
The evolution of a security control

Olgierd Pieczul1,2 and Simon N. Foley2

1 Ireland Lab, IBM, Dublin, Ireland.
2 Department of Computer Science, University College Cork, Ireland.

Abstract. The evolution of security defenses in a contemporary open-
source software package is considered over a twelve year period. A qual-
itative analysis style study is conducted that systematically analyzes se-
curity advisories, codebase revisions and related discussions. A number
of phenomena emerge from this analysis that provide insights into the
process of managing code-level security defenses.

1 Introduction

During an application’s lifecycle, the ideal is that there is a continuing process
for vulnerability discovery and repair. A more pragmatic viewpoint of the pro-
cess is that vulnerabilities are unknowingly introduced (or re-introduced) during
code maintenance, existing vulnerabilities are missed, misreported and misin-
terpreted and repairs to defenses are incomplete. Even when a threat is clearly
identified it can be a struggle to provide an adequate security defense. PHP’s
“safe mode” as a means to provide security for multihosting is a case in point;
ever since its introduction, new ways of bypassing its latest defense/repair have
been repeatedly discovered, eventually leading to the decision to remove it from
PHP. One might argue that the difficulty in providing an adequate mechanism
in this case is attributed to a flawed design and the relatively large scale of the
software. However, this kind of problem can also be observed at a smaller scale
and in simpler code that implements routine tasks. The Shellshock vulnerability
in the Bash shell allowed custom code execution due to a bug in code parsing
the environment variables. The fix was released quickly in 2014, however, it took
five further vulnerabilities and remediations before the issue was believed fixed.

Research aimed at gaining insights into these kinds of issues has tended
towards quantitative studies. Metrics such as number of bugs over time, rate
of appearance, type and severity, can be gathered and statistically analyzed [1,
2]. Such measurements can point to interesting trends, however, they rely on
their hypothesis and the efficacy of the underlying data which, for example,
may include attributes such as CVSS scores and lines of code. Furthermore, it
cannot help one understand why a particular security weaknesses persists over
time and cannot be properly addressed, nor what causes the implementation
of a weak security mechanism. While a quantitative study can provide a basis
for supporting a hypothesis, where a hypothesis does not form the basis of the
research question an exploratory approach is informative.

In this paper we take an exploratory approach to gaining insights into these
issues. Informed by qualitative research techniques, we carried out a systematic
study of the evolution of a security control over a long period of time with a view
to discovering security-relevant phenomena that emerge. The paper is organized
as follows. Section 2 outlines the methodology that was followed during the
study. The study is based on a security control in Apache Struts and Section 3
provides the background necessary to understand the technical account given
on the evolution of this control in Section 4. Section 5 discusses a number of
phenomena that emerge during the analysis of this control.

Note for the reader/reviewer. In as much as possible, the paper has been or-
ganized so that much of the detailed technical accounts of the vulnerabilities
and attacks in Sections 3 and 4 may be skipped by a reader who has a greater
interest in the emergent phenomena than in the low-level details of Struts.

2 Methodology

We based our study on Apache Struts, a popular web application framework
for Java, developed under the auspices of the Apache Software Foundation. Our
rationale for selecting Struts as a good representative of contemporary software,
is as follows. Struts is a mature and widely used package that has been devel-
oped according to best practices, both in terms of code implementation as well
as development life cycle, with a documented policy and change management
process. The security processes surrounding Struts are transparent and include
documented processes for reporting vulnerabilities and publishing security ad-
visories. We focussed our attention on the functionality of one particular Struts
security control that has had a series of reported security vulnerabilities and
has evolved over time. The chosen control is sufficiently critical to ensure both
internal and public interest in identifying security problems, and that reported
issues are treated seriously by the development team.

We performed a systematic analysis of the Struts source code published over
twelve years from 2004 to 2015. This was done in a qualitative style, whereby the
objective was to identify security-related phenomena, or patterns, that emerge
from the activity of making code revisions. The analysis focused on the code revi-
sions that arose as a consequence of, and/or were the cause of, the security advi-
sories over that period. In particular, these were related to a security-control that
is responsible for preventing the injection of malicious code into the framework
via the parameters of web page requests. This security-control checks parame-
ter values passed to the Struts ParametersInterceptor and CookieInterceptor,
preventing their misuse. Note, that the ParametersInterceptor functionality orig-
inated in the XWork project and was later merged into Struts; the XWork source
was subject of the analysis during this intial period.

We reviewed: the security advisories/vulnerability publications; code-updates
(security-related or otherwise); related discussions on the development mailing
list, and other publications often contributed by the vulnerability reporters who

sometimes provided additional technical details. Often, only partial details of an
attack were published, and in all cases it was possible to re-construct/implement
the attacking code by reverse-engineering the code changes and published infor-
mation. This led to the analysis of an estimated 300+ security-relevant code
changes over the evolution of Struts.

In carrying out this analysis we identified the code changes that had an
impact on security, either fixing a known vulnerability or introducing a security
issue. For ease of exposition, the analysis is summarized in terms of aggregate
changes over releases that culminate in a published security-related release, with
one exception. In this way we believe that our inferences about the developer’s
intentions are more reliable than those based on (possibly incomplete) changes
made in between security releases. While the observation of changes in-between
the releases may provide an insight into security mechanism evolution, it was
not clear whether the changes at these stages could be considered complete. As a
result we discovered 20 key security related changes, presented by row in Table 1.

During our investigation we identified elements of the security mechanism
and mapped the changes into the corresponding categories, give by the right-
hand columns in the table. The identified changes often take a simplified form,
of regular expression or an acronym, representing the essence of the change. For
simplicity, the significant element of the change is highlighted using bold text.
Note that the categories discovered during analysis are not related to the actual
structure of the code, as the corresponding security mechanisms were routinely
moved/refactored within the source code, given different names and so forth.

Throughout this process we strove to make observations about vulnerabili-
ties, repairs and coding activities, based solely on the evidence in this corpus.

3 Struts operation

This section provides an overview of those parts of Struts that are required to
understand our analysis of the security control used in the study. Struts is a
mature and popular web Model-View-Controller framework for Java. One of the
features of Struts is the ability to easily separate the business logic from the
operational details related to processing HTTP requests. For example, consider
a sample piece of code of a web application responsible for handling a request to
add an application user by an administrator, presented at Figure 1. The listing
shows three parts of the application: class User encapsulates the details of an
application user; class AddUser, implemented as Struts action, provides the logic
adding user to the system, and the JSP provides the fragment of the view view
(a page is presented when the action is complete).

Note that AddUser does not contain any web-specific logic, which is handled
by Struts. It defines getter and setter methods (getNewUser and setNewUser, re-
spectively) for retrieving and setting the user object, and a setSession method
(required by SessionAware) interface for Struts to set the Session object. For ex-
ample, client may send a request such as: http://application/user/add?newUser
.name=john&newUser.role=support in order to add new support user. The request

public class User {

private String name;

private String role;

... // getters and setters for fields

public boolean isAdmin () {

return (role.equals("admin"));

}

}

public class AddUser extends ActionSupport implements SessionAware {

private User newUser;

public User getNewUser () {

return newUser;

}

public void setNewUser(User user) {

this.newUser = user;

}

public void setSession(Map session) { // for SessionAware

this.session = session;

}

public String execute () throws Exception {

if (session.get("user").isAdmin ()) {

DAO.add(newUser);

return SUCCESS;

}

}

}

<s:property value="#session[’user ’]. name"/> added user <s:property
value="newUser.name"/> with role <s:property value="newUser.role"/>

Fig. 1: Sample MVC struts application

is received by Struts which, based on its configuration, decides whether it should
be processed by a AddUser action. It instantiates the class and then (as it imple-
ments SessionAware interface) calls setSession method with a session map for
current user. Struts then parses the parameters, creates a new User object using
the values from the request, and provides it to the action using the setNewUser

method. Subsequently the execute method executes taking advantage of all the
properties that have been set. After the user is added, the JSP page is rendered
which in turn refers to action properties such as newly added user and session.

3.1 OGNL

Struts uses Object-Graph Navigation Language (OGNL) [3], an expression lan-
guage used to get and set properties of Java objects. OGNL expressions are eval-
uated against a collection of objects called context. One of the objects, called
root, is distinguished as the default root of the object graph. When processing a
request, Struts sets the current action object (for example AddUser) as the root.
In the example in Section 3 the expression newUser.name is used both in request
parameters and also in the JSP file. The values are being accessed through pub-
lic getters and setters. For example, the OGNL newUser.name to get the name of
an object is equivalent to Java code action.getNewUser().getName(). Similarly,
using OGNL to set a value expressed as newUser.name to alice is equivalent to
Java code action.getNewUser().setName("alice").

Other Struts-specific objects such as session, request and application config-
uration are also included in the OGNL context. For example #session[’user’].

name, expression can be used to access a name property of an object that exists in
session map under index ’user’. Finally, context contains number of variables
that control OGNL behavior, such as rules for accessing classes depending on
type, access restrictions, caching and so forth. Figure 2 provides an overview of
context structure at the time of execution of AddUser action.

Fig. 2: OGNL context in example application

3.2 Struts Interceptors

Struts interceptors, upon which our study is based, parse request parameters and
set corresponding values in action objects. Interceptors in Struts are responsible
for handling common tasks before/after the action is executed. Typical tasks per-
formed by interceptors is handling HTTP requests (such as request parameters
or cookies), input validation, access control, caching and so forth.

Processing request parameters is performed by ParametersInterceptor. Our
study started on the codebase published at the beginning of 2004, with the
release of the XWork 1.0 library in which the interceptor was first implemented
and the later merged into Struts. Since then, the functional requirements of
the parameter interceptorhave not changed. It iterates over each parameter and
sets the action values using parameter name as OGNL expression to identify
the object and parameter value as the value to set. Starting from June 2007
CookieInterceptor sets action properties based on HTTP cookies.

4 Tracing the evolution of a security control

The parameters and cookie interceptors allow clients to provide a custom OGNL
expressions that are evaluated by Struts. OGNL expressions can result in the
execution of custom code which accesses program variables. From its first re-
lease, this functionality has been considered a security threat and, a mitigating

security control has always formed a part of its implementation. In this section
we systematically trace the evolution of this control over a 12 year period: 2004–
2015. The results are summarized in the Table 1 and described in detail in the
reminder of the section.

date accepted parameters accepted cookies excluded patterns OGNL

Jan 2004 [empty] n/a n/a ME

Dec 2004 excluded: {'=', ',' ,'#'} n/a n/a ME

Feb 2007 excluded: {'=', ',' ,'#', ':'} n/a dojo\..* ME

Jun 2007 excluded: {'=', ',' ,'#', ':'} [empty] dojo\..* ME

Jul 2008 excluded: {'=', ',' ,'#', ':'} [empty] dojo\..*

Jul 2008 [empty] dojo\..* ME, SM

Oct 2008 [\p{Graph}&&[^,#:=]]* [empty] dojo\..*

Aug 2010 [a-zA-Z0-9\.\]\[\(\)_'\s]+ [empty] dojo\..*,^struts\..* ME, SM, SC

Dec 2011 [a-zA-Z0-9\.\]\[\(\)_'\s]+ [a-zA-Z0-9\.\]\[_'\s]+ dojo\..*,^struts\..* ME, SM, SC

Dec 2011 [a-zA-Z0-9\.\]\[\(\)_']+ [a-zA-Z0-9\.\]\[_'\s]+ dojo\..*,^struts\..* ME, SM, SC

Jan 2012 [a-zA-Z0-9\.\]\[_'\s]+ dojo\..*,^struts\..*

Apr 2012 [a-zA-Z0-9\.\]\[_'\s]+

Aug 2012 [a-zA-Z0-9\.\]\[_'\s]+

Mar 2014 [a-zA-Z0-9\.\]\[_'\s]+

Apr 2014 [a-zA-Z0-9\.\]\[_'\s]+

Apr 2014 [a-zA-Z0-9\.\]\[_'\s]+

May 2014 [a-zA-Z0-9\.\]\[_'\s]+

Dec 2014 [a-zA-Z0-9\.\]\[_'\s]+

May 2015 [a-zA-Z0-9\.\]\[_'\s]+

Sep 2015 [a-zA-Z0-9\.\]\[_'\s]+

ME, SM

ex: {'=', ',' ,'#', ':', \u0023}

ME, SM, SC

\w+((\.\w+)|(\[\d+\])|(\(\d+\))|
(\['\w+'\])|(\('\w+'\)))*

ME, SM,
SC, EE

\w+((\.\w+)|(\[\d+\])|(\(\d+\))|
(\['\w+'\])|(\('\w+'\)))*

dojo\..*,^struts\..*,^session\..*,^request\..*,^application\..*,
^servlet(Request|Response)\..*,parameters\...*

ME, SM,
SC, EE

\w+((\.\w+)|(\[\d+\])|(\(\d+\))|
(\['\w+'\])|(\('\w+'\)))* [100]

dojo\..*,^struts\..*,^session\..*,^request\..*,^application\..*,
^servlet(Request|Response)\..*,parameters\...*

ME, SM,
SC, EE

\w+((\.\w+)|(\[\d+\])|(\(\d+\))|
(\['\w+'\])|(\('\w+'\)))* [100]

^class\..*,^dojo\..*,^struts\..*,^session\..*,
^request\..*,^application\..*,^servlet(Rrequest|
Response)\..*,^parameters\..*,^action:.*,^method:.*

ME, SM,
SC, EE

\w+((\.\w+)|(\[\d+\])|(\(\d+\))|
(\['\w+'\])|(\('\w+'\)))* [100]

(.*\.|^|.*|\[('|"))(c|C)lass(\.|('|")]|\[).*,^dojo\..*,
^struts\..*,^session\..*,^request\..*,^application\..*,
^servlet(Request|Response)\..*,^parameters\..*

ME, SM,
SC, EE

\w+((\.\w+)|(\[\d+\])|(\(\d+\))|
(\['\w+'\])|(\('\w+'\)))* [100]

default: (.*\.|^|.*|\[('|”))class(\.|('|”)]|\[).*; params: ^dojo\..*,
^struts\..*,^session\..*,^request\..*,^application\..*,
^servlet(Request|Response)\..*,^parameters\..*

ME, SM,
SC, EE

\w+((\.\w+)|(\[\d+\])|(\(\d+\))|
(\['\w+'\])|(\('\w+'\)))* [100]

(.*\.|^|.*|\[('|”))class(\.|('|”)]|\[).*,^dojo\..*,^struts\..*,
^session\..*,^request\..*,^application\..*,
^servlet(Request|Response)\..*,^parameters\..*

ME, SM,
SC, EE

\w+((\.\w+)|(\[\d+\])|(\(\d+\))|
(\['(\w|[\u4e00-\u9fa5])+'\])|
(\('(\w|[\u4e00-\u9fa5])+'\)))*

config/params: ^action:.*,^method:.* (priority)
default: (.*\.|^|.*|\[('|"))\bclass(\.|('|")]|\[).*,(^|.*#),dojo(\.|\[).*,
(^|.*#)struts(\.|\[).*,(^|.*#)session(\.|\[).*,(^|.*#)request(\.|\[).*,
(^|.*#)application(\.|\[).*,(^|.*#)servlet(Request|Response)
(\.|\[).*,(^|.*#)parameters(\.|\[).*,(^|.*#)context(\.|\[).*,
(^|.*#)_memberAccess(\.|\[).*

ME, SM,
SC, EE, EC

\w+((\.\w+)|(\[\d+\])|(\(\d+\))|
(\['(\w|[\u4e00-\u9fa5])+'\])|
(\('(\w|[\u4e00-\u9fa5])+'\)))*

(^|.*#)(dojo|struts|session|request|application|
servlet(Request|Response)|parameters|context|
_memberAccess)(\.|\[).*", ^(action|method):.*

ME, SM,
SC, EE, EC

\w+((\.\w+)|(\[\d+\])|(\(\d+\))|
(\['(\w|[\u4e00-\u9fa5])+'\])|(\
('(\w|[\u4e00-\u9fa5])+'\)))*

(^|\%\{)((#?)(top(\.|\['|\[")|\[\d\]\.)?)(dojo|struts|session|
request|response|application|servlet(Request|Response|
Context)|parameters|context|_memberAccess)(\.|\[).*,
^(action|method):.*

ME, SM,
SC, EE, EC

Table 1: Security mechanism evolution: 2004–2015

In January 2004 the interceptor included just one security measure: disabling
Java method execution (ME) through OGNL. By default, OGNL allows Java
methods to be called in a manner similar to field access. For example, attempting
to set a value to map[method()] results in the invocation of method against the
root object in order to get the value to be used as map key. Disabling the method
execution is implemented using a custom OGNL method accessor and controlled
using context variable #context[’xwork.MethodAccessor.denyMethodExecution’].

4.1 Tampering with OGNL

The first vulnerability identified since the initial release relates to overwriting
context variables via parameters. For example, a parameter/OGNL expression
#session[’user’].role may be used to set the role of the current user stored in
the session. A more advanced expression may set a number of properties at once
while still retaining original behavior, that is, setting the newUser parameter:
#session[’user’].role=admin,#testMode=true,newUser.name’.

In December 2004 the problem was fixed by modifying the interceptor to
check if the name is acceptable, by verifying it against a black list of characters,
using a condition:
name.indexOf(’=’) != -1 || name.indexOf(’,’) != -1 || name.indexOf(’#’) != -1

In July 2008 it was reported that the fix was incomplete, because the #

character can be encoded using its unicode \u0023 replacement, for example, by
using a parameter \u0023session[’user’].role=admin. This problem was fixed
by adding string \u0023 to the black list. Note that the other two already black
listed characters, which could also be represented using the unicode string, were
not included in the unicode form. Shortly after, the fix was further modified in
a twofold way. First, the code was modified and the check routine replaced with
regular expression: [\p{Graph}&&[^,#:=]]*. Note that the unicode replacements
for the characters were no longer not excluded. In addition, the interceptor was
modified to run OGNL operations against a separate temporary instance of
context object (SC), without Struts-specific variables such as session preventing
their manipulation.

At the same time, a new problem was discovered. OGNL allows accessing
static fields in Java objects using the @class@field notation. For example, expres-
sion @java.lang.System@exit(0).foo can be used to call static exit() method,
causing the JVM to exit. Static methods provided by the Java standard library
can be used to perform a number of operations, including executing custom com-
mands. This problem was fixed by adding an option to disable static method
access (SM) in OGNL, and disabling it by default.

A vulnerability in this security mechanism was found in July 2010. It took
advantage of the fact that context variables were still accessible through the
unicode “trick” and that the OGNL-specific context variables controlling access
to method execution, were available without restriction on the the temporary
context. This allows a modification of the OGNL runtime configuration, allow-
ing method execution and eventually custom method execution. An example
sequence of OGNL expressions to perform the attack could be [4]:

#_memberAccess[’allowStaticMethodAccess ’] = true

#foo = new java.lang.Boolean (" false")

#context[’xwork.MethodAccessor.denyMethodExecution ’] = #foo

#rt = @java.lang.Runtime@getRuntime ()

#rt.exec(’mkdir /tmp/PWNED ’)

Such a sequence could be encoded in a parameter, bypassing the black list, by
using unicode replacements for the #=, characters. This vulnerability resulted in
a change in the regular expression to a stricter white list of characters: [a-zA-Z0
-9\.\]\[\(\)_’\s]+, effectively disallowing usage of the unicode replacements.

A year after this change, there was a report that while the restriction worked
for regular methods it did not apply to public constructors. While execution
of methods by OGNL was disabled through custom accessors, the logic did
not cover constructor invocation. Some constructors may be useful to an at-
tacker, such as FileWriter constructor creating or overwriting a file (new java

.io.FileWriter(’filename’)). Rather than disabling constructor invocation in
the existing custom accessor, the issue was fixed by disallowing a white space
character, essential for constructor syntax, in the parameter name. As a result,
the regular expression was modified to [a-zA-Z0-9\.\]\[\(\)_’]+.

A few weeks later, in December 2011 the new way of bypassing the restriction
was discovered [5]. It took advantage of OGNL’s ability to evaluate the content
of variables that already exist in the context. The attack requires setting two
parameters. The first parameter uses an acceptable name but has a value con-
taining the OGNL expression, and the second refers to the first, for instance, as
array key. For example, an attacker may first set the value of existing parameter
to an expression, newUser.name=OGNL code and then evaluate the parameter value
by referencing its name, z[(newUser.name)(0)]=0. When the second parameter
is evaluated, OGNL will attempt to establish an index of z property, and eval-
uate the expression stored in newUser.name. In effect, the vulnerability allows
character-based restrictions on parameter names to be bypassed. This, in turn,
enables access to context variables that control method execution restrictions
and lead to executing custom code. The vulnerability was fixed by modifying
the regular expression for acceptable name, yet again. This time, it matched
characters such as [] or () only in specific context so as to disallow expressions
that may evaluate other variables. An additional logic to control the expression
evaluation (EE) was added to OGNL customization code.

The last vulnerability related to tampering with OGNL using parameter
names was reported and fixed in August 2012. As parsing OGNL parameters
requires significant processing effort it is attractive as a target for denial of
service attacks. Requests with particularly long/complex OGNL expressions can
be used to exhaust system resources. The problem was fixed by limiting the size
of parameter names to 100 characters.

4.2 Accessing properties

Another set of security problems with processing request parameters relate to
the ability to access properties of the root (action) object. In OGNL, access
to the properties is controlled by the method or field access modifier in Java.
For example, the newUser property is accessible because of the public getter
getNewUser. If the method was defined as private or protected then the access
would not be possible. The relationship between the ability to access and actual
method access may not be clear or always intended. It may happen that the
developer’s code already has an object that would perfectly suit use within an
action, but it includes a public method that should not be exposed. For example,
a different implementation of the example application Section 3 may use the User

object but does not intend to allow user to set the role parameter. In February

2007 a configuration parameter named excludeParams was provided in order to
allow developers to prevent access to some properties. The parameter can be
set to set of regular expressions defining patterns for parameters that should
be ignored by the interceptor. Initially, the parameter was set by default to
^dojo\..* and shortly after also ^struts\..*.

Struts uses a dependency injection software pattern. In particular, it al-
lows action classes to acquire certain common runtime information by imple-
menting specific interfaces such as SessionAware or RequestAware. The example
application in Section 3 implements SessionAware interface and corresponding
setSession method. This instructs Struts to call it with the current server’s
session before action execution. Note that implementing a corresponding public
getter (not required by the interface) could open up a session for manipulation us-
ing request parameter, such as session[’user’].role. If application implements
such getter, it is expected to restrict access to the parameter in the configuration.

Between 2007 and 2011 various reporters pointed out that implementing a
setter, as required by Struts interfaces may also allow for manipulation. While
the user may not directly access session attributes due to the lack of a getter, it
may override a session object provided to the action. For example, a parameter
session.user=a results in creation of a new Map with a user key. The use of this
vulnerability is rather limited [6], but in certain cases it may allow unintended
manipulation of application internals. In April 2012 a fix was eventually imple-
mented by including a number of common parameter names such as session to
the excludeParams list. The problem was not completely solved as it only protects
a few commonly used properties and the override mechanism is still available.

A more significant problem was discovered in March 2014. Every Java ob-
ject contains a getClass method that returns a Java class for that object. The
returned Class object contains a number of getters and setters, in particular
getClassLoader which returns an instance of the current class loader. Access to
this object allows manipulation of the application server’s internal state and
allows for custom code execution [7]. The first attempt to fix the vulnerability
was to add ^class\.. pattern to excludeParams. Within a few days a number
of vulnerabilities related to an incomplete fix were reported. One, was the pat-
tern matches class string at the beginning of the parameter name (^), but the
class property does not necessarily has to be accessed through the root. As
all Java objects contain getClass method, the class loader manipulation can be
done through any of them, for example newUser.class.classLoader... Another
reported vulnerability related to the fact that OGNL allows specifying param-
eters in upper-case form, such as Class, which are not matched by the regular
expression. An improvement was published on the Struts web page as a hot
fix, including (.*\.|^|.*|\[(’|"))(c|C)lass(\.|(’|")]|\[).*. It must be noted
that, while an upper-case version was considered only for class, but not for
session, request and others that were previously excluded. Eventually, the code
performing the regular expression matching was modified to ignore case, and
expression was simplified.

The series of fixes related to the class attribute, resulted in number of rather
ad-hoc code changes that were rationalized in December 2014. The default set
of excluded patterns was moved from the configuration file directly to the utility
class used for pattern matching. Two, security unrelated, patterns were kept
in the configuration file. However, the code was implemented in a way that
configuration parameters overwritten the default set, effectively removing all
security related excluded patterns. This problem was fixed by moving the two
patterns to the code and leaving the configuration empty.

The last vulnerability relates to a special variable called top, implemented for
Struts-specific handling of OGNL, allowing access to the root object. Effectively,
this variable allowed excluded patterns of parameters to be bypassed by allowing
variables to be addressed in a way that does not match the regular expressions.
As a result, the top parameter was added to the list of excluded patterns.

Finally, a more comprehensive fix was implemented. In addition to a regular
expression specifying parameter names, a custom OGNL property accessor pro-
vided by Struts was modified to exclude classes (EC) by their types and package
names. For example, any attempt to access an object of a type java.lang.Class,
or any class in javax package (specific to J2EE objects such as session), will be
rejected. This mechanism does not have the weaknesses of the string matching
approach that was repeatedly bypassed, as the verification of the object type is
done at OGNL accessor level, regardless of how the expression was constructed.
However, the list of excluded classes and package names is rather arbitrary.

4.3 CookieInterceptor

Since June 2007, Struts includes the CookieInterceptor with functionality simi-
lar to ParametersInterceptor but applicable to HTTP cookies. The interceptor
iterates over the cookies sent with the request and sets the value indicated by
the OGNL expression provided by cookie name. The developer may configure
the parameters/names that be processed in the interceptor configuration.

Our analysis revealed that in several instances, problems that were applicable
to both interceptors were fixed only for the parameters. At the time its first
release, developers were aware of OGNL tampering issues and the rudimentary
protection was already implemented for parameters, as presented in Table 1.
However, it took over four years and an external reporter to implement the
white list of accepted characters, which similar to that for parameters.

Additionally, issues related to accessing parameters, described in Section 4.2
were not considered for cookies for quite some time. Until April 2014 there was no
restriction as to what properties can be accessed with cookies and excludeParams

configuration was applicable only to parameters. In particular, the initial fix for
the critical class loader manipulation issue was also only applied to parameters.
Only after the problem was explicitly reported was the problem fixed, though
only for the class property and not for the session, request, and so forth.

5 Analysis of security control evolution

As we traced the evolution of the security control, as outlined in the previous
section, we observed a number of repeating phenomena related to introduction
and prevalence of vulnerabilities, and inhibitors to the proper implementation
of the security control.

5.1 The dark side of the code

One challenge is the difficulty of properly understanding every aspect of an
application’s operation. Modern software development is built layer upon layer
of components, each encapsulating lower level detail. However, security issues
often relate to low level details that are not always accessible to the developer.
As a result, programmers rarely understand all the operational details of the
entire stack. This problem, referred to as the “dark side of the code” in [8], can
be viewed as a gap between the possible operation of the application as perceived
by developer and the actual operation of which the software is capable. While
[8] argues, in principle, for the existence of the dark side of the code, our study
observed this phenomenon occurring in a number of vulnerabilities and confirm
its existence in practice.

When the Struts interceptor developers designed the initial set of forbidden
characters, they did not consider their unicode alternatives that were later used
to bypass the black list based security control. The OGNL library allows the
use of such replacements, however there is inadequate information concerning
the scope in which the characters can be used. In its coverage of String literals,
the official OGNL documentation makes vague mention of escape characters.
In addition, the information provided about escaping characters is done in the
context of string delimiters such as " and ’ and could be easily interpreted as
applying only to them. The same issue applies to OGNL’s ability to address
properties using upper case.

Similarly, that the getClass method, implemented by the JVM and existing
in every Java object, may be used to perform an attack might have not been
expected by the Struts developer. The complexity of this attack confirms that an
in-depth understanding of the Java internals, as well as the class loader specific to
the application server is required in order to develop an attack vector. Addition-
ally, the developers might have not expected that access to public constructors,
exploited using file overwrite attack, could be harmful. As it is a best practice
in object oriented programming to not implement constructors that cause any
side effects, it may be difficult to appreciate that Java standard library includes
one that allows writing a file.

Report bias A dark side can also exist when it comes to both documenting
and/or interpreting vulnerability reports; the extent of the security problem
may not be fully appreciated in its reporting. Security vulnerabilities are often
identified by security researchers who are external to the development team.

Usually the issue is reported with a detailed description of the problem, example
attack vector, and so forth. Upon receiving the information about the problem,
the developers may follow a detailed report in isolation, as the prescription for
the vulnerability’s remedy. However, often the reporter may not have a complete
understanding of the application and their report may may be incomplete; or
they may liit their focus to a representative example. The vulnerability however,
may have broader scope than that identified by the report or there may be
further attack vectors related to the same root cause of the issue.

In Struts, the sequence of fixes related to class property exemplifies this
phenomenon. Each time, the remediation was shaped by the way the issue was
reported. This is exemplified by usage of class parameter at the beginning of
expression (while it can be used for any object) and failing to provide protection
for CookieInterceptor.

Similarly, an issue related to the exposure of constructors when using OGNL
was reported as a problem that led to the overwriting custom files. Although
this was only one example of the attack vector, this is how the vulnerability was
described in Struts official advisory, despite the problem having a broader scope.
In reality, a number of other actions are possible, provided the availablity of a
suitable public constructor in the class path [9].

Security metric bias During analysis the vulnerabilities were compared to
the published official security advisories. We noticed that in many cases, the
CVSS score did not properly represent the problem. This can be attributed to
incomplete understanding of the problem when the report was published. The
CVSS documentation acknowledges that the characteristics of a vulnerability
can change over time; the temporal metrics, used to calculate the temporal score
include properties such as exploitability or remediation level. However, it is the
base metrics, such as confidentiality/integrity impact that often change as the
problem is better understood.

For example, CVE-2008-6504 describing the “unicode trick” to bypass the
black list of characters has a CVSS score of 5.0. The impact metrics for confi-
dentiality and integrity are, None and Partial, respectively. Another occurrence
of the same problem, that resulted from an incomplete fix due to adding a tem-
porary context object, published in CVE-2010-1870 has the same score. This is,
however, not consistent with the actual impact of the vulnerability. Access to
context variables effectively allows execution of custom Java code, system com-
mands, and more. It is likely that the team was not aware of the impact when
the first advisory was published; in the second case, however, the official advisory
points out the variables used to control method execution. The last vulnerability
reported for this problem, relating to evaluating OGNL expressions using two
parameters, reported as CVE-2012-0392, has correct confidentiality/integrity im-
pact metrics of Complete and overall score of 9.3. Even though, in hindsight, it is
clear that the impact of all three issues were the same, the published information
is still incorrect, something that can only be revealed by detailed analysis.

Thus, CVSS values can be biased by the understanding of the problem at the
time of advisory publication. Therefore, and irrespective of the objectivity of the
measure, it may not be appropriate to use CVSS in a temporal context: using
it to compare (in)security of an application may lead to incorrect conclusions.
The extent to which this may influence the results of past studies is a subject
for further investigation

5.2 Developer’s blind spots

Anticipating security problems requires a cognitive effort and often is distraction
from the main objective of the developer. The research [10] shows that develop-
ers often fail to correlate security problems to their workload even if they are
aware of the problem in general. Oliveira’s experimental hypothesis was that
vulnerabilities can be blind spots in developer’s heuristic-based decision-making
processes: while a programmer focuses on implementing code to meet functional
demands, which is cognitively demanding, they tend to assume common, but
not edge, cases. Supporting the hypothesis, the study [10] found that 53% of its
participants knew about a particular coding vulnerability, however they did not
correlate it with an experimental programming activity assigned to them unless
it was explicitly highlighted.

Our analysis confirms existence of this phenomenon in a mature product
and experienced team. Even where developers are expected to be aware of the
security problems (as they considered them in the past), they may fail to con-
sider them. When the cookie interceptor was implemented, the developers were
aware of possible issues related to evaluating OGNL expressions without restric-
tions. Some of the restrictions were already implemented for the parameters
interceptor. Yet, for three years the corresponding protection was not consid-
ered for cookies. Similarly, the access to Struts-specific top object, that allowed
bypassing the excluded parameters list was well understood by the team. The
top object facilitates the extensions to OGNL provided in Struts and, as such,
it is described in the documentation. However, for almost four years when vari-
ous parameters were excluded for security reasons, it was not considered in the
regular expressions.

Overlooking access to public constructors could also be partially attributed
the problem of developers blind spots. While, at first, the developers might have
not been aware of the potential security exposure it introduces, it was no longer
the case after July 2010, when usage of the constructor was highlighted to the
team in the context of another reported vulnerability. Also, the example exploit,
included in the advisory published on the Struts website, took advantage of a
Boolean class constructor. While invoking the constructor was not a primary
objective of the attack, it was used to facilitate it. The usage of constructor
was not considered when preparing the fix for the previous issue, even though it
could have been easily included.

5.3 Opportunistic fix

When developing the fix for a security problem, developers may prefer an imple-
mentation that fits their existing code. While the fix related to the root cause
of the problem may be more suitable and more comprehensive, developers tend
to develop fixes that are more convenient to implement and that do not cause
disruption to the existing code structure.

Preventing modification of context variables or executing custom code was
first implemented through simple pattern matching of OGNL expression strings,
rather than limiting OGNL’s capability to perform these operations, which fol-
lowed later. As the the reasons for the fix are unknown, our analysis of the source
code from 2004 shows that, in the code structure of the time, a more comprehen-
sive solution required major changes in a number of helper classes and, perhaps,
in the OGNL itself. Over time, and in response to numerous issues a more com-
prehensive solution at lower level was implemented.

Similarly, preventing class loader manipulation was first implemented by
adding a pattern to the list of excluded parameters that was already in place.
Only after several problems with this approach, and a number incomplete regular
expressions, was a more comprehensive fix implemented which involved speci-
fication of excluded classes and packages. At the time of writing, the defense
against constructor execution, relies solely on the regular expression matching,
specifically the lack of the white space among allowed characters. As the regu-
lar expressions were by-passed through various tricks, it may be more suitable
include protection against constructor execution at the OGNL level.

Compatibility problems Sometimes, implemented fixes are sub-optimal, as a
result of issues such as compatibility with older versions and existing consumer
workloads. Software consumers may rely on a particular functionality that, was
subsequently identified as a source of the security problems. Thus there must be
a trade-off between a comprehensive fix that breaks consumer’s code, or a less
comprehensive fix that may be problematic.

In Struts, many of the past attacks were related to execution of static meth-
ods. This functionality is not critical, many applications take advantage of it,
and this prevented the Struts team disabling it completely, as the preferred fix.
Instead, the static method execution can be enabled through configuration. As a
result, the property controlling method execution disablement became a frequent
target for other vulnerabilities and allowed escalating any context manipulation
issue to remote code execution. Complety turning off this functionality has been
planned since 2014 and developers are warned that it should be considered obso-
lete. Similarly, the plan to remove the top object, rather then controlling access
to it though excluded patterns was recently announced.

5.4 Counter-intuitive mechanism

Some fixes can mean that security controls in the application can become diffi-
cult to understand or counter intuitive. While an application may not, strictly

speaking, contain a vulnerability, systems using the application may introduce
their own vulnerabilities, due to incorrect usage of the security controls.

The problems of developers not properly understanding the relationship be-
tween method access and property exposure was discussed in Section 4.2. Anec-
dotally, many application developers are not aware of the problems arising from
implementing public getters/setters for sensitive objects, or are unaware of ex-
posing them through inheriting a class that contains such methods. The Struts
team also fall victim to that problem with the class property, which has not
been considered for over 10 years.

Initially, the excludeParams configuration property was not implemented as
a security mechanism. It was intended to make the interceptor ignore some of
the URL parameters that other layers of the application, such as JavaScript
framework dojo, may use for its own purposes (for example dojo.preventCache).
Such parameters will not have the matching properties in the action classes,
and attempting to set them results in errors/exceptions, hence they are easy to
spot and include in the configuration. Some patterns (such as ^dojo\..) were set
in the default struts configuration file shipped within Struts JAR file. At that
time, it was expected that developers would extend this configuration in their
application configuration to add any application-specific parameters. The fact
that by setting their set of specific patterns, the developer would overwrite the
default pattern was not a concern, as developers were aware of what non-action
parameters their application uses and will include a full list.

Then, gradually, security related parameters were added to the list in order
to remediate reported vulnerabilities. In order to maintain security, the devel-
oper has to find the current set of security related patterns from the default
configuration file and include it when specifying, application-specific patterns.
In addition, each time the application upgrades to new version of Struts, the
process has to be repeated as the new version may contain new patterns. At
one point the Struts team itself accidentally became a victim of this process.
In version 2.3.20, released in December 2014, the code responsible for applying
the patterns has been modified. Most of the patterns had been moved to a sep-
arate class handling pattern matching for both interceptor. The two remaining
patterns were kept in the default configuration file. This change overwrote the
patterns for security-related properties, such as class, by those in the configu-
ration file. As a result, the release 2.3.20 shipped with (effectively) no security
related excluded patterns and re-enabling all previously fixed attack vectors. The
eventual fix to the problem was moving the two patterns from the configuration
to the class itself. The configuration, empty by default, can still override the
patterns if set by the application. Now, in order to include their own excluded
patterns, the developer has to obtain current version of the default patterns from
the Struts Java code and append their own patterns.

Assumptions about consumers A factor that contributes to the implemen-
tation of a counter-intuitive security mechanism is incorrect assumptions about
the consumers’ understanding of security mechanisms. The developers may not

be aware that a typical consumer does not understand all subtleties of the secu-
rity framework. In analyzing the discussion on the Struts issue tracking system,
we noticed that some of the initial reports on security problems were dismissed,
due to a technical ability to counter default insecure behavior by specific con-
figuration or customization. Some of these issues were eventually admitted as
vulnerabilities and the default behavior was changed.

Struts developers might have not realized how counter intuitive the man-
agement of the excludeParams property was until it impacted on themselves. In
fact, at the time of publishing the fix for the accidental overwriting (described
in the previous section), one of developers opened an issue in the Struts tracking
system to change the behavior and make the patterns additive.

Another example of this problem is the exposure of J2EE objects such as
session objects or requests through public getters and setters required by de-
pendency injection mechanism, as described in Section 4.2. It was assumed that
application developers would implement their own protection, such as custom
parameter checks. However, it is unlikely that a casual Struts consumer will be
aware of such an option or the need to use it. Many application developers are
not even aware that implementing a getter to match a setter is required by the
interface; this is common Java practice (but clearly poor Struts practice) which
can expose sensitive properties such as session. At the time of writing, a query
[7] to a popular github repository shows 5,237 instances where a class imple-
menting SessionAware interface also implements a public getSession method.
Eventually, access to these objects was recently disabled at OGNL level, regard-
less of getter/setter access modifiers or their inclusion in the excluded patterns.

5.5 Evolution of phenonema

During our analysis we noticed that the above-mentioned phenonema tend to
appear in the order given in Figure 3: they evolve as the developer’s knowledge
about the security problem and understanding of the issue and the consequences
of fix increases. At first, the developer may not be aware, or only partially aware,

Fig. 3: Phenomena lifecycle

of a potential security problem. This may be caused by incomplete understanding
of the full operation of the application or relying on incomplete advisory by the
third-party. As they become more aware, they may fail to remediate the problem
fully due to blind spots. The fix may be applied only for some scenarios or in some

parts of the system. Later, the develop fix may not be comprehensive, or fix the
root cause of the problem. This may be a result of the the attempt to implement
a fix with the least possible effort or due to the technical constraints such as
compatibility with previous versions. Finally, the resulting security mechanism
may be counter-intuitive resulting in incorrect use by the consumers. Note, that
the end of the sequence at one level of abstraction may become a starting point
for the security problem at higher level, and the counter intuitive mechanism
of a framework or the library contributes to the problem with comprehending
system’s low level details (dark side of the code) of the consuming application.

6 Conclusion

A systematic analysis of the Struts interceptor controls was carried out over a
12 year period. A number of phenomena emerged in the evolution of the con-
trol, and these provide insights into why insufficient controls were implemented.
In addition we observed that the phenomena have their own lifecycle as devel-
opers’ understanding of security issues increase. Whether this can be useful in
improving security processes is a topic of future research.

References

1. Massacci, F., Neuhaus, S., Nguyen, V.H.: After-life vulnerabilities: A study on
firefox evolution, its vulnerabilities, and fixes. In: Proceedings of the Third In-
ternational Conference on Engineering Secure Software and Systems. ESSoS’11,
Berlin, Heidelberg, Springer-Verlag (2011) 195–208

2. Mitropoulos, D., Karakoidas, V., Louridas, P., Gousios, G., Spinellis, D.: Dismal
code: Studying the evolution of security bugs. In: Proceedings of the LASER 2013
(LASER 2013), Arlington, VA, USENIX (2013) 37–48

3. Davidson, D.: Ognl language guide (2004)
4. Kydyraliev, M.: CVE-2010-1870: Struts2/XWork remote command execution.

o0o Security Team blog (2010) online; accessed 2016-01-21, http://blog.o0o.nu/
2010/07/cve-2010-1870-struts2xwork-remote.html.

5. Kydyraliev, M.: CVE-2011-3923: Yet another Struts2 Remote Code Execution.
o0o Security Team blog (2011) online; accessed 2016-01-21, http://blog.o0o.nu/
2012/01/cve-2011-3923-yet-another-struts2.html.

6. Long, J.: Struts 2 Session Tampering via SessionAware/RequestAware WW-
3631. Code Secure blog (2011) online; accessed 2016-01-21, http://codesecure.
blogspot.ca/2011/12/struts-2-session-tampering-via.html.

7. Ashraf, Z.: Analysis of recent struts vulnerabilities in parameters and cookie in-
terceptors, their impact and exploitation. IBM Security Intelligence portal (2014)
online; accessed 2016-01-21.

8. Pieczul, O., Foley, S.: The dark side of the code. In: Security Protocols XXIII.
Volume 9379 of LNCS., Springer-Verlag (2015)

9. Dahse, J.: Multiple vulnerabilities in Apache Struts2 and property oriented pro-
gramming with Java (2011) online; accessed 2016-01-21.

10. Oliveira, D., et al.: It’s the psychology stupid: How heuristics explain software
vulnerabilities and how priming can illuminate developer’s blind spots. In: Pro-
ceedings Annual Computer Security Applications Conference. (2014)

