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Abstract. This paper proposes a belief logic based approach that al-
lows principals to negotiate and on-the-fly generate security protocols.
When principals wish to interact then, rather than offering each other
a fixed menu of ‘known’ protocols, they negotiate and generate a new
protocol that is tailored specifically to their current security environ-
ment and requirements. This approach provides a basis for autonomic
security protocols. Such protocols are self-configuring since only princi-
pal assumptions and protocol goals need to be a-priori configured. The
approach has the potential to survive security compromises that can be
modelled as changes in the beliefs of the principals. A compromise of a
key or a change in the trust relationships between principals can result
in a principal self-healing and synthesising a new protocol to survive the
event.

1 Introduction

Networked services and applications are typically commissioned with a
fixed repertoire of security protocols that provide for necessary authen-
tication, key-exchange, non-repudiation, delegation, and so forth. Appli-
cations and services are expected to negotiate with each other and agree
on appropriate security protocols that both can (and are willing to) use.
A simple example is a web-service that requires clients to establish SSL
based connections. When negotiating a connection, the client and server
agree on the version of the protocol to use. While protocols may be de-
signed to support a range of different underlying authentication protocols,
and so forth, it is not feasible to expect principals to be, a priori, conver-
sant in all possible protocols. Protocol agnostic approaches such as Jini [8]
allow resource providers to register the protocol, that its clients should
use, with a Jini Server. While more flexible, the provider’s protocol is
fixed and is not generally suitable for security protocols.
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We are investigating the use of protocol synthesis techniques [5, 7,
11, 13] to allow principals negotiate and on-the-fly generate security pro-
tocols. When principals wish to interact then, rather than offering each
other a fixed menu of ‘known’ protocols, the protocol negotiation pro-
cess generates a new protocol that is tailored specifically to their current
security environment and requirements. A principal’s security environ-
ment reflects the keys that it knows, the trust relationships with other
principals and any other assumptions it holds.

We conjecture that applications that use such Self-configuring proto-
cols would not require configuration to provide a fixed number of ‘known’
protocols. Instead, the application designer specifies the necessary se-
curity requirements for valid interaction. For example, a server may be
willing to accept any connection from an authenticated principal; the se-
curity requirements and current environment of the server (and client)
are used to synthesis a protocol that meets these goals.

Protocols could be generated on the basis of the security environment
of the principals. A change in the security environment of a principal
may result in the re-negotiation of a new security protocol. This provides a
basis for survivable security protocols that have the potential to, in effect,
self-heal and adapt to recover from changes in the security environment.

These characteristics—self-configuring, self-healing and survivability—
are are properties that form part of the autonomic computing manifesto
[2]. In the next section we outline our current research on this area.

2 Autonomic Security Protocols

The Basic Protocol Synthesis Protocol (BPSP) is a bootstrapping proto-
col that is used by principals to negotiate and generate a new protocol
specification. It is used when an Initiator requests connection to a Re-
sponder. Principals specify their protocol goals and assumptions using
the Simple Logic [4].

The Simple Logic is a BAN-style belief logic that uses abstract chan-
nels similar to the Spi Calculus [1] to represent keyed communication
between principals. This results in a very simple, yet expressive, logical
system. A synthesis technique is also proposed [4] that can be used to
guide the (manual) systematic calculation of a protocol from its goals.

As part of our current research we are exploring automated protocol
generation techniques such as [5, 11, 7] can be used within our framework.
We have developed an automatic verification tool [10] for the Simple
Logic and implemented using Theory Generation [9]. This tool has been
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Fig. 1. Basic Protocol Synthesis Protocol (BPSP)

extended [13] to support the automated synthesis/generation of proto-
cols. The approach in [13] combines and automates the manual synthesis
rules from the Simple Logic with Guttman’s [7] manual design process.
We adapt the synthesis rules of the Simple Logic to guide an automatic
backwards search for a sub-protocol from a single goal. Given a num-
ber of individual goals, an automated technique is described to combine
synthesised sub-protocols into final candidate protocols.

Figure 1 depicts the basic Protocol Synthesis Protocol. A protocol
initiator A requests connection to B. B responds by passing details of
its protocol goal GB and the assumptions AB that it currently holds.
Principal A uses its own assumptions and those presented by B to syn-
thesise a new protocol P that meets their respective goals. This protocol
is returned to B, which attempts to validate using the validation tool. If
validation is successful then A and B install and engage in the protocol
P .

Example 1 Consider a service B that expects connections to be au-
thenticated. The protocol requirement for the server is that a connecting
principal Q should be authenticated. This is expressed in the logic as the
goal

GB(Q) ∆= B |≡ Q ‖∼ (B,Nb) (1)

where NB is a nonce. For reasons of space we do not describe the logic in
detail, however, the connectives ‘|≡’ and ‘‖∼’ have the usual interpretation
[6] of ‘believes’ and ‘recently said’ in this run of the protocol.

The assumptions of B reflect its belief that it knows A’s public key
KA:

AB
∆= B |≡ w(CA) = {A};B ∈ r(CA);

B |≡ #NB;
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where CA is the channel established by the public/private key pair KA,K−1
A ,

and may be written only by A and read by B (and possibly others).
For simplicity, we assume that A has no goals, and for the moment its

assumptions are not relevant. On receipt of B’s protocol goal GB(A) and
assumptions AB, the connecting client A can immediately synthesise an
(idealised) protocol P that corresponds to

P
∆= B → A : Nb;

A → B : {B,Nb}K−1
A

;

which, in turn can be verified by B. Assuming that it is possible for the
principals to automatically engineer a protocol implementation from P ,
then the principals install their protocol components and execute it. 4

In the above example it is possible for A and B to negotiate a new
protocol without the participation of other principals. The protocol syn-
thesis protocol will have to handle situations where the participants need
the assistance of third parties, both in terms of deriving protocols and in
implementing protocols.

Example 2 Suppose that C shares a secret key KAC (securing channel
CAC and requests a connection with A. Suppose further that B trusts A
in the sense that AB includes

B |≡ (A ‖∼ φ1) ⇒ (A |≡ φ1) (2)
B |≡ (A ‖∼ (C |∼ φ2)) ⇒ (C |∼ φ2) (3)

for arbitrary φ1, φ2. These formulae reflect B’s belief that A is honest and
that A is competent in deciding whether C at some time in the past said
(‘|∼’) some message. Given these beliefs, then C (givenAB) can synthesise
the protocol

P2
∆= B → C : Nb

C → A : {B,Nb}KAB

A → B : {C,B,Nb}K−1
A

The basic protocol synthesis protocol (Figure 1) must be extended to
include participation of A in the setting up and execution of the final
protocol. 4
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Note that the Basic Protocol Synthesis protocol as described is poten-
tially vulnerable to attack. In this case an attacker tricks one of (or both)
the principals into using a different protocol. Having generated a proto-
col P , techniques such as [3] may prove useful in making the protocol
robust against such protocol-identity attacks. This requirement may also
be expressed as additional goals that should be verified by the principles
B and A, respectively,

B |≡ A ‖∼ P

A |≡ B |≡ A ‖∼ P

We assumes that the assumptions and goals of the principals are included
as part of the specification of P (this ensures that B |≡ A ‖∼ AA, and so
forth).

3 Discussion

We have sketched an architecture that is proposed to support on the fly
synthesis of protocols. This approach provides a basis for autonomic se-
curity protocols. Such protocols are self-configuring since only principal
assumptions and protocol goals need to be a-priori configured. The ar-
chitecture has the potential to survive security compromises that can be
modelled as changes in the beliefs of the principals. A compromise of a
key or a change in the trust relationships between principals can result
in a principal self-healing and synthesising a new protocol to survive the
event. For example, if B no longer trusted A on what C said in the past
then (Formula (3)) then a new protocol must be derived.

Much work remains to be done on this architecture on a number of
fronts. We have slightly extended the Simple Logic and synthesis frame-
work to better suit the task at hand. In tests, the protocol generation tool
has performed well [13]: given mutual authentication/key exchange goals
and assumptions that indicate a trusted third party, then the tool can
generate approximately 500 valid (4/5 message) mutual authentication
protocols within 40 seconds. On inspection, many of these candidate pro-
tocols are similar containing minor textual and redundant variations; we
estimate that in this set there are 24 reasonable distinct four-message pro-
tocols and 76 reasonably distinct five-message protocols. Whether there
is sufficient variety in such protocols for them to be used as ”session
protocols” is a topic for future research.

Currently, the architecture expects the protocol initiator to synthesise
the final protocol. One challenge is to determine how assumptions held
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by other principals can best be discovered by initiating principals, and
whether it would be better to hand-off sub-goals to other principals to
synthesise.

Other future research includes exploring how to automatically trans-
late an idealised protocol into executable software components. Some pre-
vious work [12] exists on this problem that we hope to draw on.
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