
Confident Firewall Policy Configuration Management
using Description Logic

William M. Fitzgerald1,2 Simon N. Foley2 Mı́cheál Ó Foghlú1

1 Telecommunications Software & Systems Group
Waterford Institute of Technology, Ireland

(wfitzgerald,mofoghlu)@tssg.org
2 Department of Computer Science, University College Cork, Ireland.

s.foley@cs.ucc.ie

Abstract. The provisioning of a firewall is one of the first important steps toward securing access control
to a network. However, the effectiveness of a firewall’s access control may be limited or compromised
by poor configuration and management of firewall policy decisions. Firewall configuration management
involves, either the use of a command-line interface with a deep knowledge requirement of the firewall’s
complex low-level command syntax, or to a limited extent, the use of a graphical management console.
Confidence in a firewall configuration is hampered by the complexity of properly comprehending a
configuration that achieves the desired business-level security requirements. We outline an approach
that enables network administrators to provision firewall configuration policies in a reliable, convenient,
conflict-free and automated way. The approach uses Description Logic and the Semantic Web Rule
Language to model and infer reliable firewall configuration policies for Linux Netfilter.

1 Introduction

Management of firewall policy configurations can be complex, error-prone, costly and inefficient for
many large networked organizations [1]. Implementing a firewall configuration policy either involves
writing low-level command syntax via a Command Line Interface (CLI) or the use of a graphical
management console. Typical errors in a firewall configuration policy range from invalid syntax and
inappropriate rule ordering, to errors in properly comprehending the configuration, given its scale
and complexity [2]. The Graphical User Interface, (GUI), is the most commonly used method to
configure a firewall in a timely manner, especially amongst inexperienced administrators. One of
the major disadvantages of using this method is configuration granularity: as with most modern
firewalls there are options that cannot be configured using a graphical interface [2, 1]. Manually
managing firewall policy configurations becomes impractical and time consuming as the number of
firewall decisions increases beyond the reasonable scope and scale of a human oriented management
system [3].

We propose the use of Description Logic to define firewall configuration policies. Description
Logic (DL) is a knowledge representation language that can be used to express terminological knowl-
edge of an application domain in a structured and formally unambiguous manner [4]. In using DL, we
capture the firewall knowledge domain and provide a general vocabulary for firewall configuration.

Reasoning plays a vital role in ensuring the quality of a firewall configuration and the Semantic
Web Rule Language, SWRL [5], provides an ability to validate abstract firewall requirements. De-
scription Logics are a decidable subset of first order logic which facilitates automated inference of
implied information from a firewall configuration and the detection of inconsistencies.

2 Firewall Conflicts

Table 1 provides a fragment of a Linux Netfilter firewall access control configuration. In general,
firewall decisions are activated in sequence starting at Decision 1. A shadowed [6] decision is one that
is never activated due to previous decisions filtering the same kinds of packets but those decisions



Decision Chain Src IP Src Port Dst IP Dst Port State Action Conflict

1 Forward *.*.*.* any 192.168.1.2 80 Drop

2 Forward192.168.1.6 any 192.168.1.2 80 Accept Shadowed by (1)

3 Output 192.168.1.1 any 10.37.2.* 21 Rel Drop

4 Output 192.168.1.1 any 10.37.2.* 22 Est Drop

5 Output 192.168.1.1 any 10.37.2.3 21,22 Est,Rel Accept Shadowed by (3,4)
Table 1. Firewall Decision Policy Example Extract

having different target actions. In Table 1, Decision 2 is shadowed by Decision 1, with the result
that http traffic from host 192.168.1.6 which is intended to be acceptable, is not permitted. In
[6] a number of classes of firewall conflicts are considered, including redundancy, correlation and
generalization. For reasons of space we do not consider them in this paper.

3 Description Logic and Ontologies

An ontology is an explicit specification of a conceptualisation using an agreed vocabulary and
provides a rich set of constructs to build a more meaningful level of knowledge. An important
characteristic of the Semantic Web (as constrained by DL) is that the information contained in it is
specified using a formal language in order to enable automated reasoning and the derivation of new
knowledge from existing knowledge.

Description Logic (DL) is a family of logic-based formalisms that forms part of the W3C rec-
ommendation for the Semantic Web. DL uses classes (concepts) to represent sets of individuals
(instances) and properties (roles) to represent binary relations applied to individuals. For example,
the DL assertion

ServerNode v Node u ∃hasTrustService.Service u ∃hasFirewall.F irewall

specifies that a server node (class) hosts trusted services (class) and has (property) a firewall (class)
protecting them.

The Semantic Web Rule Language SWRL complements DL providing the ability to infer addi-
tional information in DL ontologies, but at the expense of decidability. SWRL rules are Horn-clause
like rules written in terms of DL concepts, properties and individuals. A SWRL rule is composed of
an antecedent part and a consequent part, both of which consist of positive conjunctions of atoms.
For example, the requirement servers hosting ssh based services protected by a firewall require that
firewall to open port 22 is expressed in SWRL as:

ServerNode(?n) ∧ hasTrustService(?n, s) ∧ hasPort(?s, ssh) ∧ hasFirewall(?n, ?f)
→ hasPortOpen(?f, ssh)

4 Netfilter Configuration Ontology

We have developed a DL-based ontology for Netfilter. Figure 1 depicts a fragment of the class
taxonomy for this model. The taxonomy provides the classes, subclasses and individuals that are
inferred from the DL specification of the ontology. For example, firewall decision classes are defined as
subclasses of the class NamedFirewallDecision which defines the necessary & sufficient conditions
for the composition of a firewall decision. A Netfilter firewall decision is composed of exactly one
chain, one or more condition filters and a single permission target. This is expressed as the DL
assertion:

NamedFirewallDecision ≡ NetfilterF irewall u ∃=1hasChain.Chain u
∃≥1hasConditionMatch.ConditionF ilter u ∃=1hasTarget.Target



Fig. 1. DL Class Taxonomy Fragment

Netfilter’s global firewall configuration policy is composed of a number of sub-governing local policies
controlled by each of its in-built chains (Chain class) to which various protective packet condition
filters (ConditionF ilter class) and their respective verdict permissions (Target class) are applied.
The following Netfilter CLI syntax represents a decision to accept inbound packets that are part
of previously permitted sessions based on stateful filtering: iptables -A INPUT -m state - -state
RELATED,ESTABLISHED -j ACCEPT. To capture this in our model, it is first necessary to define
the membership constraints of class InputDecision (a more specialised NamedFirewallDecision
class):

InputDecision ≡ NamedFirewallDecision u ∈ hasChain.inputChain

Following this, one can now instantiate an individual (for example, id) of InputDecision, a class
that contains the set of firewall INPUT decisions in our model, by assigning specified properties from
individual id to individuals of relevant classes:

< id >: InputDecision = < id, inputChain >: hasChain u < id, rel >: hasState u
< id, est >: hasState u < id, accept >: hasTarget

5 Firewall Configuration Conflict Detection

Recall the example of shadowed firewall decisions in Section 2. A SWRL rule that tests for a shadowed
decision is expressed as

ForwardDecision(?x) ∧ ForwardDecision(?y)∧
abox : hasProperty(?ip1, hasIPMember, protoIP192.168.1.6)∧
abox : hasProperty(?ip2, hasIPMember, protoIP192.168.1.2)∧
hasSrcIP (?x, protoIP192.168.1.6) ∧ hasDstIP (?x, protoIP192.168.1.2) ∧ hasDstPort(?x, portHTTP )∧
hasSrcIP (?y, ?ip1) ∧ hasDstIP (?y, ?ip2) ∧ hasDstPort(?y, portHTTP )∧
hasTarget(?x, acceptTarget) ∧ hasTarget(?y, dropTarget)∧
hasRuleOrder(?x, ?a) ∧ hasRuleOrder(?y, ?b)∧
swrlb : greaterThan(?a, ?b) ∧ differentFrom(?x, ?y) →
Shadowed(?x) ∧ isShadowedTo(?x, ?y)

This states that, on discovering a FORWARD chain super-set firewall decision (?y) previous to the
firewall decision in question (?x) then that subset decision (?x) should be re-classified under the
class Shadowed and to have that subset decision (?x) set its isShadowedTo property to that of
super-set decision (?y). Thus, firewall Decision 2 is classified as shadowed by firewall Decision 1.

While automatic resolution of conflicts is not currently expressed in the Netfilter knowledge base,
it can be added by expressing it in the ontology using DL and SWRL. This extensibility provides
a ‘plug and play’ approach to managing policies and is one of the advantages of using semantic DL
knowledge. SWRL also provides an SQL-like notation that can be used to structure information
retrieved by the DL knowledge base. For example, the query

Shadowed(?x) ∧ isShadowedTo(?x, ?y) → query : select(?x, ?y)



gives a list of tuples x 7→ y, where x is a decision and y the decision that shadows x. When executed
against the knowledge in Table 1 it returns tuples 2 7→ 1, 5 7→ 3 and 5 7→ 4.

The DL constrained ontology approach provides more than just classification and conflict de-
tection. While we have codified extended forms of the conflict-tests in [6], our approach provides
a more general framework for exploring firewall and network configurations. For example, queries
such as what entities on subnet 192.168.1.* can access the ssh service on 192.168.1.1 (the firewall)?
or list all open ports on 192.168.1.6 accessible to entities other than the 192.168.1.* subnet.

6 Discussion and Conclusion

In this paper, we outline our approach to using an ontology to represent firewall configuration
knowledge. This model effectively reflects the semantic knowledge that a firewall administrator
should ‘keep in their head’ when writing and/or updating firewall decisions. While it may be rela-
tively straightforward to fully comprehend a configuration containing a small number of decisions,
it is evident from the apparent complexity of the proposed DL model, that this human comprehen-
sion does not scale to a large number of decisions. It can be difficult for an administrator to fully
appreciate the impact of adding or changing firewall decisions. Thus the need for automated sup-
port. We have implemented our DL model using Protégé [7] with its ontology DL plug-ins, and this
provides an administrator with configuration models that are consistent, and more straightforward
to navigate and comprehend. Thus, the administrator can have more confidence in the policies that
they configure.

A number of approaches have been proposed for the formal analysis of firewalls [8–12]. For
example, model-checking techniques [8, 11] are used to test that a configuration of firewalls uphold a
global routing policy that restricts certain data to certain sub-nets. In [10] constraint programming
is used as an approach to finding suitable firewall rules from higher level policy constraints. The
focus in these approaches is more on analyzing that firewall rules uphold particular correctness
properties, or on synthesising firewall rules from specified correctness properties. While this notion
of correctness does, in effect, provide semantics for firewall configuration under a limited number of
a priori properties, it is not intended to provide a framework for general knowledge representation
about firewalls. The DL approach, while not as expressive as the logics that underlie [8–12], is
intended to allow the knowledge base to be extended and managed in general.

This paper focuses on the issues of firewall conflicts classified by [6] as a useful case study
to demonstrate the appropriateness of the DL approach in resolving firewall policy conflicts. The
provision of reasoning, in particular within the context of OWA, provides the DL approach with
greater flexibility and extendability for incorporating new knowledge. Our model not only caters
for conflict firewall decision anomalies, it also provides a means to provide proper explanation for
misconfigured firewall rules.

Our DL model not only detects pair-wise conflicts between two firewall decisions (like the ap-
proach taken by [6]) but it can readily detect the conjunctions of partial conflicts in a set-wise
fashion that may occur across multiple decisions in regard to a specified decision being analysed.
For example, Decisions 3-5 of Table 1 captures the filtering of stateful outward ftp and ssh traffic of
the firewall itself towards the 10.37.2.* subnet and 10.37.3.3 node respectively whereby connections
are Established or Related. Our model can capture that Decision 5 is ‘partially shadowed’ by the
conjunction of a number of individual proceeding decisions namely 3 & 4 (ports and state).

In general, DL provides a basis for extendability, interoperability and complex composition of
other security domains of interest. For example, by developing new ontologies for application-level
proxies, one can then model and reason about configurations that involve firewall decisions and
proxy decisions. Conflict anomaly-style analysis could be carried out to determine how decisions of
one security mechanism may interfere with the decisions of another.



References

1. Wool, A.: A Quantitative Study of Firewall Configuration Errors. COMPUTER, IEEE Computer Society Press,
Vol. 37, No. 6, pp. 62-67 (2004)

2. Wack, J., Cutler, K., Pole, J.: Guidelines on Firewalls and Firewall Policy: Recommendations of the National
Institute of Standards and Technology. NIST, Special Publication 800-41 (2002)

3. Golnabi, K., Min, R., Khan, L., Al-Shaer, E.: Analysis of Firewall Policy Rule Using Data Mining Techniques. In
the 10th IEEE/IFIP Network Operations and Management Symposium, (NOMS) (2006)

4. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.: The Description Logic Handbook:
Theory, Implementation and Applications. Cambridge University Press (2003)

5. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL: A Semantic Web Rule
Language Combining OWL and RuleML. W3C Member Submission (2004)

6. Al-Shaer, E., Hamed, H., Boutaba, R., Hasan, M.: Conflict Classification and Analysis of Distributed Firewall
Policies. In IEEE Journal on Selected Areas in Communications, Volume 1-1 (2005)

7. Gennari, J., Musen, M.A., Fergerson, R.W., Grosso, W.E., Crubezy, M., Eriksson, H., Noy, N.F., Tu., S.W.:
The Evolution of Protege: An Environment for Knowledge-Based Systems Development. In: Proceedings of
International Journal of Human-Computer Studies, Volume 58 , Issue 1. (2003)

8. Guttman, J.D.: Filtering Postures: Local Enforcement for Global Security Policies. IEEE Symposium on Security
and Privacy, Oakland (1997)

9. Mayer, A., Wool, A., Zishind, E.: Fang: A Firewall Analysis Engine. 2000 IEEE Symposium on Security and
Privacy, p. 0177 (2000)

10. Eronen, P., Zitting, J.: An Expert System for Analyzing Firewall Rules. (In: In Proceedings of the 6th Nordic
Workshop on Secure IT Systems (NordSec 2001), pages 100-107)

11. Hazelhurst, S.: A Proposal for Dynamic Access Lists for TCP/IP Packet Filtering. South African Computer
Journal, Vol. 33 (2004)

12. Marmorstein, R., Kearns, P.: A Tool for Automated iptables Firewall Analysis. (USENIX Annual Technical
Conference, FREENIX Track)


