute binding given
in the query.

4.2 Aggregating Compliance Values in QKeyNote

The KeyNote query engine has been extended to support compliance values from
the real datatype [0..1] and a revised query algorithm (QKeyNote) is used to
implement trust(X, Y ) for computing compliance values. If operators max and
min are selected as the aggregation operators then a QKeyNote query behaves
as a conventional KeyNote query.

Continuing the photograph sharing example, the policy is extended to au-
thorize Clare (Kc), who in turn, delegates authority to Bob (Kb).

Authorizer: POLICY

Licensee: Kc

Conditions:

(App_Domain=="PhotoShare")

-> { {Tag=="public"} -> 0.6;

{Tag=="private"} -> 0.2; }

Signature: ....

Authorizer: Kc

Licensee: Kb

Conditions:

(App_Domain=="PhotoShare"

&& Tag=="public") -> 0.8;

Signature: ....



Given these and the earlier credentials, a QKeyNote query as to whether Bob
is trusted for [App Domain←"PhotoShare"; Tag←"public"] returns compliance
value 0.844 when probabilistic operators are used to aggregate, that is, it calcu-
lates trust(POLICY, Kb) = (1⊗

P
0.7)⊕

P
(0.6⊗

P
0.8) = 0.844.

QKeyNote supports two predefined attributes that are treated similarly to
other predefined attributes such as MAX TRUST and ACTION AUTHORIZERS. At-
tribute TNORM specifies the t-norm operator that the QKeyNote query engine
has been configured to use when aggregating trust along a chain. Attribute
TCONORM specifies the t-conorm operator that the QKeyNote query engine has
been configured to use when aggregating trust across multiple chains. The de-
fault query engine configuration is TNORM="min" and TCONORM="max" providing
the ‘conventional’ KeyNote query.

We argue that specifying how delegated trust is aggregated should be as im-
portant to the authorizer as is specifying the degree of trust within a credential.
Therefore, a delegation of trust can be made conditional on the operators used
to aggregate the trust by constraining the values of TNORM and TCONORM in
its condition. For example, suppose that the server owner decides that Alice is
trusted to access private photographs as long as probabilistic sum and product
are used to aggregate this trust. This credential may be used only when the
query engine is configured to use probabilistic sum and product for aggregation.

Authorizer: POLICY

Licensee: Ka

Conditions: (App_Domain=="PhotoShare"

&& _TNORM=="probProduct" && _TCONORM=="probSum

&& Tag=="private") -> 0.2;

Signature: ....

A partial order can be defined over the t-norm and t-conorm operators. Given
t-norms ⊗t and ⊗′

t then

⊗t ⊑ ⊗
′
t ≡ ∀x, y : [0, 1] • x⊗t y ≤ x⊗′

t y

The operator min is the top t-norm under this ordering, for example we have
⊗

P
⊑ min. A similar ordering exists over t-conorms with max providing the

bottom t-conorm. These orderings can be used within a credential to facilitate
aggregation operator selection. For example, Alice trusts Bob to share private
photographs on condition that he can never use this trust with other credentials
to accumulate more than 0.6 degrees of trust. In this case the t-conorm used to
aggregate across chains must be the max operator, while the t-norm can be any
operator less than or equal to the min operator.

Authorizer: Ka

Licensee: Kb

Conditions: (App_Domain=="PhotoShare"

&& _TNORM<="min" && _TCONORM=="max"

&& Tag=="private") -> 0.6;

Signature: ....



This credential cannot be used if the query engine is configured with proba-
bilistic product and sum. However, for example the condition can be satisfied
the query engine is configured with probabilistic product as t-norm and max
as t-conorm. If a credential condition does not refer to TNORM and TCONORM

then the delegation is applicable for any aggregation operator. Figure 5 lists the
aggregation operators (and ordering) available in our current implementation of
QKeyNote. Currently values for TNORM and TCONORM must be provided as part
of the query. We are currently investigating how search for optimal values for
these operators might form part of the query trust(X, Y ).

Drastic ⊗
D

Lukasiewicz ⊗
L

Probabilistic ⊗
P

Compensating ⊗
e

C

Gödel min Drastic ⊕
D

Lukasiewicz ⊕
L

Probabilistic ⊕
P

Compensating ⊕
e

C

Gödel max

Fig. 5. Type system aggregation operator orderings ⊑

4.3 Accumulating Compliance Values in QKeyNote

The delegation graph built by the QKeyNote query engine supports multiple
delegation statements between arbitrary principals so long as each delegation
statement is unique. Credential uniqueness ensures that a malicious principal
cannot accumulate more trust than he holds by presenting multiple copies of
the same credential. For example, based on an evolving relationship, Alice issues
a credential to Bob, every day, specifying that she incrementally trusts him to
degree 0.01 to access private photographs:

Authorizer: Ka

Licensee: Kb

Conditions: (App_Domain=="PhotoShare"

&& _TNORM=="probProduct" && _TCONORM=="probSum"

&& Tag=="private" && Nonce = "123456"

&& Date >= "20100101" && Date<= "20101231"

&& _Action_Authorizers==Kb) -> 0.01;

Signature: ....

The nonce provides credential freshness and Bob may accumulate and use mul-
tiple credentials over time, subject to an expiry date. Bob may not delegate this



trust further ( Action Authorizers==Kb). For example, Bob may present three
credentials (different nonces) to prove a 0.0297 degree of trust from Alice (for
accessing private photographs). In this case each delegated degree of trust is
very small and could be regarded as form of micro-trust that can be accumu-
lated over time into a worthwhile relationship. Rather than expending the cost
of a public-key signature to generate and validate each each micro-trust state-
ment, a hash-based micropayment scheme such as [12] could be used, whereby
each micro-payment on a hash-chain corresponds to a micro-trust credential of
value 0.01. Following [12], a micro-trust contract, analogous to a micropayment
contract, is issued as KeyNote credential by Alice, to Bob indicating that she is
willing to eventually trust Bob to a high degree, that will be accumulated as a
series of micro-trust ‘payments’.

4.4 Compensating Aggregation Operators

One concern over using conventional arithmetic and/or probabilistic sum is that
when making decisions humans do not necessarily aggregate in a linear manner
[28], that is, there may be potential for non-linearity in the way that they perceive
combinations. In [6,11,19] a compensating uni-norm operator ⊙e is described for
aggregating in a non-linear manner, for neutral element e : [0..1]. Intuitively, this
uni-norm operator may be thought of as a combination of probabilistic product
when operand severity values are less than e, and probabilistic sum when operand
severity values are greater than e. Using this operator, for example with e = 0.6,
to aggregate trust along a chain causes the calculation to be less sensitive to
aggregation of higher trust values along the chains. While flexible, this uni-norm
does not behave exclusively as a t-norm and causes trust amplification along a
chain if operand values are greater than the neutral element due to aggregation
via probabilistic sum. Similarly, if the operator is used to aggregate across chains
operand values that are less than the neutral element then probabilistic product
may result in non-montonic trust; that is, it is not a t-conorm and adding further
delegation statements cause a reduction in trust.

QKeyNote provides a t-norm operator ⊗e
C
, as a safe trust-aggregating ver-

sion of the uni-norm ⊙e that provides a degree of compensation around neutral
element e. This operator is a combination of probabilistic product when operand
severity values are less than e, and min when operand severity values are greater
than e and is defined in Table 1. A corresponding compensating trust t-conorm
operator ⊕e

C
is a combination of probabilistic sum when operand severity values

are greater than e, or the max operator otherwise.

Following the micro-trust example above, suppose that Alice does not want
her micro-trust statements to aggregate her trust of Bob beyond 0.5 degrees. This
is achieved by requiring micro-trust to be aggregated using the compensating
trust t-norm configured with a neutral element of 0.5:



Authorizer: Ka

Licensee: Kb

Conditions: (App_Domain=="PhotoShare"

&& _TCONORM<="compTrust(0.5)"

&& Tag=="private" && Nonce = "123456"

&& Date >= "20100101" && Date<= "20101231"

&& _Action_Authorizers==Kb) -> 0.01;

Signature: ....

5 Implementing trust(X, Y )

There are many possible solutions for configurations of flow and trust that sat-
isfy the the constraints given in Section 3. Two approaches to finding a solution
are considered in this section.

Optimized Search. The problem can be expressed as a constraint satisfaction
problem (CSP) [21, 23] that searches for a solution while maximizing the value
of trust(X, Y ). This approach has been implemented using choco [27], a Java
library for solving CSPs and supports optimization over real-valued variables.
This implementation could be used in computing trust values in KeyNote delega-
tion graphs. However, this search violates the principle of efficient trust evalua-
tion [24] as it is computationally expensive and not suited to providing real-time
answers involving search over large delegation graphs.

Heuristic Search. Rather than searching for values of flow that yield an optimal
trust(X, Y ), we use fixed heuristics that distribute flow over outgoing arcs in
the delegation graph. Given a node Z on a path between X and Y then the
value of the flow from Z could be based on an even distribution of the value
of trust(X, Z) across the cardinality of the set of individual statements Z

z
→

Z ′ in the graph whereby Z ′ is connected to Y . For example in Figure 4, the
distribution (under probabilistic sum) of trust(A, D) = 0.36 across outgoing
flows flow(A, D, E) = 0.2 andflow(A, D, C) = 0.2, en-route to destination E.

This heuristic search approach is implemented using a topological sort of the
delegation graph to direct the assignment and/or division of flows within the
delegation graph while preserving the principle of conservation of trust. This
strategy has been used in the implementation of the QKeyNote query engine
discussed in Section 4.

When a trust query is made it is possible that the flows selected during a
previous search may contradict choices of flow from earlier trust queries. For
example, assuming an optimal search across the graph in Figure 3, then an earlier
query trust(A, D) returning 0.72 implies that a later query trust(A, C) should
return 0.0. Alternatively, if trust(A, C) is queried first, then it could return the
optimal trust value 0.64, with the subsequent query trust(A, D) returning 0.0.
Thus, an implementation of trust(X, Y ) may be stateful, in the sense that past
trust queries may influence the results of future queries against the graph.



Stateful Trust Compliance Let partial function trustΣ(X, Y ) record past trust
queries by returning the result of the most recent trust value computed between
X, Y . Given a delegation graph and trustΣ , then a principal Y is trusted to at
least degree x by principal X , if there exists a solution for this query such that
trust(X, Y ) = x and for all principals Z, W then trustΣ(Z, W ) ≤ trust(Z, W ).

Stateful trust compliance is useful for enforcing history-based security poli-
cies such as Chinese walls and dynamic separation style policies. For example,
interpreting the policy in Figure 3, both D and C have the potential to interact
with A as trusted principals. However, once A queries D’s trust (presumably as a
consequence of some interaction with D), then C’s level of potential trust dimin-
ishes. The disadvantage of a stateful implementation of trust is that it requires
a globally coordinated trust state, for example relying a centralized graph of
delegation statements and trustΣ(X, Y ) function. While a centralized approach
is common in reputation trust systems, a goal of trust management is to support
decentralized delegation statements in the form of cryptographic credentials. For
the purposes of this paper we regard trust queries as stateless, determining the
degree of trust regardless of past queries. Investigating the implementation of
statefull queries is a topic for future research.

6 Discussion

This paper proposes a generalization of the KeyNote Trust Management system
whereby KeyNote compliance values in the metric space [0..1] can be aggregated
using arbitrary triangular norms and conorms. This provides a basis for Trust
Management queries that return the degree to which a principal is trusted for
some action. Note that the results in this paper are not limited to KeyNote,
which was chosen for the sake of ease of exposition and implementation.

We argue that specifying how trust is aggregated, both along chains and
across chains, is as important as specifying a degree of trust value and therefore
should form part of the trust information provided in a credential. It is not the
intention of this paper to prescribe any particular aggregation operator, rather
we provide a framework in which different aggregation operators can be used
in a consistent way. While a relatively intuitive distinction exists between the
use of the fuzzy (max/min) operators and the probabilistic operators, exploring
trust-based interpretations for the other Triangular norms is a topic for future
research.

By encoding degrees of trust as compliance values and by using special at-
tributes TNORM and TCONORM to specify optional aggregation operators within
delegation credentials it is not necessary to change the KeyNote language. While
the KeyNote query engine has been modified to implement the model described
in Section 3 its behavior is consistent with the standard KeyNote implementa-
tion when the aggregation operators are min/max (default). Thus, backwards
compatibility is provided. Furthermore, QKeyNote credentials can be used in
a standard KeyNote query, at least to the extent that standard KeyNote effec-
tively aggregates according to min/max, thereby providing a ’safe’ interpretation



under the aggregation operator type ordering. The current model assumes fixed
aggregation operators for any given query (subject to the credential conditions).
Investigating how a query can support different aggregation operators to be
simultaneously used across a graph is a topic for future research.

The current model and implementation does not currently support threshold
delegation in KeyNote. We are investigating how a form of threshold delegation
can be emulated by using probabilistic sum. In this case a conventional KeyNote
credential that delegates authority to the conjunction of two principals can be
rewritten as two individual credentials, each delegating authority to one princi-
pal, with, for example degree of trust 0.5 and probabilistic sum as TCONORM. A
KeyNote decision is considered acceptable if the degree of trust is greater than
the trust of either individual 0.5.

A wide range of literature exists on many different forms of reputation trust
and trust metrics and the reader is referred to [18] and [24] for an in-depth re-
view. Closest to the underlying trust model proposed in this paper are schemes
that treat the problem as an inclusion/exclusion style calculation across a proba-
bilistic network such as [15,22]. However, Section 2 demonstrates the problem of
double-counting trust when performing such a calculation. Furthermore, [15,22]
does not generalize to arbitrary t-norm/conorm aggregation operators and does
not consider integration with a Trust Management system. Jøsang et. al. [17]
avoid double-counting by removing weakest (trust) delegation statements from
the graph until a series of delegation chains remain that can be safely aggre-
gated, resulting in a sub-optimal trust calculation. In [16] an improved strategy
is proposed that uses edge-splitting to transform a delegation-statement (shared
across different chains) into separate statements, one for each path, with the
trust of the original statement distributed across the separate statements. We
conjecture that these strategies uphold the Principle of Preservation of Trust;
investigating the use of these strategies in an alternative implementation of the
QKeyNote interpreter is a topic for future research.

Bistarelli et. al. use multi-trust [2, 3] to model reputation trust within the
RT Trust Management language. In the multi-trust model trust relationships
are represented in terms of the degree of trust from a single trustor to a group
of trustees; a c-semiring defines how the trust should be aggregated, using prob-
abilistic product along chains and max for aggregating trust across separate
chains. Adapting this model to the trust calculation scheme described in Sec-
tion 3, and thereby supporting other t-norms and t-conorms, is a topic for future
research.
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