
Security Protocol Deployment Risk

Simon N. Foley1, Giampaolo Bella2,3, and Stefano Bistarelli4,5

1 Department of Computer Science, University College Cork, Ireland
2 SAP Research, Mougins, France

3 Dipartimento di Matematica e Informatica, Università di Catania, Italy
4 Dipartimento di Scienze, Universitá degli Studi “G. D’Annunzio”, Pescara, Italy

5 Istituto di Informatica e Telematica, CNR, Pisa, Italy

Security protocol participants are software and/or hardware agents that
are—as with any system—potentially vulnerable to failure. Protocol analysis
should extend not just to an analysis of the protocol specification, but also to
its implementation and configuration in its target environment. However, an
in-depth formal analysis that considers the behavior and interaction of all com-
ponents in their environment is not feasible in practice.

This paper considers the analysis of protocol deployment rather than imple-
mentation. Instead of concentrating on detailed semantics and formal verification
of the protocol and implementation, we are concerned more with with the abil-
ity to trace, at a practical level of abstraction, how the protocol deployment,
that is, the configuration of the protocol components, relate to each other and
the overall protocol goals. We believe that a complete security verification of a
system is not currently achievable in practice and seek some degree of useful
feedback from an analysis that a particular protocol deployment is reasonable.

1 Vulnerabilities in Deployed Protocols

The deployment of a protocol is a collection of interacting software/hardware
components that collectively implement the protocol in its environment. Compo-
nents range from agents that fully implement a protocol principal, for example,
an authentication server running on a bastion host, to entities that partially
support the principal, for example, a hardware token authenticator. These com-
ponents may suffer a variety of vulnerabilities.

Design Vulnerabilities are errors in the underlying design of the protocol whereby
it fails to achieve its intended security goals. For example, a replay attack on the
protocol that enables a principal to masquerade as a different principal [2, 5].

Implementation Vulnerabilities The software that implements the protocol may
be vulnerable to attack. For example, a component with a buffer-overflow vul-
nerability may be vulnerable to a stack-smashing attack from another principal
that could lead to, for example, disclosure of keys, replay attack, etc. Improper
implementation of a client may also facilitate an attack, for example, a Ker-
beros client that does not discard the user-password (long-term key) once the
ticket-granting ticket/key is obtained from the authentication server.

Configuration Vulnerabilities are a consequence of any improper configuration
of the component that might lead to its compromise. For example, an authenti-
cation server that stores long-term cleartext keys in a file that is accessible by all
users. An authentication client that incorporates a hardware token authenticator
might be considered less vulnerable than a client that relied on a fixed password
for its long-term secret.

System Vulnerabilities The platform that hosts a component may itself be vul-
nerable to attack. For example, deploying an authentication server on a system
alongside a web-server would be considered a poor choice. Similarly, hosting an
authentication server on a hardened bastion host managed by a competent ad-
ministrator might be considered less vulnerable to attack than hosting it on an
out-of-the-box workstation that has outstanding software patches.

There are many further vulnerabilities that could be considered, for example,
cryptographic API vulnerabilities, vulnerabilities in weak cryptographic opera-
tions, and so forth. We do not intend to analyze or model vulnerabilities per-se,
but instead reflect vulnerability and threat in terms of an abstract degree of
confidence that we have in a component’s secure and proper operation. The de-
gree of confidence of a component can be based on evidence (a ‘correct’ protocol
running on a bastion host) and/or subjective views (the administrator of this
system is considered to be incompetent). We do not intend to only consider
the deployment of components for which we have complete competence: we are
interested in determining whether protocols that are deployed as combinations
of good, bad and indifferent components are good enough.

2 Protocol Deployment Risk

Degree of confidence [6] is defined in terms of the set C of confidence levels that
is ordered under ≤. This is interpreted as: given a, b ∈ C then a ≤ b means
that we have no less confidence in a component with confidence level b than
a component with confidence level a. For example, we might define confidence
levels lo < med < hi, with the obvious interpretation, for example, we have lo

confidence in a component executing on an open-access workstation and have hi

confidence in an authentication server executing on a bastion host. In this paper
a c-semiring [3] is used to represent degree of confidence. This provides a variety
of measures for confidence, ranging from simple orderings such as lo < med < hi

to numeric measures such as fuzzy and numeric weightings.
We consider confidence in the context of the cryptographic keys that the

protocol components are expected to manage. For example, we might have a
high degree of confidence that an authentication server component, with few
known vulnerabilities, properly secures the keys that it manages; this might
reflect a confidence that it will not leak keys to the public channel.

Another ordering ≤ is defined over the class of cryptographic keys referenced
in the protocol to reflect the degree to which they require protection [1]. For ex-
ample, a long-term password would be considered more critical than a short-term

session key, since compromise of the latter is a once-off threat, while compromise
of the former may lead to repeated attacks. The set K of key classifications forms
a lattice under ≤ with a lower bound element public that represents the public
channel.

Example 1 An authentication and key distribution server Trent manages long
term and session keys. Trent shares long term keys with principals Alice and
Bob, and issues short-term session keys. The following Needham-Schroder style
protocol is followed to acheive key exchange. For the moment we do not consider
the components that Alice, Bob or Trent might comprise.

Msg 1 : A → T : A, B, NA

Msg 2 : T → A : {|KAB, A, B, NA, TT |}KA
, {|KAB, A, B, TT |}KB

Msg 3 : A → B : {|KAB, A, B, TT |}KB

Three symmetric keys KA, KB and KAB are used in this protocol, and we define
corresponding key classes levels Ka, Kb and Kab; class public corresponds to the
public channel.

Figure 1 defines the class ordering (K,≤). Long-term keys are used to transfer
session keys and, therefore, we have Kab < Ka and Kab < Kb where Ka and Kb

are disjoint (cannot deduce one from the other), and ⊤ defines the universal
upper bound on the ordering. This reflects an assumption in the protocol that
long-term keys are considered more security-critical than session keys: in the
absence of ephemeral keys, loss of the long-term key implies loss of the short-
term keys (but not vice-versa). △

Ka Kb

Kab

⊤

public

Fig. 1. Key Classification Ordering (K,≤)

The key classification ordering defines the flow constraints between keys, for
example, long term key Ka information should not be permitted to flow to session
key Kab information. Rather than relying on a binary interpretation of how key
related information may/may not flow, we take a qualitative-based approach
that is similar to the notion of assurance in [9, 7]. Define

minConf : K ×K → C

where minConf(k, k′) defines the minimum confidence required across the pro-
tocol deployment that a key of class k does not flow to class k′. The lower bound
⊥ in the confidence c-semiring is interpreted as no flow restriction and thus, if
k ≤ k′, then minConf(k, k′) = ⊥ in the confidence c-semiring, since, in this
case, the flow is permitted.

Example 2 Consider the set (C,≤) of confidence ratings nil < lo < med < hi,
where nil is the lower bound and corresponds to no flow restriction. Given the
protocol in Example 1 then there are no flow restrictions on public as a source,
that is, minConf(public, x) = nil for any x ∈ K. By reflexivity of (K,≤) we also
have minConf(x, x) = nil for x ∈ K.

Key class ⊤ represents the most security-critical key (aggregate of the long-
term keys) and we define:

minConf([⊤, public]) = hi minConf([⊤, Kab]) = hi

minConf([⊤, Ka]) = med minConf([⊤, Kb]) = med

An authorization server that manages both long-term keys and the session key
(interval [Kab,⊤] requires greater confidence (hi) in its protection than its clients
(confidence med) that manage one long-term key and session key; in the former,
we require greater confidence that the keys cannot be leaked. We have:

minConf([Ka, Kab]) = med minConf([Ka, Kb]) = hi

minConf([Ka, public]) = med minConf([Ka,⊤]) = nil

with a similar definition for Kb. Protecting only a session key requires less con-
fidence:

minConf([Kab, public]) = lo minConf([Kab, Ka]) = nil

minConf([Kab, Kb]) = nil minConf([Kab,⊤]) = nil

△

Each protocol component can be regarded as managing a number of different
kinds of keys. The authentication server in Example 1 manages Ka, Kb and Kab

key and the client manages Kab and Ka keys. Every component c, is bound to
an interval of the key classification lattice, where int(c) = [l, h] ∈ K × K, and
l ≤ h is interpreted as follows:

– l is the lowest classification key that the component encrypts messages with.
Here encrypt is like ’send’ in terms of information flow between key classifi-
cations.

– h is the highest classification key that the component decrypts messages
with. Here decrypt is like ’receive’ in terms of information flow between key
classifications.

We also write int(c) = [int⊥(c), int⊤(c)].
Each protocol component c also has a confidence rating given as rating(c)

that also reflects the minimum effort that would be required by an attacker to

compromise component c. For example, we might have high confidence in the au-
thentication service in Example 1 that is deployed on a hardened selinux server,
but have low confidence in the client component implemented as freeware and
running on an open-access workstation. In the case of the authentication server
we are confident that keys will not be leaked nor messages encrypted/decrypted
in a way that does not follow the protocol specification. This confidence comes
from a belief that the protocol is properly implemented and that it is unlikely
that the hosting server can be compromised. On the other hand, and in the
absense of further information, our degree of confidence that an open-access
workstation running freeware follows the protocol and/or cannot be compro-
mised, is low as it may be subject to a variety of attacks ranging from Trojan
Horses in the protocol implementation to vulnerabilities such as buffer overflows
in the underlying system.

Example 3 The components in Example 1 are defined with the following in-
tervals.

c int(c) rating(c)
A [public, Ka] med

B [Kab, Kb] med

T [Kab,⊤] hi

Principal A manages keys in the range [public, Ka], reflecting that it sends/encrypts
data on the public channel and decrypts/receives up to Ka class information. Note
that in this deployment we assume that principals B and T do not write to the
public channel.

The table also provides sample confidence rating for principals. We have
medium confidence that principal B properly protects its key information in the
range [Kab, Kb]—this assumes that B does not access to the public channel—
perhaps B is known to be confined to a protection domain which does not give it
direct access to the public channel. In practice, the rating of a component should
depend on the keys it protects: we might have a high degree of confidence that
B does not write Kb information to the public channel while have a medium
degree of confidence that it does not write Kb to Kab. For the sake of simplicity
in this paper we restrict ourselves to the interpretation of the rating function
as a property of the component that is independent of the keys it manages. △

Definition 1 Each protocol component must meet the minimum required con-
fidence, that is, for every component c then

∀x, y : K | int⊥(c) ≤ x ≤ int⊤(c) ∧ int⊥(c) ≤ y ≤ int⊤(c)
⇒ minConf(x, y) ≤ rating(c)

that is, the component achieves the required degree of confidence for every pair
of keys that it manages. △

When a deployed protocol executes, there is a resulting flow of messages
between components. Let Ax ; By represent a flow of a message encrypted using
an x-level key by A and decrypted using a y-level key by B.

Definition 2 A protocol configuration is classification-safe if for all components
A and B then,

Ax ; By ⇒ x ≤ y ∧ int⊥(A) ≤ x ≤ int⊤(A) ∧ int⊥(B) ≤ y ≤ int⊤(B)

△

Example 4 The protocol in Example 1 has direct flows Apublic ;Tpublic, TKa ; AKa

and TKb ; BKb, and is classification-safe. We expect that the analysis in protocol
entailment, described in [1], can be adapted to provide a semantics for the ;

relation. △

3 Cascading Risks in Protocols

The cascade vulnerability problem [9, 8] is concerned with secure interoperation,
and considers the assurance risk of composing multilevel secure systems that are
evaluated to different levels of assurance according to the criteria specified in [9].
The transitivity of the multilevel security policy upheld across all secure systems
ensures that their multilevel composition is secure; however, interoperability and
data sharing between systems may increase the risk of compromise beyond that
accepted by the assurance level. For example, it may be an acceptable risk to
store only secret and top-secret data on a medium assurance system, and only
classified and secret data on another medium assurance system; classified and
top-secret data may be stored simultaneously only on ‘high’ assurance systems.
However, if these medium assurance systems interoperate at classification secret,
then the acceptable risk of compromise is no longer adequate as there is an
unacceptable cascading risk from top-secret across the network to classified.
Similar cascading risks can be demonstrated in a security protocol.

Example 5 We extend the protocol in Example 1 to include mutual authenti-
cation using the session key KAB.

Msg4 B → A {|A, B, TT |}KAB

Msg5 A → B {|A, B, TT − 1|}KAB

As a consequence of these additional protocol steps we have additional explicit
flows between A and B involving the key KAB in the protocol. These flows
(AKab ; BKab and BKab ; AKab) represent the encryption-sending and receiving-
decryption using KAB by both A and B. Since A and B are trusted to manage
this classification of session key, these flows are classification-safe.

The confidence rules require a minimum confidence level of hi for a component
to be considered trusted to manage both Ka and Kb keys. Having a confidence
of hi, component T is considered trusted to manage both Ka and Kb keys. Confi-
dence can be considered to represent the degree of confidence that one can have
that a component cannot be compromised. In this case, the effort required by an

attacker corresponds to the effort required to compromise the hi-rated T , and,
for example, reveal KA to B using the following (modified) message run.

αMsg 2: T → A {|KAB, A, B, NA, TT |}KA
, {|KAB, A, B, KA|}KB

As long as the effort required to compromise T is at least hi, then the risk of
this attack is considered acceptable.

Consider an attacker that compromises component A. In this case the effort
required by the attacker corresponds to the effort to compromise a med rated
component A, and, for example, embed a Ka classified key in a message encrypted
by session key with classificiation Kab, and send it to B; this effectively copies
a Ka key into a Kb key.

βMsg 4 : B → A {|A, B, TT |}KAB

βMsg 4 : A → B {|A, B, KA|}KAB

However, the confidence requirement is that in order to copy Ka to Kb requires
at least the effort to compromise a level hi rated entity, while the above attack
is achieved by compromising med-rated components.

The protocol contains a cascade vulnerability. Individual components meet
the minimum ratings based on the minConf confidence rule defined above,
however, the interoperation of A and B due to the mutual authentication step
in the protocol does not. There is a cascading path from a Ka key managed by
component A to a Kb key managed by component B, via session key KAB. △

Example 6 The previous example assumes that components A and B are trusted
to properly manage both long-term and session keys and that these keys are con-
tinuously available. However, in practice, both keys are typically not continously
available to the component. For example, a Kerberos login client discards its long
term key (user passwords) once a ticket/session key has been obtained; if one-
time passwords are used, the client does not have any access to the underlying
long term secret.

In order to better reflect this situation we model each protocol client (A, B)
in terms of two seperate component entities: a login/connection manager and a
session manager. These are intended to correspond to the software components
that implement the component. The login manager is responsible for properly
using the client’s long-term key to obtain the session key and then handing this
key off to the client’s session manager.

We extend the protocol description to include these components, where Aconn

and Asess correspond to the connection and session managers that represent A,
and similarly for B.

Msg 1: Aconn → T A, B, NA

Msg 2: T → Aconn {|KAB, A, B, NA, TT |}KA
, {|KAB, A, B, TT |}KB

Msg 2i: Aconn ⇒ Asess KAB, A, B, NA, TT

Msg 3: Aconn → Bconn {|KAB, A, B, TT |}KB

Msg 3i: Bconn ⇒ Bsess KAB, A, B, TT

Msg4: Bsess → Asess {|A, B, TT |}KAB

Msg5: Asess → Bsess {|A, B, TT − 1|}KAB

In this protocol, P ⇒ Q : M represents the sending of a message M over an
internal/private software channel from P to Q that is assumed secure. In practice
this could be implemented as message passing or API calls within the platform
that implements the clients.

Figure 2 provides revised interval and ratings for the components of this re-
vised protocol. Note that we assume high confidence for the connection managers

c int(c) rating(c)

Aconn [Kab, Ka] hi

Asess [Kab, Kab] med

Bconn [Kab, Kb] conn

Bsess [Kab, Kab] med

T [Kab,⊤] hi

Fig. 2. component intervals and ratings for the extended protocol

on the basis that we have high confidence in the proper operation of the login
client and that long-term keys are not available once session keys are issued. The
session managers in the example are rated as med but can be safely rated as lo

given the minimum requirment minConf [Kab, Kab] = lo.
The protocol generates the following flows between its components.

TKa ; Aconn
Ka ; Aconn

Kab ; Asess
Kab ; Asess

Kab ;Bsess
Kab ;

TKb ; Bconn
Kb ; Bconn

Kab ; Bsess
Kab ; Bsess

Kab ; Asess
Kab

Based on the ratings in Figure 2, it follows that the flows between these compo-
nents are individually classification-safe.

△

4 Discussion

In this paper we considered a quantitative-based approach to evaluating the
deployment of security protocols. The approach focuses on how confidence in
protocol components can be traced across the deployment; it does not analyze
vulnerabilities in the underlying behavior of the components (for example API
attacks [4]) or their interaction (for example protocol analysis [5, 2]), though
such techniques could be used to inform the degree of confidence measure.

A Needham-Schoeder style protocol deployment was analyzed in this frame-
work. For reasons of space and ease of exposition, the deployment was deliber-
ately simplistic. Nevertheless it was possible to demonstrate a variation of the

Kab

⊤

Ka Kb

T (hi)

Kab Kab

Asess(med) Bsess(med)

Kab

KaAconn

(hi) Kab

Kb Bconn

(hi)

A B

Fig. 3. Cascade-free configuration for the Kerberos-style protocol

channel cascade problem in the deployment. It would be interesting to explore a
richer deployment that included, for example, authenticator token components
and components that are dynamically selected during the initial protocol pa-
rameter negotiation phase that is typical of practical protocols.

References

1. G. Bella and S. Bistarelli. Soft constraint programming to analysing security pro-
tocols. Theory and Practice of Logic Programming, 4(5):1–28, 2004.

2. Giampaolo Bella. Formal Correctness of Security Protocols. Information Security
and Cryptography. Springer, 2007.

3. S. Bistarelli. Semirings for Soft Constraint Solving and Programming, volume LNCS
2962. Springer, 2004.

4. Mike Bond and Ross Anderson. API-level attacks on embedded systems. Computer,
34(10):67–75, 2001.

5. D. Dolev and A.C. Yao. On the security of public key protocols. IEEE Transactions

on Information Theory, 29(2):198–208, 1983.
6. S.N. Foley. Conduit cascades and secure synchronization. In Proceedings of ACM

New Security Paradigms Workshop, 2000.
7. S.N. Foley, S. Bistaelli, B. O’Sullivan, J. Herbert, and G. Swart. Multilevel security

and the quality of protection. In Proceedings of First Workshop on Quality of

Protection, Como, Italy. Springer LNCS, 2005.
8. J.K. Millen and M.W. Schwartz. The cascading problem for interconnected net-

works. In 4th Aerospace Computer Security Applications Conference. IEEE CS
Press, December 1988.

9. TNI. Trusted computer system evaluation criteria: Trusted network interpretation.
Technical report, National Computer Security Center, 1987. Red Book.

