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ABSTRACT
Management of heterogeneous enterprise security mecha-
nisms is complex and requires a security administrator to
have deep knowledge of each security mechanism’s config-
uration. Effective configuration may be hampered by poor
understanding and/or management of the enterprise security
policy which, in turn, may unnecessarily expose the enter-
prise to known threats. This paper argues that knowledge
about detailed security configuration, enterprise-level secu-
rity requirements including best practice recommendations
and their relationships can be modelled, queried and rea-
soned over within an ontology-based framework. A threat-
based approach is taken to structure this knowledge. The
management of XMPP application-level and firewall-level
access control configuration is investigated.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information

Systems]: Security and Protection

General Terms
Security

Keywords
Configuration Management, Ontology, Access Control

1. INTRODUCTION
An enterprise security policy is a high-level policy doc-

ument that defines a “set of rules and practices that spec-
ify or regulate how a system or organization provides se-
curity services to protect sensitive and critical system re-
sources” [35]. An enterprise security policy provides high-
level requirements and is typically not intended to prescribe
low-level security controls. In practice, enterprise-level se-
curity requirements are implemented as a series of hetero-
geneous inter-dependent security mechanism configurations
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that span multiple subnets and system services. As a con-
sequence, proper service operation is dependent on each
control configuration. Application-level services are becom-
ing more sophisticated and may provide their own security
controls. For example, an XMPP-based Instant Messaging
server may use a server white-list to limit connections to
trusted domains. Securing this service goes beyond con-
figuring the application-level mechanism: best practice [37]
recommends that network access controls such as firewalls
should also be used as part of security in depth strategy.

Access control configuration may be hampered by poor
understanding and/or management of the enterprise security
policy. For example, consider the following enterprise-level
security requirements regarding an XMPP server: permit
client-to-server (C2S) access to the XMPP server; permit
clients to transfer files over XMPP on the internal network
and permit server-to-server (S2S) access with trusted exter-
nal XMPP servers. However, implementing access-control
rules for XMPP clients and servers is not just about making
ports 5222 (C2S) and 5269 (S2S) accessible on the XMPP
server and/or intermediatory access controls such as fire-
walls. One may wish to only permit certain C2S communica-
tion (for example, by an IP address whitelist), require clients
to use TLS encryption, accept only SASL [31] authentication
from some S2S communication and dialback [24] authenti-
cation for others, prevent external file transfer and deal with
XMPP traffic that is tunneled through proxies (for example,
XMPP HTTP-bind). Furthermore, XMPP traffic does not
necessarily have to communicate on the IANA [19] recom-
mended XMPP ports. It may also be prudent to provide
content sanitation at the application-layer. For example,
controlling Spam over Instant Messaging (SPIM) by filter-
ing known SPIM signatures within XMPP message stanzas.

Notwithstanding the challenge of providing an accurate
enterprise security policy, one must also consider how each
security mechanism may contribute to policy enforcement.
For example, regardless of a firewall’s capability to perform
deep packet inspection, application-level content filtering
may only be feasible using the XMPP server’s access control
when C2S and S2S communication is encrypted end-to-end;
while connection-throttling is best implemented at the fire-
wall. Thus, designing an access control configuration is com-
plex and challenging, and is largely dependent on the expert
knowledge of the security administrator drawing upon best
practice and standards.

We argue that a framework is required in which one can
uniformly represent and reason about the knowledge asso-
ciated with a security configuration. We take an ontology-



engineering approach to modelling this security configura-
tion knowledge. Previous research [9, 10] focused on using
ontologies to model firewall based access controls; in this
paper we consider the modeling of and interplay between
these firewall controls and the security controls provided by
the application.

An ontology provides a conceptual model of a domain of
interest [36]. It does so by providing a formal vocabulary de-
scribing various aspects of the domain of interest and pro-
vides a rich set of constructs to build a more meaningful
level of knowledge. In the case of access control configura-
tion management, an ontology provides the ability to make
logical assertions and inferences with which to structure,
share and infer new knowledge about the application-level
access control and network access control domains.

A threat-based approach is proposed as a means of struc-
turing the knowledge about the management of access con-
trol configuration. Semantic Threat Graphs [11], a varia-
tion of the traditional threat tree, are encoded within the
ontology-based framework in order to relate knowledge about
enterprise-level security requirements, best practice recom-
mendations and access-control rules in terms of assets, threats,
vulnerabilities and countermeasures. Threats are organised
into a hierarchical structure such as a Microsoft STRIDE-
based [17] hierarchy. Identifying threats in this way, for
example Denial of Service attacks, facilitates the generation
of appropriate access-control rules (countermeasures) such
as connection-throttling and/or automatic blacklisting of of-
fending servers (IP addresses). The semantic threat graph
approach takes advantage of an ontology’s ability to share
and integrate knowledge within other ontologies. Thus, the
XMPP and iptables ontologies are reused to describe de-
tailed countermeasure configurations.

The paper is organised as follows. Section 2 outlines an
ontology for XMPP security configuration. A threat model
for XMPP server hosting is proposed in Section 3. Section 4
describes how enterprise-level security requirements can be
captured in terms of semantic threat graphs. A knowledge-
base of best practice countermeasures against known threats
are encoded as semantic threat graphs in Section 5. For
example, XEP-0205 [30] and NIST-800-123 [34] recommend
multiple countermeasures that mitigate the threat of Denial
of Service when hosting an XMPP server. Section 6 provides
some examples that demonstrate synthesis and analysis of
these access control configurations.

2. XMPP SECURITY ONTOLOGY
The Extensible Messaging and Presence Protocol (XMPP)

is a protocol that is used for instant messaging, voice and
video calls, presence, and publish-subscribe services [29].
There are three scenarios whereby access control needs to be
considered, namely client-to-server (C2S) communication,
client-to-client (C2C) server-less communication and server-
to-server (S2S) communication. Server-to-server communi-
cation is known as a ‘federation’ that exists between differ-
ent enterprise XMPP servers, thus facilitating inter-domain
client message routing and search of client contacts [32].

An ontology for XMPP security configuration is devel-
oped. For reasons of space only a fragment of the ontology
outlining the S2S access control is presented. Concepts rep-
resent sets of individuals (instances) and properties (roles)
represent binary relations applied to individuals. Note that
in presenting the XMPP model components, for reasons of

space, complete specifications in particular, disjoint axioms,
sub-properties, data type properties or closure axioms are
omitted. The ontologies in this paper were developed using
Description Logic [5] and SWRL [25], an overview of which
is provided in the appendix.
Authentication and Encryption. Concept S2SAuthRule

represents the set of authentication rules (individuals) that
define one or more authentication methods supported by an
XMPP server. Encryption (tlsEncrypted property) is also
supported over the Transport Layer Security protocol [8].

S2SAuthRule ⊑ XMPPAuthRule ⊓

∃≥1authenticateWith.Authenication ⊓

∃=1tlsEncrypted.Boolean

Concept Authentication defines the vocabulary for feder-
ated S2S authentication.

Authentication ≡ XMPPRuleComponent ⊓

{saslExternal, dialback}

Server federation supports two kinds of authentication meth-
ods: Simple Authentication and Security Layer (SASL) EX-
TERNAL [31] and server dialback [24]. SASL EXTERNAL
provides a basis for the initiating server to reuse the cer-
tificate presented during TLS negotiation for authentica-
tion. While, server dialback is the less secure authentication
method, it is commonly used in practice [32].

For example, individual xmpprDialback represents a require-
ment for (unencrypted) ‘server dialback’ for S2S federation.

S2SAuthRule(xmpprDialback)
← authenticateWith(xmpprDialback , dialback) ⊓

tlsEncrypted(xmpprDialback , false)

For the sake of clarity, meaningful identifiers are associated
with individuals. For example, the individual xmpprDialback
identifies an XMPP rule that permits the use of ‘server di-
alback’ as its authentication method.
Access Control List. An access control list specifies the
XMPP servers (IPAddress or DNSName) which which a
server may federateWith (property), where Permission is
an enumerated set of individuals allow and deny.

ACLRule ⊑XMPPRule ⊓

∃=1federateWith.(IPAddress⊔DNSName)⊓

∃=1hasPermission.Permission

For example, individual xmpprAllowUCC an instance of concept
ACLRule, states that the XMPP server will allow feder-
ated requests from an XMPP server with the domain name
www.ucc.ie (individual identifier ucc).

ACLRule(xmpprAllowUCC)
← federateWith(xmpprAllowUCC , ucc) ⊓

hasPermission.(xmpprAllowUCC , allow)

Denial of Service Mitigation. Concept DoSRule defines
the maximum number of simultaneous S2S connections that
may be permitted with a remote XMPP server.

DoSRule ⊑ XMPPRule ⊓

∃=1hasMaxS2SConn.Integer ⊓

∃=1appliedTo.(IPAddress⊔DNSName)

Indiviudal xmpprLimitConn limits the number of simultaneous
connections that can be established with any XMPP server
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Figure 1: Semantic Threat Graphs Fragment.

(denoted by the wildcard IP address of ip*.*.*.*) to 1.

DoSRule(xmpprLimitConn)
← hasMaxS2SConn(xmpprLimitConn , 1) ⊓

appliedTo.(xmpprLimitConn , ip*.*.*.*)

Application-Layer Content Filtering. Concept CFRule

defines the set of rules that filters XMPP message stanza
payloads. Such filtering may be used to mitigate against
the threat of known SPIM, Malware and URL Phishing.

CFRule ⊑ XMPPRule ⊓

∃≥1hasPattern.String ⊓

∃=1hasPermission.Permission

For example, xmpprBadWord is used to deny XMPP message
stanzas that contain the word "sex".

CFRule(xmpprBadWord)
← hasPattern(xmpprBadWord , "sex") ⊓

hasPermission.(xmpprBadWord , deny)

3. THREAT MODEL FOR XMPP
A semantic threat graph [11], constructed in terms of an

ontology, can be defined as a graph that represents the mean-
ing of a threat domain. Enterprise assets are represented as
individuals of the Asset concept. An asset may have one or
more hasWeakness’s (property relationship) that relate to
individuals categorised in the Vulnerability concept. Indi-
viduals of the Vulnerability concept are exploitable (exploit-
edBy) by a threat or set of threats (Threat concept). As a
consequence, an asset that has a vulnerability is, therefore,
also threatenedBy a corresponding Threat. A countermea-
sure mitigates particular vulnerabilities. Countermeasures
are deemed to be kinds-of assets and thus are defined as a
subConceptOf Asset. Figure 1 illustrates an example instan-
tiation of a semantic threat graph that mitigates a Denial
of Service attack against the XMPP server.
Asset. Concept Asset represents any enterprise entity that
may be the subject of a threat. While assets can include
people and physical infrastructure, this paper only consid-
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Figure 2: Fragment of Enterprise Asset Hierarchy.

ers computer-system based entities such as XMPP servers,
firewalls and so forth.

Individuals of concept Asset may have zero or more vul-
nerabilities (∀ restriction) along property hasWeakness. As
a result, those assets may be exposed to various individuals
of the Threat concept. An asset may have the capability to
implement a countermeasure to protect itself or other assets.

Asset ⊑ ∀hasWeakness.V ulnerability ⊓

∀≥0isThreatenedBy.Threat⊓

∀≥0implements.Countermeasure

Concept Asset is further specialised to have more specific
kinds of asset concepts. For example, the set of business
servers and security servers (individuals) an enterprise may
have may be represented as BusinessServer, SecServer ⊑
Server, where Server is a sub-concept of Asset. Figure 2
depicts a fragment of the Asset hierarchy. Note the double-
headed arrow represents a subsumption relation.

An individual xmppServ of the BusinessServer concept
(inferred as an individual of concept Asset) is vulnerable to a
connection-based Denial of Service (vulConnDos) weakness. As
a consequence, the xmppServ isThreatenedBy a connection-
flood attack represented as threatConnFlood individual.

Asset(xmppServ)
← hasWeakeness(xmppServ, vulConnDoS) ⊓

isThreatenedBy(xmppServ, threatConnFlood)

Concept NetSecServer represents the network access con-
trol systems that protect (protects) internal servers (includ-
ing themselves). Individuals of concept NetSecServer im-
plement one or more (∃≥1) individuals of the NACRule con-
cept (sub-concept of Countermeasure). Note, the protects

property is inherited from its parent concept SecServer.

NetSecServer ⊑ Server ⊓

∃≥1protects.Server ⊓

∃≥1implements.NACRule

The following ontology fragment asserts that the gateway
firewall (gwFW) protects the XMPP server from a Denial
of Service attack by implementing a TCP connection-limit
countermeasure (iptables rule iptrLimitConn).

NetSecServer(gwFW)
← protects(gwFW, xmppServ)⊓

implements(gwFW, iptrLimitConn)

Threat. A threat is a potential for violation of security [35].
An individual of the Threat concept is considered to exploit
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one or more vulnerabilities.

Threat ⊑ ∃≥1exploits.V ulnerability ⊓

∃≥1threatens.Asset

For example, individual threatConnFlood exploits the vulConnDoS
vulnerability and threatens the xmppServ.

Threat(threatConnFlood)
← exploits(threatConnFlood , vulConnDoS)⊓

threatens(threatConnFlood , xmppServ)

The Threat concept defines a number of sub-concepts in ac-
cordance with best practice, such as the Microsoft STRIDE
standard [17] whereby threats are categorised as: Spoofing
identity, Tampering with data, Repudiation, Information
disclosure, Denial of service and Elevation of privilege. Fig-
ure 3 depicts a fragment of the threat hierarchy.
Vulnerability. A vulnerability is asset flaw or security
weakness that has the potential to be exploited by a threat.

V ulnerability ⊑ ∃≥1isExploitedBy.Threat⊓

∃≥1isWeaknessOf.Asset

The following ontology fragment states that the xmppServ

is susceptible to a threatConnFlood attack via the vulConnDoS
weakness. Note, vulConnDoS represents a weakness in the
XMPP stack whereby it is possible to surpass the maxi-
mum number of XMPP-based socket connections permitted
by the unprotected XMPP protocol [30].

V ulnerability(vulConnDoS)
← isExploitedBy(vulConnDoS, threatConnFlood) ⊓

isWeaknessOf(vulConnDoS , xmppServ)

Countermeasure. A countermeasure is an action or pro-
cess that mitigates vulnerabilities and prevents and/or re-
duces threats. A countermeasure is an asset.

Countermeasure ⊑ Asset

Concepts XMPPRule and NACRule are sub-concepts of
concept Countermeasure. Concept XMPPRule is repre-
sentative of the XMPP access-control rules that mitigate one
or more XMPP vulnerabilities.

XMPPRule ⊑ Countermeasure ⊓

∃≥1mitigates.V ulnerability ⊓

∀≥0implementedBy.XMPPServer

The following ejabberd [1] XMPP rule:
{access, max_s2s_connections, [1, all]}

is represented as individual iptrLimitConn presented in Sec-
tion 2, where it is implemented by the xmppServ to mitigate
the vulnerability vulConnDoS on the XMPP server itself.

XMPPRule(xmpprLimitConn)
← mitigates(xmpprLimitConn , vulConnDoS) ⊓

implementedBy(xmpprLimitConn, xmppServ)

Note, while sample low-level ejabberd configurations are used
within this paper, the ontology for XMPP access control is
implementation neutral and is equally applicable to other
XMPP implementations such as Openfire [21].

Concept NACRule represents network access control rules.
Concept IPTRule is a sub-concept of concept NACRule

and represents the set of iptables firewall rules.

IPTRule ⊑ Countermeasure ⊓

∃≥1mitigates.V ulnerability ⊓

∀≥0implementedBy.F irewall

Individual iptrLimitConn , mitigates the XMPP server vulner-
ability vulConnDoS and is implemented by the gwFW.

IPTRule(iptrLimitConn)
← mitigates(iptrLimitConn , vulConnDoS)⊓

implementedBy(iptrLimitConn, gwFW)

The following iptables rule:
iptables -A FORWARD -p tcp -d xmppServIP --dport

5269 -m connlimit --connlimit-above 2 -j DROP

limits the number of connections to the XMPP server to 1
and, based on [9,10], is represented as individual iptrLimitConn .

IPTRule(iptrLimitConn)
← hasChain(iptrLimitConn , forward) ⊓

hasProtocol(iptrLimitConn , tcp) ⊓
hasDstIP (iptrLimitConn , xmppServIP) ⊓
hasDstPort(iptrLimitConn , 5269) ⊓
hasModule(iptrLimitConn , connlimit) ⊓
hasConnectionAbove(iptrLimitConn , 2) ⊓
hasTarget(iptrLimitConn, drop)

Assets, threats, vulnerabilities and countermeasures have
additional properties and for the sake of clarity, a number
of property relationships have been excluded from this dis-
cussion. For example, servers are assigned one or more IP
addresses (depending on the number of network interfaces
they may have). Access is provided based on the server’s
port, for example a XMPP server is accessible over port
5269. However, not all servers (or daemons) are accessi-
ble through a port number, for example, an iptables firewall
server does not directly support network access. Each server
has a particular role (operatesAs property), for example, the
gwFW individual is identified as an iptables firewall via its
string assignment ‘iptables’. Threats originate from one
or more IP addresses. Countermeasures are executable on a
particular type of security server. For example, individual
iptrLimitConn isExecutableOn the gwFW iptables firewall.

Asset ⊑ ∃≥1hasIPAddress.IPAddress⊓

∀≥0hasPort.Port ⊓

∃=1operatesAs.String

Threat ⊑ ∃≥1hasThreatSource.IPAddress

Countermeasure ⊑ ∃=1isExecutableOn.SecServer

4. ENTERPRISE SECURITY POLICY
This section considers the relationship between the en-

terprise security policy and the lower-level security controls
(iptables and XMPP) that implement the policy.



Example 1. Consider the enterprise-level security require-
ment that states the following: ‘The enterprise XMPP server
asset is permitted to federate with other XMPP servers’. Ta-
ble 1a depicts some of the threats, vulnerabilities and coun-
termeasures associated with upholding this policy.

Unavailability of service (threatNoListeningS2SPort )on the S2S
port is considered to be a threat related to federation. En-
abling the correct service port (IANA port 5269) by imple-
menting countermeasure xmpprEnableS2SPort will ensure that
the XMPP server is capable of federating with other XMPP
servers. Table 1a outlines the identified threats, vulnerabil-
ities and associated countermeasures. Countermeasures are
also required to mitigate threats originating from an overly-
restrictive firewall: iptrAllowInS2SPort permits inbound access
to the XMPP server over port 5269 and iptrAllowOutS2SPort
permits the corresponding outbound traffic.

In order to uphold the enterprise-level security policy,
each countermeasure must be implemented by its respec-
tive access control mechanism. Sample application-level and
network access-control rules related to the ejabberd XMPP
server and iptables firewall are outlined in Table 2.
Example 2 In this example, the enterprise-security require-
ment described in Example 1 is further restricted to prevent
federation with untrusted XMPP servers. That is, ‘Server-
to-Server federation is not permitted except between trusted
XMPP servers with an IP address of 143.239.75.235 and
193.1.193.140 ’. This enterprise-level security requirement
is structured according to the threats identified in Table 1b.

A threat of unintended access, threatUnintendedAccess , re-
garding S2S federation is identified. Disabling the S2S ser-
vice port (xmpprDisableS2SPort ) is not applicable in this exam-
ple. Rather, the recommended countermeasures are to en-
able the S2S service port (xmpprEnableS2SPort ) and implement
a default deny access control policy (xmpprDefaultDenyS2SAccess )
where exceptions must be defined. As a consequence of
countermeasure xmpprDefaultDenyS2SAccess , two additional vul-
nerabilities are introduced, namely VulNoS2S143.239.75.235AllowXMPPRule
and VulNoS2S193.1.193.140AllowXMPPRule . Thereby, giving rise to
threats threatNoS2S143.239.75.235 and threatNoS2S193.1.193.140 . In
terms of the xmppServ configuration, these vulnerabilities
are mitigated by countermeasures xmpprAllow143.239.75.235 and
xmpprAllow193.1.193.140 providing a white-list of trusted XMPP
servers for the xmppServ to federate with.

Best practice [37] requires defense in-depth and therefore
the firewall countermeasures outlined in Table 1a are fur-
ther restricted to filter access to the S2S service port to the
trusted XMPP servers only. That is, a deny by default pol-
icy (iptrDefaultDenyS2SAccess ) is implemented by the gateway
firewall (gwFw) where permitted inbound and outbound IP
address exceptions are also implemented (Table 1b).
Example 3. Consider the enterprise-level security require-
ment that restricts how individual trusted XMPP servers
may authenticate: ‘Server-to-Server federation is not per-
mitted except between trusted XMPP servers with an IP ad-
dress of 143.239.75.235 and 193.1.193.140, where the server
with an IP address of 143.239.75.235 is permitted to au-
thenticate using dialback and the server with an IP address
of 193.1.193.140 is permitted to authenticate using SASL
EXTERNAL’.

The XMPP protocol does not currently support such fine-
grained access control. However, this requirement may be
emulated using firewalls capable of deep packet inspection
such as iptables. Building upon the countermeasures al-

ready defined in Table 1b, two additional countermeasures
outlined in Table 1c are required. For example, counter-
measure iptrAllowDialbackAuthIn143.239.75.235 ensures that pack-
ets originating from IP address 143.239.75.235 must have a
packet with a known dialback signature in order to begin
S2S federation communication with the enterprise XMPP
server. All other packets originating from a different source,
such as IP address 193.1.193.140, that try to federate us-
ing dialback authentication will be dropped by the iptables
default deny policy iptrDefaultDenyS2SAccess .

Note, provisioning an access control configuration for server
federation must also consider additional threats that are not
identified in the previous examples, such as Denial of Service
or IP address spoofing. However, for reasons of space, ad-
ditional threats are not discussed. For example, the firewall
access-control rules outlined in Example 3 are intended to
filter valid XMPP message stanzas to the XMPP server and
do not consider the vulnerability of IP header forgery, where
the threat of IP spoofing for IP addresses 143.239.75.235
and 193.1.193.140 may be realised. Such a threat coupled
with the forging of layer-7 payloads, enable the required
deep packet inspection rules implemented by the firewall to
be used in an unintended manner. As a consequence, ad-
ditional threats, vulnerabilities and countermeasures must
also be considered. It may not always be possible to uphold
an enterprise-level security requirement using the current
set of access controls. Therefore, additional access controls
such as an IPSec VPN [12] may be required. In some cases,
the enterprise-level security requirement itself may require
further refinement, for example the enforcement of strong
authentication using SASL EXTERNAL only.

5. CATALOGUES OF BEST PRACTICE
Best practice recommendations, for example [30, 34], en-

coded as semantic threat graphs require for the most part
customised ‘tweaking’ depending on the network in which
they are applied. Therefore, modelling recommendations
means that not all assets, threats, vulnerabilities, counter-
measures and their relationships are known in advance. On-
tologies are based on Open World Assumption [5], thereby
making it an ideal knowledge framework with which to model
both known and unknown facts.

For example, it may not be known in advance what the IP
address range of a particular enterprise network is in which
the catalogue is being applied to, or if a server is listening on
a different port from the IANA [19] recommended default.
Therefore, template semantic threat graph individuals are
defined as place holders for unknown knowledge. For exam-
ple, a template XMPP server individual, xmppServ, and as-
sociated template iptables individuals iptrAllowInS2SPort that
is intended to permit S2S federation access, may have the
following known facts:

Asset(xmppServ)
← hasIPAddress(xmppServ, -) ⊓

hasPort(xmppServ, 5259) ⊓

IPT Rule(iptrAllowInS2SPort )
← hasChain(iptrAllowInS2SPort , forward) ⊓

hasDstIP (iptrAllowInS2SPort , -) ⊓
hasProtocol(iptrAllowInS2SPort , tcp) ⊓
hasDstPort(iptrAllowInS2SPort , 5269) ⊓
hasAction(iptrAllowInS2SPort , accept)



Threat Vulnerability Countermeasure

threatNoListeningS2SPort VulS2SPortDisabled xmpprEnableS2SPort
threatNoS2SInS2S VulNoS2SInAllowIPTRule iptrAllowInS2SPort
threatNoS2SOutS2S VulNoS2SOutAllowIPTRule iptrAllowOutS2SPort

(a) XMPP and iptables Server-to-Server Alignment.

Threat Vulnerability Countermeasure

threatUnintendedAccess VulNoS2SDefaultDenyXMPPRule xmpprDefaultDenyS2SAccess
threatUnintendedInAccess VulNoS2SDefaultInDenyIPTRule iptrDefaultDenyS2SAccess
threatNoListeningS2SPort VulS2SPortDisabled xmpprEnableS2SPort
threatNoS2S143.239.75.235 VulNoS2S143.239.75.235AllowXMPPRule xmpprAllow143.239.75.235
threatNoS2S193.1.193.140 VulNoS2S193.1.193.140AllowXMPPRule xmpprAllow193.1.193.140
threatNoS2SIn143.239.75.235 VulNoS2S143.239.75.235InAllowIPTRule iptrAllowInbound143.239.75.235
threatNoS2SOut143.239.75.235 VulNoS2S143.239.75.235OutAllowIPTRule iptrAllowOutbound143.239.75.235
threatNoS2SIn193.1.193.140 VulNoS2S193.1.193.140InAllowIPTRule iptrAllowInbound193.1.193.140
threatNoS2SOut193.1.193.140 VulNoS2S193.1.193.140OutAllowIPTRule iptrAllowOutbound193.1.193.140

(b) XMPP and iptables Access Control.

Threat Vulnerability Countermeasure

threatNoS2SInDialbackAuth143.239.75.235 VulNoS2S143.239.75.235InDialbackAuthenAllowIPTRule iptrAllowDialbackAuthIn143.239.75.235
threatNoS2SInSASLExternalAuth193.1.193.140 VulNoS2S193.1.193.140InSASLExternalAuthAllowIPTRule iptrAllowSASLExternalAuthIn193.1.193.140

(c) Fine-grained XMPP Access Control using iptables.

Table 1: Example Inter-Operation of XMPP and iptables Access Control Configuration.

Countermeasure Low-Level Device Specific Access Control Rule

xmpprAllowS2SPort {5269, ejabbered_s2s_in}

xmpprDefaultDenyS2SAccess {s2s_default_policy, deny}

xmpprAllow143.239.75.235 {s2s_host, "143.239.75.235"}

xmpprAllow193.1.193.140 {s2s_host, "193.1.193.140"}

iptrDefaultDenyS2SAccess iptables -P FORWARD DROP

iptrAllowInS2SPort iptables -A FORWARD -i eth0 -d xmppServIP --dport 5269 -j ACCEPT

iptrAllowOutS2SPort iptables -A FORWARD -o eth0 -s xmppServIP --sport 5269 -j ACCEPT

iptrAllowIn143.239.75.235 iptables -A FORWARD -i eth0 -s 143.239.75.235 -d xmppServIP --dport 5269 -j ACCEPT

iptrAllowOut143.239.75.235 iptables -A FORWARD -o eth0 -s xmppServIP -d 143.239.75.235 --sport 5269 -j ACCEPT

iptrAllowIn193.1.193.140 iptables -A FORWARD -i eth0 -s 193.1.193.140 -d xmppServIP --dport 5269 -j ACCEPT

iptrAllowOut193.1.193.140 iptables -A FORWARD -o eth0 -s xmppServIP -d 193.1.193.140 --sport 5269 -j ACCEPT

iptrAllowDialbackAuthIn143.239.75.235 iptables -A FORWARD -s 143.239.75.235 -d xmppServIP --dport 5269 -m string --string
"<dialback xmlns="urn:xmpp:features:dialback">" -j ACCEPT

iptrAllowSASLExternalAuthIn193.1.193.140 iptables -A FORWARD -s 193.1.193.140 -d xmppServIP --dport 5269 -m string --string
"<mechanism>EXTERNAL</mechanism>" -j ACCEPT

Table 2: Corresponding Countermeasure Low-Level Access Control Rules



where “−” signifies that the range of a given property is an
unknown individual. Deploying the XMPP server within the
network, means that it will be assigned an IP address, with
the result of the template XMPP server and iptables rule
individuals being modified to reflect this new knowledge.
Automatic Synthesis of Access-Control Rules. As
knowledge about assets, threats and vulnerabilities become
known, it becomes possible to consider automatic synthesis
of access-control rules. The following SWRL rule dynam-
ically creates a set of iptables firewall rules (using built-in
swrlx:makeOWLIndividual), that will protect XMPP servers
from known SPIM threats. Knowledge about an XMPP
server’s IP address (variable ?xip) and the source IP ad-
dresses in which the threat of SPIM (SPIMThreat(?spim))
has been identified is used to synthesise specific firewall rules
(?specific) from a template iptables rule (iptrtemp).

XMPPServer(?xmpp)∧ SPIMThreat(?spim)∧

V ulnerability(?vul) ∧ TemplateIPTRule(iptrtemp)∧

hasWeakness(?xmpp,?vul) ∧ exploits(?spim,?vul)∧

mitigates(iptrtemp, ?vul) ∧ hasThreatSource(?spim,?tip)∧

hasIPAddress(?xmpp,?xip) ∧ hasPort(?xmpp,?xp)

swrlx:makeOWLIndividual(?specific,iptrtemp, ?spim, ?xmpp)

→ IPTRule(?specific)∧

hasChain(?specific, forward)∧

hasSrcIPAddress(?specific,?tip)∧

hasDstIPAddress(?specific,?xip)∧

hasDstPort(?specific, ?xp)∧

hasAction(?specific, drop)

6. SYNTHESIS AND ANALYSIS

6.1 Synthesis of Access Control Configuration
Synthesis of an appropriate access control configuration

relies on the existence of a knowledge-base of candidate
XMPP and firewall access-control rules that are consistent
with the enterprise-level security requirements. These could,
for example, represent considered best practice for systems
that protect XMPP-based applications.

The following is a generic SWRL rule that examines the
threats (?threat) and vulnerabilities (?vul) that each enter-
prise server (?serv) has and searches for suitable counter-
measures (?rule) that may be implemented by the appro-
priate security servers.

Server(?serv)∧ SecServer(?sec) ∧ Threat(?threat)∧

V ulnerability(?vul) ∧ Countermeasure(?rule)∧

hasWeakness(?serv,?vul) ∧ threatens(?threat,?serv)∧

exploits(?threat,?vul) ∧mitigates(?rule,?vul)∧

protects(?sec,?serv) ∧ operatesAs(?a,?secType)∧

isExecutableOn(?rule, ?ruleType)∧

swrlb : equal(?ruleType,?secType)

→ implements(?sec, ?rule)

6.2 Analysis of Access Control Configuration
The following SQWRL [26] query analyses an existing

access control configuration regarding the current security
servers (?sec) and their corresponding access-control rules

(?rule) that mitigate the threat of a connection-flood Denial
of Service attack (threatConnFlood) against the xmppServ.

XMPPServer(xmppServ) ∧ SecServer(?sec)∧

Threat(threatConnFlood) ∧ V ulnerability(?vul)∧

Countermeasure(?rule)∧ hasWeakness(xmppServ, ?vul)∧

threatens(threatConnFlood , xmppServ)∧

exploits(threatConnFlood , ?vul)∧

mitigates(?rule,?vul) ∧ protects(?sec,xmppServ)

→ sqwrl : select(?sec, ?rule)

The query returns a single tuple xmppServ 7→ xmpprLimitConn .
As part of defense in-depth, the gwFW, should also implement
iptrLimitConn . Thus, further synthesis is required.

7. DISCUSSION AND CONCLUSION
A number of existing techniques can be used to gener-

ate [7,13,14], query [15,22,23] and perform structural anal-
ysis [3, 4, 6] on network access control configurations. How-
ever, these homogeneous firewall-centric approaches tend
not consider their interoperation with other and application-
layer access controls. This paper extends previous results
[9, 10] on ontology-based modeling of iptables and TCP-
Wrapper firewalls by considering how these controls can be
managed in conjunction with the application-level controls
provided by XMPP. Section 6 demonstrates query-analysis
and synthesis of the combined iptables and XMPP config-
uration ontology. We are currently extending the analy-
sis techniques in [10] to provide structural analysis, such as
shadowing, across the combined iptables and XMPP ontol-
ogy.

A threat-based approach, based on [11], is proposed in this
paper as a strategy for providing a uniform interpretation
of the heterogeneous security controls. A knowledge-base of
best practice XMPP and firewall countermeasures against
known threats are encoded as semantic threat graphs. This
knowledge-base is searchable where knowledge about XMPP
operational requirements (for example the XMPP port), the
enterprise-level security requirements (for example, deny ac-
cess to untrusted IP addresses) and the threats (for example,
SPIM) are used to search for suitable firewall countermea-
sures. Thus, the approach provides a basis for the automatic
generation of access control configurations applicable to spe-
cific security mechanisms.

The ontology described in this paper has been populated
with approximately fifty threat, vulnerability and counter-
measures for XMPP and iptables, derived from existing best-
practices and standards. These include a number of XEP
recommendations [2] for XMPP configuration, for exam-
ple, XEP-0205 (Denial of Service), XEP-0165 (JID Mim-
icking) and XEP-0159 (SPIM). These are combined with
best-practice recommendations for safe firewall configura-
tion, including [20, 33, 34], demonstrating that the ontology
can effectively capture realistic configuration requirements.
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APPENDIX

A. DL OVERVIEW
Description Logic(DL) is a formalism for representing knowl-

edge (ontology) and belongs to a family of logic that repre-
sents a decidable portion of first-order logic [5]. A DL-based
ontology is comprised of two components: terminological
and assertional knowledge. Terminological knowledge con-
tains intensional knowledge in the form of a terminology,
that is, a vocabulary consisting of concepts and property re-
lationships. Concepts represent sets of individuals and prop-
erties represent binary relations applied to individuals. Ter-
minological knowledge is constructed through declarations
that describe properties of concepts. Assertional knowledge
contains extensional knowledge that is specific to individuals
(instances of concepts) of the domain of interest.

Description Logic is characterised by a set of constructors
(Table 3) and axioms (Table 4) that allow for the construc-
tion of complex concepts and property relationships (roles)
from atomic concepts or properties.

Concepts are interpreted as sets of individuals with com-
mon properties. The following DL notation explicitly asserts
HTTP Web port (port80) as instance of the Port concept:

Port(port80)

The following naming convention is adopted; concepts and
properties are written in italic font, where a concept be-
gins with an uppercase letter and a property begins with
a lowercase letter. Individuals are written in a lowercase
typewriter font.

Concepts can be organised into a sub-concept hierarchy.
For example, concept TCPHeaderF ield represents the fields
of a TCP header as defined by [28]. The following DL as-
sertion:

Port ⊑ TCPHeaderF ield

states that: concept Port is a specialisation (⊑) of con-
cept TCPHeaderF ield, membership of concept Port im-
plies membership of TCPHeaderF ield, and the member-
ship constraints of concept TCPHeaderF ield are inherited
by concept Port.

A partial concept is specified with necessary conditions
(⊑) which state that if an individual is a member of a par-
ticular concept, then it must satisfy the conditions that char-
acterise that concept. However, it cannot be said that any
(random) individual that satisfies these conditions must be a
member of this concept. When a concept is defined with nec-
essary and sufficient conditions (≡), like partial concepts,
an individual must satisfy those conditions if it is a mem-
ber of that concept. However, with the sufficient condition
included, then any (random) individual that satisfies these
conditions must be a member of this concept. Concepts that
have at least one set of necessary and sufficient conditions
are known as complete concepts.

A common TCP and UDP header field is the port field [27,
28]. The Port concept can be defined as having two over-
lapping parent concepts (intersection) as illustrated by the
following DL fragment.

Port ⊑ TCPHeaderF ield⊓ UDPHeaderF ield

Enumerated concepts are those that exhaustively enumer-
ate their individuals. In [28], the TCP protocol defines a set
of six flags used to establish the three-way handshake and

control ongoing data communication. The following enu-
merates the F lag concept:

F lag ⊑ {syn, ack, fin, rst, psh, urg}

Properties are used to construct binary relationships be-
tween individuals and have a domain and range associated
with them. For example, an individual of the Port con-
cept, port80, has a relationship to 80 (an individual of the
Integer concept) along the hasPortV alue property. Prop-
erties can also have additional characteristics; inverse, func-
tional, symmetric and transitive. Domain and range con-
straints are axioms and are used during reasoning. The fol-
lowing defines an excerpt of TCP header and TCP header
field property domain and ranges modelled within the on-
tology. Note, the p→ symbol denotes a partial function. For
example, a TCPHeader individual may have a currently
unknown Port individual.

hasPortV alue : Port p→ Integer

hasSrcPort : TCPHeader p→ Port

hasDstPort : TCPHeader p→ Port

As with concepts, properties can be hierarchical, where
sub-properties specialise their super-properties. For exam-
ple, the property hasSrcPort specialises the property hasPort.

Restrictions can be applied to properties and are used to
constrain an individual’s membership to a specific concept.
A property restriction effectively describes an anonymous or
unnamed concept that contains all the individuals that sat-
isfy the restriction. When restrictions are used to describe
concepts they specify anonymous super-concepts of the con-
cept being described. Restrictions fall into three categories:
Quantifier, hasValue and Cardinality restrictions.

An existential (∃) restriction requires at least one relation-
ship for a given property to an individual that is a member
of a specific range concept. A universal (∀) restriction man-
dates that the only relationships for the given property that
can exist must be to individuals that are members of the
specified range concept.

Port ⊑ TCPHeaderF ield⊓ UDPHeaderF ield⊓

∃hasPortV alue.Integer ⊓

∀hasPortV alue.Integer

The following DL fragment asserts that individual port22,
has a hasPortV alue property relationship to an individual
of the Integer concept and does not have a hasPortV alue

property relationship to an individual that is not a member
of the Integer concept. Therefore the assertion representing
individual port22, upholds the Port concept constraints for
membership. Informally a DL individual assertion is to be
interpreted to mean if the right hand-side of the assertion
(←) holds then the left hand-side must also hold.

Port(port22) ← hasPortV alue.(port22, 22)

A hasValue restriction, denoted by ∋, describes a set of in-
dividuals that are members of an anonymous concept (do-
main) that are related to a specific individual along the
range of a given property. For example, the hasValue re-
striction hasSrcPort ∋ port22 describes the anonymous
set of individuals that have at least one relationship along
the hasSrcPort property to the specified individual port22.
Note, a hasValue restriction is semantically equivalent to an
existential restriction along the same property (for example,



Constructor DL Syntax Example
Intersection C1 ⊓ ... ⊓ Cn TCPHeaderF ield ⊓ UDPHeaderF ield

Union C1 ⊔ ... ⊔ Cn F lag ⊔ Port

Complement ¬C ¬Port

Universal Quantifier ∀P.C ∀hasSrcPort.Port

Existential Quantifier ∃P.C ∃hasSrcPort.Port

Max Cardinality ≤n P ≤6 hasF lag

Min Cardinality ≥n P ≥1 hasF lag

Exact Cardinality =n P =1 hasSrcPort

Table 3: DL Constructors.

Axiom DL Syntax Example
Concept Inclusion C1 ⊑ C2 Port ⊑ TCPHeaderF ield

Concept Equivalence C1 ≡ C2 Port ≡ TCPHeaderF ield⊓ UDPHeaderF ield

Property Inclusion P1 ⊑ P2 hasSrcPort ⊑ hasPort

Concept Assertion C(a) F lag(syn)
Property Assertion R(a, b) hasBooleanV alue(syn, true)
Disjoint Individual a 6= b syn 6= ack where F lag(syn), F lag(ack)

Table 4: DL Axioms.

hasSrcPort) as the hasValue restriction, which has a range
that is an enumerated concept that contains the specific in-
dividual used in the hasValue restriction.

Cardinality restrictions (=,≤,≥) specify the exact num-
ber of relationships that an individual must participate in
for a given property. For example, each port number is as-
signed a single integer value and is asserted by the following
cardinality (functional) restriction: ∃=1hasPortV alue. The
following is an extended DL fragment of the Port concept:

Port ⊑ TCPHeaderF ield⊓ UDPHeaderF ield⊓

∃=1hasPortV alue.Integer ⊓

∃=1hasStringV alue.String

Reasoning in DL provides inference of new knowledge
from statements asserted within the ontology. This new
knowledge is inferred by applying classification, consistency
checking and concept satisfiability to the existing ontology [5].
Classification is applied to infer subsumption relationships
between concepts from their asserted formal definitions. En-
suring that the ontology does not contain contradictory facts
is performed by consistency checking. Concept satisfiability
determines if it is possible for a concept to contain individu-
als. If a concept is unsatisfiable, then creating an individual
of that concept causes the entire ontology to become incon-
sistent. The ability to reason over the ontology is important.
A new concept or individual can easily be added to an ex-
isting ontology by simply defining its logical characteristics;
the reasoner automatically inserts that concept or individual
into its correct taxonomy position.

B. A SWRL OVERVIEW
The Semantic Web Rule Language (SWRL), complements

Description Logic by providing the ability to infer additional
information from an ontology, but at the expense of decid-
ability. SWRL rules are Horn-clause like rules written in
terms of DL concepts, properties and individuals [25]. In-
formally, a SWRL rule is interpreted to mean that whenever
the antecedent holds (i.e., its true), then the conditions in
the consequent must also hold. For example, a SWRL rule
to express that all ports (variable ?p) are to be inferred as
both a TCP header field and a UDP header field can be

expressed by the following SWRL assertion.

Port(?p)→ TCPHeaderF ield(?p)∧ UDPHeaderF ield(?p)

Note, while SWRL can be used to express an individual’s
hierarchical concept membership, DL should be used to de-
fine the subsumption relationship of concepts. In practice,
SWRL is used to express that what is not expressible in DL
(a SWRL built-in example is shown below).

The SWRL language includes support for user-defined
built-ins that are common to most programming and script-
ing languages [16, 25]. A built-in, is a predicate that takes
one or more arguments and evaluates to true if the argu-
ments satisfy the predicate. The following categories of
built-ins are supported by SWRL: comparison, mathemat-
ical, list operators, strings, temporal, boolean, URI, TBox
and ABox [18,25]. The following SWRL rule:

Port(?p) ∧ hasPortV alue(?p, ?v)∧

swrlb : lessThanOrEqual(?v, 1024)

→ PrivilegedPort(?p)

states that any port (?p) that has a numerical value less
than or equal to 1024 (swrlb : lessThanOrEqual) is to be
classified as a member of the PrivilegedPort concept.

Semantic Query-Enhanced Web Rule Language (SQWRL)
reuses components of the SWRL language to perform DL-
based ontology queries. The SWRL rule antecedent is used
as a pattern specification, while the consequent is replaced
with a retrieval specification. For example, the most com-
mon SQWRL consequent is the sqwrl:select operator, which
takes one or more arguments (variables) that correspond to
those already specified in the antecedent. Note, all valid
SWRL rule antecedent built-ins are valid within SQWRL.

SQWRL queries can operate in conjunction with SWRL
rules in an ontology and can be used to retrieve knowledge
inferred by those rules. SQWRL queries do not modify the
knowledge within the ontology. A SQWRL query that re-
turns all the privileged ports in a given ontology can then
be written as:

PrivilegedPort(?p)→ sqwrl : select(?p)


