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Abstract—The Security Content Automation Protocol (SCAP)
provides a standardized approach to specifying system configu-
ration, vulnerability, patch and compliance management. SCAP
comprises a family of existing standards, such as the Open Source
Vulnerability Language (OVAL) and the Common Platform
Enumeration (CPE). Defining new or extending existing SCAP
content is non-trivial and potentially error-prone. For example,
specifying a vulnerability in OVAL may appear straightforward,
however, the challenge is to specify the vulnerability in such as
way that it is consistent with respect to, not just other OVAl data,
but also data described under any other standards in SCAP.

This paper identifies a number of consistency problems that
can occur in SCAP specifications and these are illustrated using
examples from existing OVAL, CPE, CVE and CCE repositories.
It is argued that an ontology-based approach can be used as a
means of providing a uniform vocabulary for specifying SCAP
data and its relationships. A SCAP ontology is developed based
on Semantic Threat Graphs and it is argued that its use can help
to ensure consistency across large-scale SCAP repositories.

I. INTRODUCTION

The Security Content Automation Protocol (SCAP) [1] is a

NIST standard for automating vulnerability management, asset

inventory and policy compliance of security configurations.

SCAP encompasses a family of standards. For example,

<cpe-item name="cpe:/o:redhat:enterprise_linux:3:ga:ws">

is a name describing a Redhat enterprise Linux 3 workstation

using the CPE [2] standard for naming assets and is structured

according to attributes part, vendor, product, version, update

edition and language.

A challenge is the construction of a repository of consistent

SCAP definitions. This is non-trivial and potentially error-

prone. For example, in addition to the CPE name above, a

CPE repository may include the name definition

<cpe-item name="cpe:/o:redhat:redhat_ent_linux:3:-:ws">

where the only distinguishing difference is that of the product

and update attribute values. The product attribute values

enterprise_linux and redhat_ent_linux are im-

plicitly equivalent. Similarly, both ga (Linux general realease)

and - signify that the Redhat operating system is an initial

release. While the CPE specification provides a syntactic struc-

ture for name definitions, it does not explicitly support a se-

mantics for name definitions. In the above example, both CPE

definitions are semantically equivalent. As a consequence, the

CPE repository is composed of some name definitions that are

seemingly distinct but are implicitly equivalent.

Thet paper identifies a number of inconsistencies that can

arise in SCAP repositories. These inconsistencies arise due to

the syntactic nature of the SCAP data and the paper considers

how more consistent SCAP repositories may be constructed

by using an ontology. An ontology is used to describe a

conceptual model of a domain of interest and provides a

semantics for the data. We have developed ontologies for

SCAP, including CPE, CVE, CCE and OVAL.

This paper is outlined as follows. Section II identifies

and discusses some potential inconsistencies in SCAP data.

Section III proposes an ontology-based model for SCAP that

is an extension of Semantic Threat Graphs [3]. Section IV

argues that taking an ontology-based approach helps to avoid

inconsistencies in the SCAP data. SectionV considers related

research and Section VI concludes the paper.

II. SCAP CHALLENGES

SCAP is intended to provide a standard way to describe con-

figuration artifacts representing assets, vulnerabilities threats

and countermeasures. While SCAP represents an evolution

of a family of existing standards it is constrained in that it

must remain faithful to these standards. This can give rise to

challenges in ensuring that SCAP artifacts are fully described

and that their use is consistent across the standards.

As part of our study a number of SCAP repositories were

inspected, including OVAL, CPE, CVE and CCE, for evidence

of inconsistencies in specification. The Open Source Vulner-

ability Language (OVAL) [4] is a standard for describing

asset inventory, vulnerabilities, misconfiguration and patch

state, in terms of system characteristics and configuration

information. The Common Platform Enumeration (CPE) [5] is

a standard for identifing and classifying hardware, operating

systems and applications for enterprise asset inventory. The

Common Vulnerabilities & Exposures (CVE) standard [6]

is used to identify and describe known vulnerabilities. The

Common Configuration Enumeration (CCE) standard [7] is

used to identify and describe best practice recommendations

for security configuration.



<definition id="oval:org.mitre.oval:def:7123"

version="3" class="vulnerability">

<title>Cisco 10000, uBR10012, uBR7200 Series

Devices IPC Vulnerability</title>

<affected family="ios">

<platform>Cisco IOS</platform>

<reference source="CVE" ref_id="CVE-2008-3806"

ref_url="http://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2008-3806"/>

<description>Cisco IOS 12.0 through 12.4

on Cisco 10000, uBR10012 and uBR7200 series

devices handles external UDP packets that are

sent to 127.0.0.0/8 addresses intended for

IPC communication within the device, which

allows remote attackers to cause a denial of

service (device or linecard reload) via crafted

UDP packets, a different vulnerability than

CVE-2008-3805.</description>

<criterion comment="IOS vulnerable versions"

test_ref="oval:org.mitre.oval:tst:9269"/>

Fig. 1. OVAL fragment for DOS vulnerability in Cisco routers

A. Implicit Rationale

The content in a SCAP repository tends to be opera-

tional in nature and does not necessarily provide the full

rationale for the definition of a SCAP artifact. This im-

plicit rationale may lead to inconsistencies in the artifact

definition. For example, the fragment of the OVAL arti-

fact oval:org.mitre.oval:def:7123 in Figure 11 de-

scribes a Denial of Service related vulnerability in a Cisco

router. This OVAL definition explicitly describes how a partic-

ular vulnerability may be executed. However, the rationale for

the vulnerability is implicit. The definition does not explicitly

define why the vulnerability exists: it is implicit that these

routers are unable to un-authenticate the origin (local or

external) of UDP 127.0.0.0/8 IP packets. Furthermore, it is

implicit, in the reference to CVE-2008-3806, that the Denial

of Service is exploitable only when spoofed 127.0.0.0/8 IP are

sent to the UDP port (1975) .

The extent to which this kind of implicit information is

included in a SCAP definition, when it being written, is

arbitrary. Definitions that provide explicit rational and those

that rely on implicit rationale are equally possible in SCAP. As

a consequence, implicit rationale may lead to misinterpretation

by those who seek to use the SCAP repository. For example, a

SCAP compliant vulnerability scanner may overlook attributes

that are implicit in OVAL diagnosis tests.

B. Implicit Intra-Definition Relationships

The artifacts described in a SCAP repository do not nec-

essarily exist independent of one another; in considering one

artifact one needs to be aware of how it relates to the other

artifacts in the repository. We argue that these relationships

should be explicitly described in the SCAP artifact, however,

we have found SCAP definitions whereby the relationships are

implicit. These implicit relationships can occur within (intra-)

1Note that for ease of exposition many of the XML tags are removed

<cce cce_id=’CCE-14264-6’ platform=’rhel5’

modified=’2011-10-07’> <description>The default

policy for iptables INPUT table should be set

as appropriate.</description>

<parameter>ACCEPT / DROP / QUEUE

/RETURN</parameter>

<technical_mechanism>via /etc/sysconfig/iptables

<reference resource_id=’NSA "Guide to the

Secure Configuration of Red Hat Enterprise

Linux 5" - Revision 4, September 14,

2010’>Section: 2.5.5.3.1 - Change the Default

Policies</reference>

Fig. 2. Excerpt of SCAP CCEv5 CCE-14264-6 recommendation

the same kind of SCAP artifact or between (inter) different

kinds of SCAP artifacts.

For example, the OVAL vulnerability fragment in Figure 1

does not explicitly identify/consider relationships with the

relevant threats and countermeasures. In this example, there

are two related threats, namely spoofing of UDP/IP packets

with a source address range of 127.0.0.0/8 with a UDP port of

1975 and Denial of Service as a consequence of these spoofed

IPC packets. In the definition it (the relationship) is implicit

that these threaten the identified Cisco assets by exploiting

the IPC vulnerability that is a weakness of those Cisco

systems. As a consequence, by viewing everything as a single

vulnerability, other implicit assets, threats, countermeasures

and relationships may be overlooked.

The CCE [7] repository provides a basis for explicit

countermeasure recommendations. The consequences of not

implementing such recommendations are not always clear.

Consider, for example CCE-14264-6 (Figure 2) which states

that one should apply a default firewall policy. However,

there is no explicit intuition regarding the kinds of implicit

threats or vulnerabilities associated with that recommendation.

Notwithstanding compliance requirements [8]–[10], we argue

that in order to provide an effective configuration, an admin-

istrator needs to properly understand security countermeasure

recommendations. Furthermore, the more information that can

be made explicit then the more effective is the operation of

an automated tool that uses that information.

C. Implicit Inter-Definition Relationships

The different kinds of SCAP artifacts tend to be siloed

with respect to each other. For example, rather than explicitly

utilize CPE asset identifiers, OVAL, CVE and CCE definitions

implicitly encode the semantics of asset dependencies within

the text of their titles and definitions. For example, asset

references Cisco 10000, uBR10012 and uBR7200 in

Figure 1 implicitly refer to the CPE’s outlined in Figure 3.

There is no CPE definition for Cisco 10000. Implicitly

it is not the specific Cisco hardware that is vulnerable but

rather specific Cisco IOS versions that the hardware supports.

Again, the semantics of the affected Cisco IOS CPE definitions

(Figure 4) is implicit in the OVAL definition description. While

there is an explicit CVE reference defined within the OVAL

definition, it is also implicitly referred to within its description.



<cpe-item name="cpe:/h:cisco:ubr10012:-">

<cpe-item name="cpe:/h:cisco:ubr7200">

Fig. 3. Excerpt of SCAP CPE Cisco Hardware Definitions

<cpe-item name="cpe:/o:cisco:ios:12.4">

Fig. 4. Excerpt of SCAP CPE Cisco OS Definitions

Consider the CCE recommendation in Figure 2 concerning

the Linux iptables firewall application. Based on the platform

defined in CCE-14264-6, one knows that the recommenda-

tion is one for a RedHat platform. Curiously there is no CPE

identifier for RedHat iptables, however, there is one for Suse

Linux iptables. As a consequence, is not immediately clear

whether the RedHat iptables recommendation is for iptables

firewalls in general, or is specifically related to RedHat. One

must refer to the implicit relationship with the NSA’s best

practice document referenced within the CCE-14264-6 and

in other external firewall best practice such as NIST-800-

41 [11] to conclude that this recommendation is not RedHat

OS specific.

D. Unclear Relationship Reuse

The reuse of relationships across different SCAP def-

initions may be unclear. For example, the definition of

oval:org.mitre.oval:def:11167 definition in Fig-

ure 5 is supported by CVE-2009-4272. This defines a denial

of service threat as a consequence of crafted packets that force

collisions in the IPv4 routing hash table (vulnerability) that

is Redhat-centric. However, it is not particularly clear that

this same Redhat-centric vulnerability is also a weakness of

CentOS and Oracle Linux platforms (assets) as described by

the OVAL definition in Figure 5.

It is not necessarily obvious how SCAP data in

one definition may be reused in another definition. For

example, the vulnerability described by OVAL defini-

tion oval:org.mitre.oval:def:11167 is reused by

oval:org.mitre.oval:def:7026 (Figure 5). How-

ever, in this instance the affected platform is the VMWare ESX

Server. It is not explicit how the vulnerability described by

oval:org.mitre.oval:def:11167 that affects various

Linux platforms also affects VMWare ESX Server described

by oval:org.mitre.oval:def:7026. The title and de-

scription of oval:org.mitre.oval:def:7026 explic-

itly refers to RedHat. Through external knowledge one will

discover that VMWare ESX Server is built upon a Linux

kernel.

Note that with these reuse examples if the vulnerability

was explicitly defined (discussed in Section II-B) in the

first place then one could conclude that the vulnerability

described by both oval:org.mitre.oval:def:11167

and oval:org.mitre.oval:def:7026 is Linux vendor

neutral. That is, it is a Linux kernel 2.6.31 and earlier IPv4

routing hash table collision vulnerability.

<definition id="oval:org.mitre.oval:def:11167"

version="5"

class="vulnerability">

<affected family="unix">

<platform>Red Hat Enterprise Linux 5</platform>

<platform>CentOS Linux 5</platform>

<platform>Oracle Linux 5</platform>

<reference source="CVE" ref_id="CVE-2009-4272"

ref_url="http://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2009-4272"/>

<description>A certain Red Hat patch for

net/ipv4/route.c in the Linux kernel 2.6.18

on Red Hat Enterprise Linux (RHEL) 5 allows

remote attackers to cause a denial of service

(deadlock) via crafted packets that force

collisions in the IPv4 routing hash table, and

trigger a routing "emergency" in which a hash

chain is too long. NOTE: this is related to

an issue in the Linux kernel before 2.6.31,

when the kernel routing cache is disabled,

involving an uninitialized pointer and a

panic.</description>

.

<definition id="oval:org.mitre.oval:def:7026"

version="3"

class="vulnerability">

<title>Red Hat Linux Kernel Routing

Implementation Multiple Remote Denial of

Service Vulnerabilities</title>

<affected family="unix">

<platform>VMWare ESX Server 4</platform>

<reference source="CVE" ref_id="CVE-2009-4272"

ref_url="http://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2009-4272"/>

<description>A certain Red Hat patch for

net/ipv4/route.c in the Linux kernel 2.6.18

on Red Hat Enterprise Linux (RHEL) 5 allows

remote attackers to cause a denial of service

(deadlock) via crafted packets that force

collisions in the IPv4 routing hash table, and

trigger a routing "emergency" in which a hash

chain is too long. NOTE: this is related to

an issue in the Linux kernel before 2.6.31,

when the kernel routing cache is disabled,

involving an uninitialized pointer and a

panic.</description>

Fig. 5. Excerpt of SCAP OVAL Vulnerability Definition Reuse

E. Unclear Definition Hierarchy

SCAP definitions are typically developed in isolation,

that is, they focus on a single asset, threat, vulnerability

or countermeasure. As a consequence, it can become

difficult to inter-relate implicit information across multiple

SCAP definitions. Consider OVAL vulnerability definitions

oval:org.mitre.oval:def:7123 (Figure 1) and

oval:org.mitre.oval:def:5910 (Figure 6),

which are effectively equivalent. The only distinguishing

difference is that oval:org.mitre.oval:def:5910

prescribes an additional SIP test in the test tag reference

(test_ref="oval:org.mitre.oval:tst:23990"/>).

This test is carried out in order to verify whether an asset is

vulnerable to un-authenticated UDP 127.0.0.0/8 IP packets.

The OVAL definitions state that: “a different vulnerability



<definition id="oval:org.mitre.oval:def:5910"

version="3" class="vulnerability">

<title>Cisco 10000, uBR10012, uBR7200 Series

Devices IPC Vulnerability</title>

<affected family="ios">

<platform>Cisco IOS</platform> <reference

source="CVE" ref_id="CVE-2008-3805"

ref_url="http://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2008-3805"/>

<description>Cisco IOS 12.0 through 12.4

on Cisco 10000, uBR10012 and uBR7200 series

devices handles external UDP packets that are

sent to 127.0.0.0/8 addresses intended for

IPC communication within the device, which

allows remote attackers to cause a denial of

service (device or linecard reload) via crafted

UDP packets, a different vulnerability than

CVE-2008-3806.</description>

<criterion comment="IOS vulnerable versions"

test_ref="oval:org.mitre.oval:tst:9269"/>

<criterion comment="config contains SIP"

test_ref="oval:org.mitre.oval:tst:23990"/>

Fig. 6. Excerpt of SCAP OVAL oval:org.mitre.oval:def:5910

<cpe-item name="cpe:/h:cisco:ubr7200">

<cpe-item name="cpe:/h:cisco:Cisco_ubr7200">

<cpe-item name="cpe:/h:cisco:Cable_Router_ubr7200">

Fig. 7. SCAP CPE Definition Name Ambiguity

than CVE-2008-3805” and “a different vulnerability than

CVE-2008-3806”, respectively, and, therefore one concludes

there is no accidental duplication of OVAL definitions nor

reuse of vulnerability information. However, one knows that

these two OVAL definitions should be related but it is unclear

whether one subsumes the other or whether they are disjoint

siblings. If the latter, then their relationship is unclear.

A similar issue arises when comparing CVE definitions

CVE-2008-3805 and CVE-2008-3806.

F. Definition Name Ambiguity

Ambiguities can arise in the definition of SCAP

names/identifiers. In the CPE repository there is a CPE

definition for a Cisco ubr7200 cable router (the 1st cpe-

item XML tag in Figure 7). However, there is nothing to

prevent additional CPE names being added at a later date (for

example, the 2nd and 3rd cpe-item XML tags in Figure 7). The

CPE naming specification does not allow for defining explicit

inter-relationships between (equivalent) CPE definitions. As a

consequence, it is unclear if these CPE definitions represent

the same Cisco ubr7200 cable router asset or a set of distinct

Cisco ubr7200 based cable router assets.

G. The Potential for SCAP Inconsistencies

The extent to which implicit information is included in

a SCAP definition, when it being written, is arbitrary. The

above examples demonstrate the potential for inconsistencies

in SCAP definitions as a consequence of a reliance on im-

plicit information. In principle, if SCAP definitions/artifacts

were sufficiently explicit then such inconsistencies should not

emerge. In the next section a formal model is developed for

Threat Vulnerability

Asset Countermeasure

SCAPAssetDef SCAPCtrDef

SCAPVulDef

exploits

exploitedBy

hasWeakness

isWeaknessOf

is
T

h
re

a
te

n
ed

B
y

th
re

a
te

n
s

m
it

ig
a

te
d

B
y m

itig
a

tes

subConceptOf

implements

protects
h

a
sV

u
lR

ef

is
V

u
lR

ef
O

f

hasA
ss

et
ID

Ref

isA
ss

et
ID

Ref
O

f

h
a

sC
tr

R
ef

isC
trR

efO
f

Fig. 8. Abstract Semantic Threat Graph Model.

SCAP which seeks to avoid these inconsistencies by requiring

explicit declaration of information used in SCAP definitions.

III. A SEMANTIC THREAT GRAPHS MODEL FOR SCAP

Rather than developing a SCAP ontology from scratch, we

found it more effective to describe SCAP concepts as an

extension of a Semantic Threat Graph (STG) ontology [3].

This is not unreasonable given that both SCAP and STGs

are concerned with describing assets, vulnerabilities, threats

and countermeasures and their relationships. Semantic Threat

Graphs are defined using Description Logic (DL), a decidable

portion of first-order logic [12]. Concepts represent sets of

individuals and properties represent binary relations applied

to individuals. Note that in presenting the model components,

for reasons of space, we do not provide complete specifications

in particular, definitions do not include disjoint axioms, sub-

properties, data type properties or closure axioms.

Figure 8 provides an abstract model of a semantic threat

graph that illustrates the SCAP concepts involved and their

relationships. Figure 9 provides an example instantiation of

this model for oval:org.mitre.oval:def:7123, the

OVAL definition illustrated in Figure 1. Note, the dashed prop-

erty lines and the hollow individual nodes are not explicitly

part of the encoding of this OVAL definition

A. Asset

Concept Asset represents any entity of interest within the

enterprise that may be the subject of a threat. While assets

can include people and physical infrastructure, this paper

only considers computer-system based entities such as Cisco

routers, firewalls and so forth.

Assets may have zero or more vulnerabilities (∀ restric-

tion) along property hasWeakness. As a result, those as-

sets may be exposed to various individuals of the Threat
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concept. An asset may have the capability to implement a

Countermeasure that protects itself or other assets. Assets

have zero or more SCAP compliant asset identification defi-

nitions (individuals of concept SCAPAssetDef) along property

hasAssetIDRef .

Asset ⊑ ∀≥0hasWeakness.V ulnerability ⊓

∀≥0isThreatenedBy.Threat⊓

∀≥1protects.Asset ⊓

∀≥0implements.Countermeasure⊓

∀≥0hasAssetIDRef.SCAPAssetDef

Concept Asset is further specialised to have

more specific kinds of asset concepts, for example,

Application, OperatingSystem, Hardware ⊑ Asset

representing the set of Application, OperatingSystem and

Hardware individuals that an enterprise may have. The Asset

concept property relation hasAssetIDRef is also further

specialised to more specific kinds of range relationships. For

example, the hasCPERef ⊑ hasAssetIDRef defines a

sub-property relation used to relate individuals of the Asset

concept to specific range concept, namely CPEDef (CPE

definitions). The hasCPERef property relation asserts the

relationship between assets and their associate CPE definition

names. Note, this sub-property has the following restriction:

Asset ⊑ ∃=1hasCPERef.CPEDef stating that an asset

must have at most one reference to a CPE definition.

Consider the oval:org.mitre.oval:def:7123 defi-

nition outlined in Figure 1 as a running example. A Cisco cable

router individual aUBR7200, an instance of the Hardware con-

cept (inferred as an individual of concept Asset) is vulnerable

to receiving unauthenticated 127.0.0.0/8 UDP packets (indi-

vidual vulUnauth127.0.0.0/8Pkt). As a consequence, aUBR7200
isThreatenedBy an IPC Denial of Service attack (individual

threatIPCDoSUDP127/8pkt). The following fragment of the

ontology asserts these facts.

Asset(aUBR7200)
← hasWeakeness(aUBR7200,vulUnauth127.0.0.0/8Pkt) ⊓

isThreatenedBy(aUBR7200,threatIPCDoSUDP127/8pkt)

Note, in order to avoid having to explain the low-level

details of each ontology individual, individuals are given

human readable names as a syntactic sugar that contain a

semantics of what each individual represents.

Asset individual aUBR7200 is asserted to have a relationship

with the following cpecpe:/h:cisco:ubr7200 individual along

property hasCPERef . Note, for further reference, an ontol-

ogy model for CPE definitions is presented in Appendix A.

Asset(aUBR7200)
← hasCPERef(aUBR7200,cpecpe:/h:cisco:ubr7200)

Cisco’s UBR2700 router (individual aUBR7200) has a role

that protects internal assets inclusive of itself. The fol-

lowing fragment of the ontology asserts that the aUBR7200
asset protects itself from the vulUnauth127.0.0.0/8Pkt
by implementing an IOS firewall countermeasure that

denies inbound external IP packets with source ad-

dresses within the 127.0.0.0/8 range destined to port 1975

(iosDenyInSrcIP127/8DstPort1975). This recommendation is

considered a Cisco best practice [13].

Asset(aUBR7200)
← protects(aUBR7200,aUBR7200) ⊓

implements(aUBR7200,iosDenyInSrcIP127/8DstPort1975)

B. Threat

A threat is a potential for violation of security [14]. An

individual of the Threat concept is considered to exploit one

or more vulnerabilities (∃≥1 restriction).

Threat ⊑ ∃≥1exploits.V ulnerability ⊓

∃≥1threatens.Asset

Continuing to use the oval:org.mitre.oval:def:7123

definition as a running example, an individual of concept

Threat, threatIPCDoSUDP127/8pkt, threatens the Cisco

cable router aUBR7200 asset.

Threat(threatIPCDoSUDP127/8pkt)
← exploits(threatIPCDoSUDP127/8pkt,

vulUnauth127.0.0.0/8Pkt) ⊓
threatens(threatIPCDoSUDP127/8pkt,aUBR7200)

C. Vulnerability

A vulnerability is a flaw or security weakness in an asset

that has the potential to be exploited by a threat. Concept

V ulnerability is the set of concrete vulnerabilities. Each



vulnerability individual may have zero or more SCAP vulnera-

bility definition (SCAPVulDef concept) reference relationships

(hasV ulRef ).

V ulnerability ⊑ ∃≥1isExploitedBy.Threat⊓

∃≥1isWeaknessOf.Asset ⊓

∀≥0hasV ulRef.SCAPV ulDef

Note, property hasV ulRef is further specialised as

hasCV ERef and hasOV ALV ulRef . In addition, con-

cept SCAPV ulDef is further specialised as follows:

CV EDef, OV ALV ulDef ⊑ SCAPV ulDef and is repre-

sentative of CVE and OVAL vulnerability definitions respec-

tively.

The following fragment in the ontology states that as-

set aUBR7200 is susceptible to a threatIPCDoSUDP127/8pkt
attack via the vulUnauth127.0.0.0/8Pkt weakness. Note,

vulUnauth127.0.0.0/8Pkt is representative of a weakness in

the TCP stack where it is not possible to authenticate the

origin of localhost IP packets. This explicit vulnerability has a

reference to the ovaloval:org.mitre.oval:def:7123 definition

individual along the hasOVALVulRef property relation.

V ulnerability(vulUnauth127.0.0.0/8Pkt)
← isExploitedBy(vulUnauth127.0.0.0/8Pkt,

threatIPCDoSUDP127/8pkt) ⊓
isWeaknessOf(vulUnauth127.0.0.0/8Pkt,aUBR7200) ⊓
hasOV ALV ulRef(vulUnauth127.0.0.0/8Pkt,

ovaloval:org.mitre.oval:def:7123)

D. Countermeasure

A countermeasure is an action or process that mitigates

vulnerabilities and prevents and/or reduces threats. A coun-

termeasure is an asset and may have zero or more SCAP

countermeasure references along property hasCtrRef.

Countermeasure ⊑ Asset ⊓

∀≥0hasCtrRef.SCAPCtrDef

Note, property hasCtrRef is further specialised as

hasCCERef and hasOV ALComplianceRef .

Concept IOSRule is representative of the Cisco IOS

firewall rules that mitigate one or more vulnerabilities, pro-

vided they are implemented by Firewall individuals where

Firewall ⊑ Asset.

IOSRule ⊑ Countermeasure ⊓

∃≥1mitigates.V ulnerability ⊓

∀≥0implementedBy.F irewall

The following fragment in the ontology states that the Cisco

IOS firewall rule individual iosDenyInSrcIP127/8DstPort1975,

mitigates the vulnerability vulUnauth127.0.0.0/8Pkt on the

Cisco cable router (aUBR7200).

IOSRule(iosDenyInSrcIP127/8DstPort1975)
mitigates(iosDenyInSrcIP127/8DstPort1975,

vulUnauth127.0.0.0/8Pkt) ⊓
implementedBy(iosDenyInSrcIP127/8DstPort1975,

aUBR7200)

For the sake of clarity, a number of property relationships

have been excluded from this discussion. Assets, threats,

vulnerabilities and countermeasures have additional properties.

IV. SCAP CHALLENGES REVISITED

This section revisits the SCAP challenges outlined in Sec-

tion II and discusses how the inconsistencies may be avoided.

A. Explicit Rationale

The semantic threat graph framework makes the implicit

rationale outlined in Section II-A explicit by asserting why

it is a vulnerability exists. For example, Cisco routers de-

scribed in the OVAL oval:org.mitre.oval:def:7123

definition are unable to authenticate the origin (local or

external) of UDP 127.0.0.0/8 IP packets. This vulnera-

bility is asserted as individual vulUnauth127.0.0.0/8Pkt.

An OVAL vulnerability definition reference relationship

(hasOV ALV ulRef ) between this vulnerability and the

OVAL ovaloval:org.mitre.oval:def:7123 definition individ-

ual is also asserted (Figure 9).

B. Explicit Intra-Definition Relationships

The implicit entities and relationships that can occur within

the same SCAP definition are made explicit. For example,

it becomes possible to explicitly consider the relationships

with the relevant asset and corresponding threat for the

vulUnauth127.0.0.0/8Pkt vulnerability (Figure 9). That is,

vulnerability vulUnauth127.0.0.0/8Pkt isAWeaknessOf asset

aUBR7200 and as a consequence it isThreatendedBy threat

threatIPCDoSUDP127/8pkt.

C. Explicit Inter-Definition Relationships

Using the semantic threat graphs framework, the semantics

of the affected Cisco hardware CPE definitions implicit in

Figure 1 are made explicit. For example, the Cisco ca-

ble router asset individual aUBR7200 is asserted to have a

hasCPERef property relationship with CPE definition individ-

ual cpecpe:/h:cisco:ubr7200.

D. Explicit Definition Hierarchies

In simple terms, the SCAP repository is effectively a

forest of inter-related SCAP definitions that does not have

an explicit hierarchical structure. Under the ontology Open

World Assumption [15], the semantic threat graphs framework

is extensible where further sub-concepts and sub-properties

can be defined. For example, concept CPEDef is a sub-

concept of the set of all SCAP based asset identifica-

tions (concept SCAPAssetDef ). This concept can be fur-

ther specialised:CPEHW, CPEOS, CPEApp ⊑ CPEDef

where these sub-concepts are representative of CPE hardware,

operating system and application definition names respec-

tively. Concept CPEHW in turn may be further specialised:

CPEHWCisco, CPEHWRedhat ⊑ CPEHW . Figure 10

illustrates a fragment of the CPE concept hierarchy. If indi-

vidual cpecpe:/h:cisco:ubr7200 is asserted as a member of

concept CPEHWCisco then it will be inferred as a member

of all its parent concepts.
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Fig. 11. Example Fragment of SCAP Definition Reuse

E. Explicit Relationship Reuse

The semantic threat graphs framework provides a basis

for the explicit reuse of SCAP data within and across

SCAP definitions. For example, described within the

following OVAL oval:org.mitre.oval:def:11167

definition is a threat threatDoSIPv4PktRouterCache and

vulnerability vulRouterHashTableCollisions that are explicitly

shared amongst a number of assets namely aRHEL5,

aCentOS5 and aOracleLinux5. OVAL data defined within

the OVAL oval:org.mitre.oval:def:11167

definition is explicitly reused in the OVAL

oval:org.mitre.oval:def:7026 definition. Asset

aVMWareESX4 is affected by the same threat and vulnerability.

Figure 11 illustrates a fragment of SCAP definition reuse.

F. Non-Ambiguous Definition Names

Unique Name Assumption is not supported in Descrip-

tion Logic. As a result, unless explicitly stated otherwise,

it cannot be assumed that individuals identified with dif-

ferent names are distinct. Consider the example in Fig-

ure 7. A Cisco UBR7200 cable router asset (individual

aUBR7200), amongst other concept restrictions, may only

have a relationship (∃=1hasCPERef.CPEDef ) to one

CPE definition. If individuals of concept CPEDef namely

cpecpe:/h:cisco:ubr7200, cpecpe:/h:cisco:ciscoubr7200 and

cpecpe:/h:cisco:ciscorouterubr7200 are not explicitly defined

as distinct from each other then these CPE definition individu-

als will be inferred to represent the same individual. However,

if these individuals have been asserted as distinct, then an

inconsistency will be detected when reasoning over the model.

V. RELATED RESEARCH

By interpreting SCAP in terms of Semantic Threat Graphs,

it has been possible to demonstrate that encoding SCAP

data within an ontology can help to avoid the kinds of

inconsistencies discussed in Section II. Semantic threat graphs

have been shown to be effective for modeling and reasoning

about high-level best practice security recommendations, such

as those from NIST standards, in terms of low-level assets,

threats, vulnerabilities and countermeasures [3]. The observa-

tions about SCAP in this paper are not confined to Semantic

Threat Graphs; we conjecture that similar observations could

be arrived at by developing an SCAP ontology from scratch

or by using other ontology-based threat models [16], [17].

A general purpose asset management ontology is presented

in [18]. In [19], an ontology for CCE is presented and an

ontology for CVE is presented in [20]. Mathews et. al. [17]

use Notation-3 encodings built from an ontology of National

Vulnerability Database data to provide context information for

improving intrusion detection.

In [21], [22], ontologies have been shown to be effective

at modelling and reasoning about low-level systems security

configurations (for example [21], [22]). Thus, we argue an

ontology engineering approach to encode existing low-level

SCAP repository information is practical.

VI. DISCUSSION AND CONCLUSION

This paper identified a number of consistency challenges

that can occur in SCAP repositories. For example, implicit

definition relationships. A semantic threat graphs model for

SCAP was used as a systematic approach to make the im-

plicit explicit within and across inter-related SCAP definitions,

thereby providing a basis to avoid such inconsistencies.

Future research will consider a number of additional incon-

sistency classifications. For example, Definition Error Detec-

tion and Implicit Inter-Definition Vulnerability Cascade. The

OVAL oval:org.mitre.oval:def:14812 definition

(Figure 12) is an example where there is an integer overflow in

Adobe Reader on Linux platforms and (in contradiction) this

vulnerability affects Microsoft Windows platforms. Security

configurations (inclusive of patches) used to mitigate vulner-

abilities may in turn themselves introduce vulnerabilities. In

SCAP these cyclic dependencies between seemingly disparate

vulnerabilities are implicit, giving rise to a further Implicit

Inter-Definition Vulnerability Cascade inconsistency classifi-

cation. The OVAL oval:org.mitre.oval:def:11167

definition outlined in Figure 5 is an example where a Redhat

patch gave rise to this particular vulnerability.
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<definition id="oval:org.mitre.oval:def:14812"

version="6" class="vulnerability">

<title>Integer overflow in Adobe Reader 9.x before 9.4.6

on Linux allows attackers to execute arbitrary code via

unspecified vectors.</title>

<affected family="windows">

Fig. 12. Fragment of oval:org.mitre.oval:def:14812 Definition
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APPENDIX A

ONTOLOGY MODEL FOR THE CPE STANDARD

This Appendix presents an ontology model for CPE, in

order to serve as an illustration. Ontologies for CVE, CCE

and OVAL are omitted due to page constraints.

CPE is a standard specification used to provide a CPE name

definition for a given IT product (Asset). The CPE repository

is a collection of CPE definitions (concept CPEDef ) that

have a CPE Well Formed Name (CPEWFN ), zero or more

human-readable descriptive Notes and zero or more OVAL

diagnostic Checks.

CPEDef ⊑ ∃=1hasT itle.String ⊓

∃=1hasCPEName.CPEWFN ⊓

∀≥0hasNote.Note ⊓

∀≥0hasCheck.Check

The following ontology fragment:

CPEDef(cpeDef1)
← hasT itle(cpeDef1,‘Cisco Universal

Broadband Router

(uBR7200)’) ⊓
hasCPEName(cpeDef1,cpe1)

is a unique CPE name definition for Cisco uBR7200 universal

broadband routers. The following defines a model for the CPE

name definition scheme:

CPEWFN ⊑ ∃=1hasName.String ⊓

∃=1hasPart.Part ⊓

∃=1hasV endor.V endor ⊓

∃=1hasProduct.Product ⊓

∃=1hasV ersion.V ersion ⊓

∃=1hasUpdate.Update ⊓

∃=1hasEdition.Edition ⊓

∃=1hasLanguage.RFC4646Tag

Concepts Part and RFC4646Tag are defined as enumer-

ated sets of individuals. Individuals of concept Part represent

hardware (h), operating systems (o) and applications (a)

respectively. Concept RED4646Tag represents the set of

RFC defined tags for identifying languages [23].

Part ≡ {h,o,a}

RFC4646Tag ≡ {en-US,zh-tw,ja-JP, . . . }

The following fragment of the ontology asserts individual

cpe1 has name definition ‘cpe:/h:cisco:ubr7200’

and is composed of the following hardware h, vendor cisco

and product ubr7200 individuals.

CPEWFN(cpe1)
← hasName(cpe1,‘cpe:/h:cisco:ubr7200’) ⊓

hasPart(cpe1,h) ⊓
hasV endor(cpe1,cisco) ⊓
hasProduct(cpe1,ubr7200)


