
Towards a Framework for Autonomic Security
Protocols

Simon N. Foley and Hongbin Zhou

Boole Centre for Research in Informatics,
Department of Computer Science,
University College, Cork, Ireland.

{s.foley,zhou}@cs.ucc.ie

Abstract. This paper proposes a belief logic based approach that al-
lows principals to negotiate and on-the-fly generate security protocols.
When principals wish to interact then, rather than offering each other
a fixed menu of ‘known’ protocols, they negotiate and generate a new
protocol that is tailored specifically to their current security environ-
ment and requirements. This approach provides a basis for autonomic
security protocols. Such protocols are self-configuring since only princi-
pal assumptions and protocol goals need to be a-priori configured. The
approach has the potential to survive security compromises that can be
modelled as changes in the beliefs of the principals. A compromise of a
key or a change in the trust relationships between principals can result
in a principal self-healing and synthesising a new protocol to survive the
event.

1 Introduction

Networked services and applications are typically commissioned with a
fixed repertoire of security protocols that provide for necessary authen-
tication, key-exchange, non-repudiation, delegation, and so forth. Appli-
cations and services are expected to negotiate with each other and agree
on appropriate security protocols that both can (and are willing to) use.
A simple example is a web-service that requires clients to establish SSL
based connections. When negotiating a connection, the client and server
agree on the version of the protocol to use. While protocols may be de-
signed to support a range of different underlying authentication protocols,
and so forth, it is not feasible to expect principals to be, a priori, conver-
sant in all possible protocols. Protocol agnostic approaches such as Jini [8]
allow resource providers to register the protocol, that its clients should
use, with a Jini Server. While more flexible, the provider’s protocol is
fixed and is not generally suitable for security protocols.

2

We are investigating the use of protocol synthesis techniques [5, 7,
11, 13] to allow principals negotiate and on-the-fly generate security pro-
tocols. When principals wish to interact then, rather than offering each
other a fixed menu of ‘known’ protocols, the protocol negotiation pro-
cess generates a new protocol that is tailored specifically to their current
security environment and requirements. A principal’s security environ-
ment reflects the keys that it knows, the trust relationships with other
principals and any other assumptions it holds.

We conjecture that applications that use such Self-configuring proto-
cols would not require configuration to provide a fixed number of ‘known’
protocols. Instead, the application designer specifies the necessary se-
curity requirements for valid interaction. For example, a server may be
willing to accept any connection from an authenticated principal; the se-
curity requirements and current environment of the server (and client)
are used to synthesis a protocol that meets these goals.

Protocols could be generated on the basis of the security environment
of the principals. A change in the security environment of a principal
may result in the re-negotiation of a new security protocol. This provides a
basis for survivable security protocols that have the potential to, in effect,
self-heal and adapt to recover from changes in the security environment.

These characteristics—self-configuring, self-healing and survivability—
are are properties that form part of the autonomic computing manifesto
[2]. In the next section we outline our current research on this area.

2 Autonomic Security Protocols

The Basic Protocol Synthesis Protocol (BPSP) is a bootstrapping proto-
col that is used by principals to negotiate and generate a new protocol
specification. It is used when an Initiator requests connection to a Re-
sponder. Principals specify their protocol goals and assumptions using
the Simple Logic [4].

The Simple Logic is a BAN-style belief logic that uses abstract chan-
nels similar to the Spi Calculus [1] to represent keyed communication
between principals. This results in a very simple, yet expressive, logical
system. A synthesis technique is also proposed [4] that can be used to
guide the (manual) systematic calculation of a protocol from its goals.

As part of our current research we are exploring automated protocol
generation techniques such as [5, 11, 7] can be used within our framework.
We have developed an automatic verification tool [10] for the Simple
Logic and implemented using Theory Generation [9]. This tool has been

3

A B

AA;GA hi,A
-

AB ;GB

AB ;GB�
synthesise P P ;AA -

verifyP

confirm/install P confirm/install P
. . .

Fig. 1. Basic Protocol Synthesis Protocol (BPSP)

extended [13] to support the automated synthesis/generation of proto-
cols. The approach in [13] combines and automates the manual synthesis
rules from the Simple Logic with Guttman’s [7] manual design process.
We adapt the synthesis rules of the Simple Logic to guide an automatic
backwards search for a sub-protocol from a single goal. Given a num-
ber of individual goals, an automated technique is described to combine
synthesised sub-protocols into final candidate protocols.

Figure 1 depicts the basic Protocol Synthesis Protocol. A protocol
initiator A requests connection to B. B responds by passing details of
its protocol goal GB and the assumptions AB that it currently holds.
Principal A uses its own assumptions and those presented by B to syn-
thesise a new protocol P that meets their respective goals. This protocol
is returned to B, which attempts to validate using the validation tool. If
validation is successful then A and B install and engage in the protocol
P .

Example 1 Consider a service B that expects connections to be au-
thenticated. The protocol requirement for the server is that a connecting
principal Q should be authenticated. This is expressed in the logic as the
goal

GB(Q) ∆= B |≡ Q ‖∼ (B,Nb) (1)

where NB is a nonce. For reasons of space we do not describe the logic in
detail, however, the connectives ‘|≡’ and ‘‖∼’ have the usual interpretation
[6] of ‘believes’ and ‘recently said’ in this run of the protocol.

The assumptions of B reflect its belief that it knows A’s public key
KA:

AB
∆= B |≡ w(CA) = {A};B ∈ r(CA);

B |≡ #NB;

4

where CA is the channel established by the public/private key pair KA,K−1
A ,

and may be written only by A and read by B (and possibly others).
For simplicity, we assume that A has no goals, and for the moment its

assumptions are not relevant. On receipt of B’s protocol goal GB(A) and
assumptions AB, the connecting client A can immediately synthesise an
(idealised) protocol P that corresponds to

P
∆= B → A : Nb;

A → B : {B,Nb}K−1
A

;

which, in turn can be verified by B. Assuming that it is possible for the
principals to automatically engineer a protocol implementation from P ,
then the principals install their protocol components and execute it. 4

In the above example it is possible for A and B to negotiate a new
protocol without the participation of other principals. The protocol syn-
thesis protocol will have to handle situations where the participants need
the assistance of third parties, both in terms of deriving protocols and in
implementing protocols.

Example 2 Suppose that C shares a secret key KAC (securing channel
CAC and requests a connection with A. Suppose further that B trusts A
in the sense that AB includes

B |≡ (A ‖∼ φ1) ⇒ (A |≡ φ1) (2)
B |≡ (A ‖∼ (C |∼ φ2)) ⇒ (C |∼ φ2) (3)

for arbitrary φ1, φ2. These formulae reflect B’s belief that A is honest and
that A is competent in deciding whether C at some time in the past said
(‘|∼’) some message. Given these beliefs, then C (givenAB) can synthesise
the protocol

P2
∆= B → C : Nb

C → A : {B,Nb}KAB

A → B : {C,B,Nb}K−1
A

The basic protocol synthesis protocol (Figure 1) must be extended to
include participation of A in the setting up and execution of the final
protocol. 4

5

Note that the Basic Protocol Synthesis protocol as described is poten-
tially vulnerable to attack. In this case an attacker tricks one of (or both)
the principals into using a different protocol. Having generated a proto-
col P , techniques such as [3] may prove useful in making the protocol
robust against such protocol-identity attacks. This requirement may also
be expressed as additional goals that should be verified by the principles
B and A, respectively,

B |≡ A ‖∼ P

A |≡ B |≡ A ‖∼ P

We assumes that the assumptions and goals of the principals are included
as part of the specification of P (this ensures that B |≡ A ‖∼ AA, and so
forth).

3 Discussion

We have sketched an architecture that is proposed to support on the fly
synthesis of protocols. This approach provides a basis for autonomic se-
curity protocols. Such protocols are self-configuring since only principal
assumptions and protocol goals need to be a-priori configured. The ar-
chitecture has the potential to survive security compromises that can be
modelled as changes in the beliefs of the principals. A compromise of a
key or a change in the trust relationships between principals can result
in a principal self-healing and synthesising a new protocol to survive the
event. For example, if B no longer trusted A on what C said in the past
then (Formula (3)) then a new protocol must be derived.

Much work remains to be done on this architecture on a number of
fronts. We have slightly extended the Simple Logic and synthesis frame-
work to better suit the task at hand. In tests, the protocol generation tool
has performed well [13]: given mutual authentication/key exchange goals
and assumptions that indicate a trusted third party, then the tool can
generate approximately 500 valid (4/5 message) mutual authentication
protocols within 40 seconds. On inspection, many of these candidate pro-
tocols are similar containing minor textual and redundant variations; we
estimate that in this set there are 24 reasonable distinct four-message pro-
tocols and 76 reasonably distinct five-message protocols. Whether there
is sufficient variety in such protocols for them to be used as ”session
protocols” is a topic for future research.

Currently, the architecture expects the protocol initiator to synthesise
the final protocol. One challenge is to determine how assumptions held

6

by other principals can best be discovered by initiating principals, and
whether it would be better to hand-off sub-goals to other principals to
synthesise.

Other future research includes exploring how to automatically trans-
late an idealised protocol into executable software components. Some pre-
vious work [12] exists on this problem that we hope to draw on.

Acknowledgments

This work is supported by the Boole Centre for Research in Informatics,
University College Cork under the HEA-PRTLI scheme.

References

1. M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spi
calculus. In Fourth ACM Conference on Computer and Communications Security,
pages 36–47. ACM Press, 1997.

2. A.G.Ganek and T.A.Corbi. The dawning of the autonomic computing era. IBM
Systems Journal, 42(1):5–18, January 2003.

3. Tuomas Aura. Strategies against replay attacks. In Computer Security Foundations
Workshop, pages 29–68, 1997.

4. L. Buttyán, S. Staamann, and U. Wilhelm. A simple logic for authentication
protocol design. In Proceedings of the 11th IEEE Computer Security Foundations
Workshop (CSFW ’98), pages 153–163, Washington - Brussels - Tokyo, June 1998.
IEEE.

5. John A Clark and Jeremy L Jacob. Searching for a solution: Engineering tradeoffs
and the evolution of provably secure protocols. In proceedings of 2000 IEEE Sym-
posium on Security and Privacy (SP 2000), pages 82–95. IEEE Computer Society,
2000.

6. Li Gong, Roger Needham, and Raphael Yahalom. Reasoning About Belief in
Cryptographic Protocols. In Deborah Cooper and Teresa Lunt, editors, Proceedings
1990 IEEE Symposium on Research in Security and Privacy, pages 234–248. IEEE
Computer Society, 1990.

7. Joshua D Guttman. Security protocol design via authentication tests. In proceed-
ings of 15th IEEE Computer Security Foundations Workshop (CSFW’02), pages
92–103. IEEE Computer Society, 2002.

8. Sun Microsystem Inc. Jini technology core platform specification version 1.2.
www.jini.org, November 2001.

9. D. Kindred and J.M. Wing. Theory generation for security protocols. ACM
TOPLAS, July 1999.

10. D. O’Crualaoich and S.N. Foley. Theory generation for the simple logic. Technical
report, University College Cork. In preparation.

11. Adrian Perrig and Dawn Song. Looking for diamonds in the desert — extending
automatic protocol generation to three-party authentication and key agreement
protocols. In proceedings of the 13th IEEE Computer Security Foundations Work-
shop, pages 64–76. IEEE Computer Society, 2000.

7

12. D. Song, A. Perrig, and D. Phan. Agvi–automatic generation, verification, and im-
plementation of security protocols. In proceedings of 13th conference on computer
aided verification CAV 2001, pages 241–245, July 2001.

13. H. Zhou and S.N. Foley. Fast automatic synthesis of security protocols using
backward search. In ACM Workshop on Formal Methods for Security Engineering,
Washington, DC, USA, 2003.

