
SECURITY AND COMMUNICATION NETWORKS
Security Comm. Networks 00: 1–16 (0000)
Published online in Wiley InterScience
(www.interscience.wiley.com) DOI: 10.1002/sec.0000

Semiring-based Frameworks for Trust Propagation in
Small-World Networks and Coalition Formation Criteria

S. Bistarelli1, S.N. Foley2, B. O’Sullivan3, F. Santini4∗
1Dipartimento di Matematica e Informatica, Università di Perugia and Istituto di Informatica e Telematica (CNR)
and Dipartimento di Scienze, Università “G. d’Annunzio” Chieti Pescara, Italy
2Department of Computer Science University College Cork, Cork, Ireland
3Department of Computer Science University College Cork and Cork Constraint Computation Centre, Cork,
Ireland
4Dipartimento di Scienze, Università “G. d’Annunzio” Pescara and Istituto di Informatica e Telematica (CNR)
and IMT Scuola di Studi Avanzati Lucca, Italy

Summary

Multitrust provides a flexible approach to encoding trust metrics whereby definitions for trust propagation and
aggregation are specified in terms of a semiring. Determining the degree of trust between principals across a
trust network is, in turn, programmed as a (semiring based) soft-constraint satisfaction problem. In this paper we
consider the use of semiring-based metrics in reasoning about trust between coalition-forming principals. The
configurable nature of multitrust makes it well-suited to modeling trust within coalitions: whether adding more
principals to a coalition increases trust or decreases trust is captured by the definition of trust aggregation within
the semiring. Copyright c© 0000 John Wiley & Sons, Ltd.

KEY WORDS: Soft Constraint Logic Programming, And-or Graphs, Trust Propagation, Trust Network

1. Introduction

Dynamic coalitions [1] range from simple spaces
used by participants to exchange information, to
complex processes in which services operate and are
governed according to local and/or global regulation
and contract. These coalitions may spawn further
coalitions and coalitions may come-together and/or
merge. Coalitions may span multiple administrative
domains and without a centralized and/or globally
trusted third party available to supervise relationships.
These trust relationships between coalitions and their
members are typically characterized in terms of trust

∗Correspondence to: Istituto di Informatica e Telematica, Via
Moruzzi 1, IT-56124 Pisa, Italy. E-mail: francesco.santini@iit.cnr.it

networks (TN) or the web of trust [2]. We are
interested in computational models of these trust
relationships.

The paper mainly collects different but strongly
linked methods to compute trust evaluation-
scores towards coalitions of entities/individuals.
We propose a computational framework that can
be used with already existing trust metrics, e.g.
〈trust, confidence〉 scores as proposed in [3]. This
paper provides four contributions. Firstly, we propose
the concept of multitrust [4], which correlates trust
between a trustor and multiple trustees. The intuition
for the term comes from the multicast delivery scheme
in networks. Multitrust can be used to model and
evaluate a coalition of multiple trustees from the

Copyright c© 0000 John Wiley & Sons, Ltd.
Prepared using secauth.cls [Version: 2008/03/18 v1.00]

2 S. BISTARELLI ET AL

subjective point of view of the trustor. For example,
when downloading a file from multiple sources in a
peer-to-peer network, multitrust provides a indicator
of trust for the entire download process.

The second contribution of the paper is a model
of trust propagation in TNs. We represent TNs
using weighted and-or graphs [5] (i.e., hypergraphs),
mapping individuals to nodes and their relationships
to directed connectors. The and connectors (i.e.,
hyperarcs) represent the event of simultaneously
trusting a group of individuals. The degree of trust
between individuals is modeled in terms of the costs
of the connectors. In this paper, the costs of the
connectors symbolize how trustworthy the source
estimates the destination nodes, that is a trust value,
and how accurate is this trust opinion, i.e. a confidence
value.

Soft Constraint Logic Programming (SCLP) [6,
7] provides a convenient declarative programming
environment in which to solve the trust propagation
problem for multitrust. In SCLP programs, classical
logic programming is used in conjunction with soft
constraints [8, 6]. In particular, we show how to
translate the and-or graph obtained in the first step
into a SCLP program, and how the semantics of such
a program computes the best trust propagation tree
in the corresponding weighted and-or graph. SCLP is
based on the general structure of a c-semiring [6] (or
simply, semiring) with two operations× and +. The×
is used to combine the preferences, while the partial
order resulting from the + operator (see Section 2) is
used to compare them.

We take advantage of the semiring structure in order
to model and compose different trust metrics. SCLP
is parametric with respect to the chosen semiring:
the same program deals with different metrics by
only choosing the proper semiring structure. A similar
model has been proposed for routing [9]. CIAO
Prolog [10] has been used to implement the SCLP-
based trust model described in this paper.

As already stated in literature [11, 12, 13], trust
networks exhibit small-world characteristics and the
third contribution of this paper is an evaluation
of a proposed coalition model as a random small-
world network generated using the Java Universal
Network/Graph Framework (JUNG) [14]. The small-
world phenomenon describes the tendency for each
entity in a large system to be separated from any other
entity by only a few hops. Moreover, these networks
show a high clustering coefficient, which quantifies
how close a vertex and its neighbors are from being a

complete graph. The small average distance in small-
world networks [15] allows to cut the solution search
after a small threshold, thus improving the search even
in wide networks. The path usually consists in few
hops of the network.

The fourth and last result provided in the paper
uses soft constraints [8, 6] to partition entities into
coalitions according to different trust criteria. A
coalition can be defined as a temporary alliance among
agents, during which they cooperate in joint action
for a common task [16]; we use trust scores in order
to evaluate the relationships among these entities.
Thus, in this case we are no longer finding a path,
but sets of elements: trust is no longer computed
according to the point of view of a single entity, i.e.
the source node of the path, but it is a global score.
The obtained set of coalitions is the most trustworthy
with respect to the trust metrics used (represented in
terms of semirings) [17, 18, 19]. In addition to this
optimization, we introduce a condition of stability
between an entity and a coalition, which can be used
as a more “local” need of an entity and can be adopted
to represent further complex interactions.

Self-interested, autonomous software agents on the
Internet may negotiate rationally to gain and share
benefits in stable (temporary) coalitions [1]. We chose
to not consider a coalition of elements as predefined
entity, but we decided to work on a graph of elements
and to (possibly) aggregate them in order to create
coalitions and to find trustworthy groups of individuals
that can accomplish a given complex task. The reason
is that we consider flexible environments, where new
users can register or cancel themselves in a dynamic
way [1] (e.g. forums and social networks [20]):
therefore, nodes can appear and disappear and thus
we do not want to treat them as a fixed “consortium”.
In general, we consider trust networks as dynamic
information, and to find a new solution for the
modified graph we only need to update the model and
compute again the solution with our semiring-based
frameworks (presented in the paper).

Due to its nature dynamic coalition formation
methods promise to be particularly well suited for
applications of ubiquitous and mobile computing,
including mobile commerce (i.e. M-commerce). M-
commerce as it may be supported by personalized,
rational information agents residing, for example,
on WAP-enabled access devices such as pagers,
organizers, (sub)notebooks, or UMTS cell phones,
currently still remains to be an appealing vision for
the common Internet user [1].

Copyright c© 0000 John Wiley & Sons, Ltd.
Prepared using secauth.cls

Security Comm. Networks 00: 1–16 (0000)
DOI: 10.1002/sec

SEMIRING-BASED FRAMEWORKS FOR TRUST PROPAGATION AND COALITION FORMATION CRITERIA 3

This paper presents formal and sound results that
extend the preliminary ones in [17, 18, 21]: here
we collect and link together information on how
coalitions can be represented with soft constraints and
we provide an uniform view of multitrust towards and
inside them. The paper is is organized as follows. In
Section 2 we present some background information
on trust metrics, the small-world phenomenon in
social networks and the SCLP and soft constraints
frameworks. Section 3 describes the related work and,
Section 4 introduces multitrust and its interpretation
in coalitions. Section 5 shows how to represent a TN
with an and-or graph, while in Section 6 we describe
how to translate and-or graphs to SCLP programs and
demonstrate that the program computes the best trust
propagation for the corresponding and-or graph. In
Section 7 we evaluate the performance of multitrust
over a trust network with small-world properties, since
social networks are proved to show this feature [11,
12, 13]. Section 8 considers coalition forming when
constrained not just by the trust-metrics but also by
other rules that govern coalition membership. Finally,
Section 9 draws the final conclusions and outlines
intentions on future works.

2. Background

Trust Metrics and Small World Networks. A
range of definitions for trust and reputation exist in the
literature [20]. In this paper, we adopt the following
definitions. Trust describes one node’s belief in
another node’s capabilities with respect to honesty
and reliability based on its own direct experiences.
Reputation is based on recommendations received also
from other nodes. While closely related, a primary
difference between trust and reputation is that trust
is a score that reflects the relying party’s subjective
view of an entity’s trustworthiness, whereas reputation
systems produce the entity’s (public) reputation score
as seen by the whole community.

Trust and reputation ranking metrics have been
used for public key certification, rating and reputation
schemes for online communities, peer-to-peer net-
works, semantic web and mobile computing [20, 22,
2]. These different applications use their own distinct
trust metrics. Trust metrics are used to infer trust
scores of users by exploiting transitive relationships:
if two nodes, for instance node n1 and node n4 in
Figure 1, are not directly connected then any indirect
transitive connection in the TN, for instance, n1 →
n2 → n4, can be used to generate an inferred trust
rating. A TN represents all the direct trust relationship

xxxxxxxxx
xxxxxxxxx
xxxxxxxxx

xxxx
xxxx
xxxx
xxxx
xxxx

xxx
xxx
xxx
xxx
xxxxxxxxxx
xxxxxxxxxxxxxx

xxxx
xxxx
xxxx

xxxxx
xxxxx
xxxxx

n

n

n

n

n

2

1

3

4

5

Fig. 1. A classical trust network.

in a community. An example of a classical TN is
provided in Figure 1, where we can see that trust is
usually interpreted as a 1-to-1 relationship between
two individuals: the edges are directed from the trustor
to the trustee.

If node n1 trusts node n2, and node n2 trusts
node n3, then n1 can use the path to compose the
inferred rating for n3, assuming that trust is transitive
in this case. This process is called trust propagation by
concatenation, and it is a desirable requirement since
in most settings a user has a direct opinion only about
a very small portion of nodes in the TN. Therefore,
trust needs to be granted also by basing on third-
party recommendations: if n1 trusts n2, she/he can use
the recommendation about n3 provided by n2 [20].
How to compose this information depends on the trust
metrics of the links, i.e. it specifically depends on the
problem [20] (e.g. by multiplying together the trust
scores of the links n1-n2 and n2-n3).

A trust network, where nodes represent individuals
and edges represent their relationships, exhibits the
small-world phenomenon if any two individuals in
the network are likely to be connected through
a short sequence of intermediate acquaintances.
In [15] the authors observe that such graphs have
a high clustering coefficient (like regular graphs)
and short paths between the nodes (like random
graphs). According to this definition, small-world
networks have sub-networks that are characterized
by the presence of connections between almost any
two nodes within them. Many empirical graphs
are suitably modeled by small-world networks, for
example, social networks, the connectivity of the
Internet, and gene networks all exhibit small-world
network characteristics. Moreover, the advantages to
small-world networking for social movement groups
are their resistance to change due to the filtering
apparatus of using highly connected nodes, and its

Copyright c© 0000 John Wiley & Sons, Ltd.
Prepared using secauth.cls

Security Comm. Networks 00: 1–16 (0000)
DOI: 10.1002/sec

4 S. BISTARELLI ET AL

better effectiveness in relaying information while
keeping the number of links required to connect a
network to a minimum [13].

These networks are divided in sub-communities
(i.e., clusters) where few individuals, called the
pivots [23], represent the bridges towards different
groups. These connections are termed weak ties in the
sociology literature [23], as opposed to strong ties that
connect a vertex to others in its own sub-community.
Weak ties are important because the individuals inside
other communities will bring in greater value due to
different knowledge and perspectives, while people in
the same group would generally tend to have the same
knowledge. An example of a small-world network is
shown in Section 7.

Social networks have, in general, small-world
characteristics [11, 12, 13], and give its relationship
to trust, also trust networks exhibit small world char-
acteristics [11, 12]. This has been demonstrated for
Pretty Good Privacy (PGP) certificate networks [24]
as a consequence of the self-organization of users,
and in [11] which explores trust-based schemes from
the perspective of small worlds. For this reason, in
Section 7 we test our computational framework with
small-world networks.

C-semirings and Soft Constraints. A c-
semiring [8, 6, 25] S (or simply semiring in the
following) is a tuple 〈A, +,×,0,1〉 where A is a
set with two special elements (0,1 ∈ A) and with
two binary operations + and × that satisfy certain
properties: + is defined over the elements in A and is
commutative, associative, idempotent, it is closed and
0 is its unit element and 1 is its absorbing element;
× is closed, associative, commutative, distributes
over +, 1 is its unit element, and 0 is its absorbing
element (for the exhaustive definition, please refer
to [8]). The + operation defines a partial order ≤S

over A such that a ≤S b iff a + b = b [8, 6, 25]; we
say that a ≤S b if b represents a value better than a. A
short survey on how this view of valuation structures
(and the presented partial order definition) can be
linked to different ones is presented in [26]. Other
properties related to the two operations are that +
and × are monotone on ≤S , 0 is its minimum and 1
its maximum, 〈A,≤S〉 is a complete lattice and + is
its lub. Finally, if × is idempotent, then + distributes
over × and 〈A,≤S〉 is a complete distributive lattice.

A soft constraint [8, 6] may be seen as a constraint
where each instantiation of its variables has an
associated preference. Given S = 〈A, +,×,0,1〉 and
a set of variables V over a finite domain D, a soft

constraint is a function which, given an assignment
η : V → D of the variables, returns a value of the
semiring. Using this notation C = η → A is the set of
all possible constraints that can be built starting from
S, D and V .

Any function in C involves all the variables in V ,
but we require that it depends on the assignment of
only a finite subset of them. Thus, for instance, a
binary constraint cx,y over variables x and y, is a
function cx,y : V → D → A, but it depends only on
the assignment of variables {x, y} ⊆ V (the support
of the constraint, or scope). Note that cη[v := d1]
means cη′ where η′ is η modified with the assignment
v := d1. Note also that cη is the application of a
constraint function c : V → D → A to a function η :
V → D; what we obtain, is a semiring value cη = a.
0̄ and 1̄ respectively represent the constraint functions
associating 0 and 1 to all assignments of domain
values; in general, the ā function returns the semiring
value a.

Given the set C, the combination function ⊗ :
C × C → C is defined as (c1 ⊗ c2)η = c1η × c2η (see
also [8, 6]). Informally, performing the ⊗ or between
two constraints means building a new constraint
whose support involves all the variables of the original
ones, and which associates with each tuple of domain
values for such variables a semiring element which
is obtained by multiplying the elements associated by
the original constraints to the appropriate sub-tuples.
The partial order ≤S over C can be easily extended
among constraints by defining c1 v c2 ⇐⇒ c1η ≤
c2η. Consider the set C and the partial order v. Then
an entailment relation `⊆ ℘(C)× C is defined s.t.
for each C ∈ ℘(C) and c ∈ C, we have C ` c ⇐⇒⊗

C v c (see also [6]).
Given a constraint c ∈ C and a variable v ∈ V , the

projection [8, 6] of c over V − {v}, written c ⇓(V \{v})
is the constraint c′ s.t. c′η =

∑
d∈D cη[v := d]. Infor-

mally, projecting means eliminating some variables
from the support.

A SCSP [6] defined as P = 〈C, con〉 (C is the set
of constraints and con ⊆ V , i.e. a subset the problem
variables). The best level of consistency notion
defined as blevel(P) = Sol(P) ⇓∅, where Sol(P) =
(
⊗

C) ⇓con [6]. A problem P is α-consistent if
blevel(P) = α [6]; P is instead simply “consistent”
iff there exists α >S 0 such that P is α-consistent [6].
P is inconsistent if it is not consistent.

Soft Constraint Logic Programming. The SCLP
framework [6, 7, 27], is based on the notion of
c-semiring introduced in [28, 8]. Constraint Logic

Copyright c© 0000 John Wiley & Sons, Ltd.
Prepared using secauth.cls

Security Comm. Networks 00: 1–16 (0000)
DOI: 10.1002/sec

SEMIRING-BASED FRAMEWORKS FOR TRUST PROPAGATION AND COALITION FORMATION CRITERIA 5

s(X) :- p(X,Y).
p(a,b) :- q(a).
p(a,c) :- r(a).
q(a) :- t(a).
t(a) :- 2.
r(a) :- 3.

Table I. A simple example of an SCLP program.

Programming (CLP) [29] extends Logic Programming
by replacing term equalities with constraints and
unification with constraint solving. In classical Prolog,
the program logic is expressed in terms of relations,
and execution is triggered by running queries over
these relations. Relations and queries are constructed
using Prolog’s single data type, the term. Relations are
defined by clauses. Given a query, the Prolog engine
attempts to find a resolution refutation of the negated
query.

The SCLP framework extends the classical CLP
formalism in order to be able to handle also SCSP [28,
8] problems. In passing from CLP to SCLP languages,
we replace classical constraints with the more general
SCSP constraints where we are able to assign a level of
preference to each instantiated constraint (i.e. a ground
atom). To do this, we also modify the notions of
interpretation, model, model intersection, and others,
since we have to take into account the semiring
operations and not the usual CLP operations. The fact
that we have to combine several refutation paths (a
refutation is a finite derivation and the corresponding
semiring value a [6]) when we have a partial order
among the elements of the semiring (instead of a
total one), can be fruitfully used in the context
of this paper when we have an graph/hypergraph
problems with incomparable costs associated to the
edges/connectors. In fact, in the case of a partial order,
the solution of the problem of finding the best path/tree
should consist of all those paths/trees whose cost is not
“dominated” by others.

A simple example of a SCLP program over the
semiring 〈{N ∪∞},min, +, +∞, 0〉, where N is
the set of non-negative integers and D = {a, b, c},
is represented in Tab. I. The intuitive meaning of a
semiring value like 3 associated to the atom r(a)
(in Tab. I) is that r(a) costs 3 units. Thus the set
N contains all possible costs, and the choice of the
two operations min and + implies that we intend
to minimize the sum of the costs. This gives us the
possibility to select the atom instantiation which gives
the minimum cost overall. Given a goal like s(x) to

this program, the operational semantics collects both
a substitution for x (in this case, x = a) and also
a semiring value (in this case, 2) which represents
the minimum cost among the costs for all derivations
for s(x). To find one of these solutions, it starts
from the goal and uses the clauses as usual in logic
programming, except that at each step two items are
accumulated and combined with the current state: a
substitution and a semiring value (both provided by
the used clause). The combination of these two items
with what is contained in the current goal is done
via the usual combination of substitutions (for the
substitution part) and via the multiplicative operation
of the semiring (for the semiring value part), which in
this example is the arithmetic +. Thus, in the example
of goal s(X), we get two possible solutions, both with
substitution X = a but with two different semiring
values: 2 and 3. Then, the combination of such two
solutions via the min operation give us the semiring
value 2.

3. Related Work

PGP allows the user to assign four levels of trustwor-
thiness to a public-key. These levels correspond to how
much the user thinks the owner of that public-key can
be trusted to be an “introducer” to another trustworthy
public-key certificate. To compensate for the ambigu-
ity of the proposed trust levels, PGP allows its users
to tune PGP’s “skepticism”. This is done by adjusting
two parameters, COMPLETES NEEDED and
MARGINALS NEEDED. The former defines
the number of completely trusted signatures required
to make a certificate completely valid, and the latter
defines the number of marginally trusted signatures to
achieve the same outcome [30]. The formal framework
presented in Section 5 can be used also to aggregate
all these values together toward a given public-key in
the graph, e.g. belonging to Alice, in order to be sure
of the Alice/public-key association. In words, the best
tree, which must be seen in the inverse order (i.e. the
root represents the public-key we would like to trust),
could maximize for example the number of marginally
trusted signatures.

Our approach is different from the PGP marginal
trust approach because, i) the idea of multitrust
explicitly considers trees and trust toward a group of
users (trees are not considered in PGP), and ii) we use
semiring operators to combine the trust scores along
the path/tree, while in PGP no idea of different metrics
is considered. The multitrust approach is also more
flexible than the recent extension of GNU PGP which

Copyright c© 0000 John Wiley & Sons, Ltd.
Prepared using secauth.cls

Security Comm. Networks 00: 1–16 (0000)
DOI: 10.1002/sec

6 S. BISTARELLI ET AL

allows trust values to be associated with certificates
whereby trust-propagation corresponds to a two-
terminal network reliability problem in a probabilistic
(trust) graph.

Other approaches to trust propose the aggregation
of multiple trust paths in order to have feedback
from different individuals and to enforce the final
evaluation [22, 2]. The main reason is to improve
the attack-resistance of the metrics when an attacker
wishes to introduce a false name-key binding. Global
trust metric values [2] are assigned to an individual
based upon complete trust graph information; many of
these metrics borrow their ideas from the PageRank
algorithm [2]. Essentially, in these metrics trust begins
at the source node and “flows” to all the other nodes
in the network. We can instead classify a trust metric
as local if the values it computes are based on local
estimates of trust in the graph. For example, the
Rahman-Hailes metric computes the trust value of a
path as a product of the trust values of edges on the
path, and takes the average of all path values [31].

However, even if it is possible to compute this
aggregation of paths within our framework, our goal
is quite different and, has not to our knowledge
been considered in literature. A multitrust connector
represents a collaboration among the n trustees
and, in some sense, a coalition of the reached
entities. It represents the act of “simultaneously”
trusting a collection of individuals, which behave in
a coordinated way. The trust values associated with
this hyperarc represents how well the collaboration
works. Trust paths need not be independent of on
another: the trust level of each and-connector is not
given by summing up the levels of the edges, but using
a ¯ operator that explicitly calculates a weight for the
connector.

A related and parallel study on the combination of
trust values has been proposed in [32, 33]. In these
works, we present a variant of the Datalog language
(we call it DatalogW) to deal with weights on ground
facts and to consequently compute a feedback result
for the goal satisfaction. The weights are chosen
from a proper c-semiring. In this context, our goal
is to use this language as a semantic foundation for
languages expressing trust relationships, as the Role-
based Trust-management Markup Language (RTML).
The final trust score is obtained by aggregating the
trust scores associated with the basic role definition.
For example, StateU.highMarks −→ 〈Alice, 0.8〉
certifies that Alice has obtained a good number of
high marks (since the value is 0.8) for the exams
completed at the StateU university (the credential is

issued by StateU). These papers consider the concept
from the point of view of trust management languages
and credentials, and, unlike this paper, do not consider
trust propagation and coalition formation.

4. Multitrust and Coalitions

We introduce the concept of multitrust [4], which
extends the usual trust relationship from pairs of
individuals to one trustor and multiple trustees in a
“correlated” way (e.g. time-correlated):

Definition 1 Given a set of entities E in the
considered trust domain, multitrust is defined as a
relationship Rmt between a trustor t ∈ E and a set
of trustees T ⊂ E, where t 6∈ T and |T | ≥ 1. Rmt

can be described in terms of time (e.g. at the same
time), modalities (e.g. with the same behavior) or
collaboration among the trustees in T w.r.t. t.

For example if we consider time, the trustor could
simultaneously trust multiple trustees, or, considering
instead a modality example, the trustor could contact
the trustees with the same communication device, e.g.
by phone. Consequently, this trust relation Rmt is 1-
to-n, unlike the 1-to-1 relationship in conventional
trust systems [2]. One interpretation of multitrust
is team effectiveness [34]. For example, suppose
we have a decentralized community of open-source
programmers and we want to know if a subset of them
can be reliably assigned to a new project.

Multitrust can be used to represent trust within
a coalition of entities. For example, by cooperating
and sharing their respective expertise, a team of 3
programmers, could significantly enhance the quality
of a software product than working as individuals on
the project.Cooperating groups, have been thoroughly
investigated in Artificial Intelligence and Game
Theory and has proved to be a useful strategy in
both real-world economic scenarios and multi-agent
systems [16]. For instance, coalition formation can be
seen as a co-operative game [16] determined by a set
A of agents and a real-valued characteristic function
assigning each coalition its maximum gain (the so-
called coalition value, e.g. money). A solution is
represented by a partition of the agents and an efficient
payoff distribution: the payoff distribution assigns
each agent its utility out of the value of the coalition
it is member of in a given coalition structure. Stability
conditions consider individually rational distributions,
which are assigning each agent at least the gain it
may get without collaborating within any coalition.

Copyright c© 0000 John Wiley & Sons, Ltd.
Prepared using secauth.cls

Security Comm. Networks 00: 1–16 (0000)
DOI: 10.1002/sec

SEMIRING-BASED FRAMEWORKS FOR TRUST PROPAGATION AND COALITION FORMATION CRITERIA 7

Also AI can be used to partition autonomous agents
by considering trust relationships [35, 36, 37].

Coalitions are generally considered to be task-
directed and short-lived, but last longer than team
organization [16]. However, in some cases, coalitions
may have a long lifetime created [35]. For the purposes
of this paper, given a population of entities E, then the
problem of coalition formation consists of selecting
the appropriate partition of E, P = {C1, . . . , Cn}
(|P | = |E| if each entity forms a coalition on its own),
s.t. ∀Ci ∈ P , Ci ⊆ E and Ci ∩ Cj = ∅, if i 6= j. P
maximizes the utility (utility against costs) that each
coalition can achieve in the environment. Therefore,
agents group together because an utility can be gained
by working in groups, but this growth is somewhat
limited by the costs associated with forming and
maintaining such a structure.

Notice that the multitrust problem is intrinsically
different from the aggregation of disjoint trust paths
examined in other works [38, 22]. Our goal is
different, since with a 1-to-n relationship we model
a collaboration (in a coalition sense) among the n
trustees, and not a mathematical aggregation (e.g. the
average) of the trust values on the disjoint paths rooted
in them. This characterizes the difference between
multitrust and the conventional definition of trust in
literature.

5. From Trust Networks to and-or Graph

An and-or graph [5] is defined as a special type of
hypergraph. In particular, instead of arcs connecting
pairs of nodes there are hyperarcs connecting an n-
tuple of nodes (n = 1, 2, 3, . . .). The arcs are called
connectors and they must be considered as directed
from their first node to all the other nodes in the n-
tuple. Formally an and-or graph is a pair G = (N,C),
where N is a set of nodes and C is a set of connectors
defined as C ⊆ N ×⋃k

i=0 N i.
When k > 1 we have an and connector since it

reaches multiple destinations at the same time; all
the different connectors rooted in the same ni node
can be singly chosen, i.e. or connectors. Note that
the definition allows 0-connectors, i.e. connectors
with one input and no output node. In the following
explanation we will also use the concept of and
tree [5]: given an and-or graph G, an and tree H
is a solution tree of G with start node nr, if there
is a function g mapping nodes of H into nodes of
G such that: i) the root of H is mapped in nr, and
ii) if (ni0 , ni1 , . . . , nik

) is a connector of H , then
(g(ni0), g(ni1), . . . , . . . , g(nik

)) is a connector of G.

Informally, a solution tree of an and-or graph is
analogous to a path of an ordinary graph: it can be
obtained by selecting exactly one outgoing connector
for each node. If all the chosen connectors are 1-
connectors, then we obtain a plain path and not a tree.

In Figure 2 we represent a TN for multitrust as a
weighted and-or graph: this graph can be built starting
from the TN in Figure 1. Each of the individuals can
be easily cast in a corresponding node of the and-or
graph. In Figure 2 we represent our trustor as a black
node (i.e. n1) and the target trustees as two concentric
circles (i.e. n4 and n5). Nodes n2 and n3 can be used
to propagate trust.

To model the trust relationship between two
nodes we use 1-connectors, which correspond to
usual TN arcs: the 1-connectors in Figure 2
are (n1, n2), (n1, n3), (n2, n3), (n2, n4), (n3, n4),
(n3, n5), (n4, n5). We note that the connectors are
directed, and thus, for example the connector (n4, n5)
means that the input node n4 trusts the individual
represented by n5. Moreover, since we are now
dealing with multitrust, we need to represent the
event of trusting more individuals at the same time.
To attain this, in Figure 2 we can see the three 2-
connectors (n1, n2, n3), (n2, n3, n4) and (n3, n4, n5):
for example, the first of these hyperconnectors defines
the possibility for n1 to trust both n2 and n3 in
a correlated way. In Figure 2 we draw these n-
connectors (with n > 1) as curved oriented arcs where
the set of their output nodes corresponds to the output
nodes of the 1-connectors traversed by the curved arc.
Considering the ordering of the nodes in the tuple
describing the connector, the input node is at the first
position and the output nodes (when more than one)
follow the orientation of the related arc in the graph
(in Figure 2 this orientation is lexicographic). Notice
that in the example we decided to use connectors
with dimension at most equal to 2 (i.e. 2-connectors)
for sake of simplicity. However it is possible to
represent whatever cardinality of trust relationship,
that is among a trustor and n trustees (i.e. with a n-
connector).

We represent the TN using a weighted and-or graph.
However an algebraic framework is needed in order
to model our preferences for the connectors for use
during trust propagation. For the purpose of this paper
we use (but are not limited to) a semiring structure
based on trust and confidence attributes.

Each of the connectors in Figure 2 is labeled with
a pair of values 〈t, c〉: the first component represents
a trust value in the range [0, 1], while the second
component represents the accuracy of the trust value

Copyright c© 0000 John Wiley & Sons, Ltd.
Prepared using secauth.cls

Security Comm. Networks 00: 1–16 (0000)
DOI: 10.1002/sec

8 S. BISTARELLI ET AL

xxxxxxxxx
xxxxxxxxx
xxxxxxxxx

xxxx
xxxx
xxxx
xxxx
xxxx

xxx
xxx
xxx
xxx
xxxxxxxxxx
xxxxxxxxxxxxxx

xxxx
xxxx
xxxx

xxxxx
xxxxx
xxxxx

n

n

n

n

n

2

1

3

4

5

<0.9,0.9>

<0.5,0.4>

<0.8,0.79>

<0.8,0.88>

<0.2,0.98>

<0.9,0.94>

<0.7,0.88>

<0.79,0.81>

<0.9,0.93>

<0.8,0.8>

Fig. 2. An and-or graph representing multitrust: the weights
on the connectors represent trust and confidence values (i.e.

〈t, c〉).

assignment (i.e. a confidence value), and it is still
in the range [0, 1]. This parameter can be assumed
as a quality of the opinion represented instead by
the trust value; for example, a high confidence could
mean that the trustor has interacted with the target
for a long time and then the correlated trust value
is estimated with precision. A trust value close to
1 indicates that the output nodes of the connector
have gained a good feedback in terms of their
past performance and thus are more trustworthy,
whereas a low trust value means the nodes showed
relatively poor trustworthiness in the past and are
rated with low score. In general, we could have trust
expressed with a k-dimensional vector representing
k different metrics; in this example we have 2-
dimensional vectors. This kind of trust/condfidence
metric, that is the semiring we use to propagate trust
in the network, corresponds to the path semiring [3]:
Strust = 〈〈[0, 1], [0, 1]〉,+p,×p, 〈0, 0〉, 〈1, 1〉〉, where

〈ti, ci〉+p 〈tj , cj〉 =

〈ti, ci〉 if ci > cj ,

〈tj , cj〉 if ci < cj ,

〈max(ti, tj), ci〉 if ci = cj .

〈ti, ci〉 ×p 〈tj , cj〉 = 〈titj , cicj〉
Along the same path, the ×p computes the scalar

product of both trust and confidence values, and since
the considered interval is [0, 1], they both decrease
when aggregated along a path. When paths are instead
compared, +p chooses the one with the highest
confidence. If the two opinions have equal confidences
but different trust values, +p picks the one with the
highest trust value†. In this way, the precision of the

†Notice that in the path semiring, the + operator defines
a total order on the couples; 〈0.3, 0.89〉 ≤S 〈0.3, 0.9〉 and
〈0.31, 0.9〉 ≤S 〈0.3, 0.9〉.

information is more important than the information
itself. If the k-dimensional costs of the connectors are
not elements of a totally ordered set (therefore, not in
our trust/confidence example), it may be possible to
obtain several Pareto-optimal solutions.

Different semirings can be used to model other
trust metrics: for example, the Fuzzy Semiring
〈[0, 1], max, min, 0, 1〉 can be used if we decide that
the score of a trust chain corresponds to the weakest
of its links. Or we can select the Weighted Semiring,
i.e. 〈R+, min, +,∞, 0〉, to count negative referrals
in reputation systems as in e-Bay [20]. Other works
proposing trust metrics as semiring structures are [19,
39]. A metric that cannot be represented with semiring
is, for example, the arithmetic mean of the trust values.

Collecting the trust values to assign to the
labels of the connectors is beyond of the scope
of this paper, but they can be described in terms
of specificity/generality dimensions (if we relay
on one or more aspects) and subjective/objective
dimensions (respectively personal, as e-Bay, or formal
criteria, as credit rating) [20]. In this section, for
n-connectors with n ≥ 2, we suppose objective
ratings and, therefore, the use of a composition
operation ◦ which takes n k-dimensional trust
metric vectors (e.g. tvalue1, . . . , tvaluen) as
operands and returns the estimated trust value
for the considered n-connector (tvaluenc):
◦ (tvalue1, tvalue2, . . . , tvaluen) −→ tvaluenc.

Notice that we can also suppose to have a different
◦i operator for each entity i of the TN, in order
to model different subjective ratings instead of a
global objective rating as used in the example of
this section. As already noted, the ◦ operation is
not necessarily an arithmetic “addition” of single
trust values, but it must take into account also the
“added value” (or “subtracted value”) derived from
the effect of combination of ratings. For example, the
cost 〈0.9, 0.93〉 of connector (n3, n4, n5) in Figure 2
significantly benefits from simultaneously trusting
n4 and n5, since both the trust/confidence values
of (n3, n4) and (n3, n5) are sensibly lower (i.e.,
respectively 〈0.8, 0.8〉 and 〈0.7, 0.88〉). The reason
could be that n3 has frequently observed fruitful
collaboration between n4 and n5 reflecting the high
confidence value. On the other hand, n2 does not
consider n3 and n4 to be so “collaborative” since the
trust label of (n2, n3, n4), i.e. 〈0.8, 0.81〉, is worse
than the costs of (n2, n3) and (n2, n4) (i.e. 〈0.9, 0.94〉
and 〈0.8, 0.88〉). In the example in Figure 2 we use
subjective ratings, and therefore the trust values for 2-
connectors do not follow any specific ◦ function. Some

Copyright c© 0000 John Wiley & Sons, Ltd.
Prepared using secauth.cls

Security Comm. Networks 00: 1–16 (0000)
DOI: 10.1002/sec

SEMIRING-BASED FRAMEWORKS FOR TRUST PROPAGATION AND COALITION FORMATION CRITERIA 9

examples of functions for computing an objective
rating are instead shown in Section 8.

Notice that trust is sometimes computed by
considering all the paths between two individuals
and then by applying a function in order to find a
single result [22] (e.g. the mean of the trust scores
for all the paths). This could be accomplished by
using the expectation semiring [40], where the +
operation of the semiring is used to aggregate the trust
values across paths, as proposed in [3]. In this paper,
we decide to keep + as a “preference” operator for
distinct paths (as proposed for classical SCLP, see
Section 2) in order to choose the best one, since in
Section 7.1 we suggest how to reduce the complexity
of the framework by visiting less paths as possible.
Thus, aggregating the trust values of the paths is not
so meaningful when trying to reduce the number of
visited paths at the same time.

Our intention in this paper is to leave the definition
of the ◦ function as more general as possible: its aim
is to compute the trust for a coalition of trustees and
it clearly depends on the criteria chosen to evaluate
a coalition and the internal dynamics inside it. For
example, if the trustor ni is aware of the trust score
between nj and nk (but in general this could not
be possible), the cost of the 2-connector (ni, nk, nj)
could be computed with ◦ by using the costs of
(ni, nk), (ni, nj) but also (nk, nj) and (nj , nk). The
method we instead adopt to compute trust, e.g. using
only (ni, nk) and (ni, nj) as described before, can be
autonomously computed by each single node/agent,
since it only needs the trust evaluation of a trustor w.r.t.
all his trustees; this can be useful in decentralized trust
architectures. To provide more possible scenarios, the
◦ function can be also expressed with a table having 2n

rows (where n is the number of agents) reporting all
the possible coalitions and a column which associates
the trust score with the corresponding coalition. This
method can be use with few agents and when the
environment is closed and well-known (thus not
for highly dynamic coalition formation [1]): the
advantages are that the calculation can be faster (i.e.
reading a valued from the table) or that it may not be a
real computation, but an estimation: in this case we do
not need to find a mathematical function (it could be a
difficult task).

As a further possibility, the ◦ function could
be implemented by the same × operator of the
semiring used to propagate trust (or by a different
semiring) in order to simplify the implementation of
the framework. In this case the algebraic properties
of the ◦, that is ×, are reported in Section 2. More

complex ◦ function can be created, for example not
taking values as input but portions of (or the entire)
TN. Such functions can check also its topology, that
is how much the subgraph representing the coalition is
connected: a clique means a lot of already established
relationships among its members, which can be an
advantage. In literature there are different proposals
for computing trust of coalitions, and therefore we
prefer to not rigidly define the ◦ function.

6. And-or Graphs Using SCLP

In this Section, we explain how to represent and-
or graphs with a program in SCLP. Our approach
is motivated by two important features of this
programming framework: i) SCLP is a declarative
programming environment and, thus, is relatively easy
to implement different problems; ii) the c-semiring
structure is can be encoded to represent a variety of
different trust metrics. For the purposes of illustration,
we translate the and-or graph in Figure 2; by simply
changing the facts in the program, it is possible to
translate any other tree.

Using this framework, we can easily find the
best trust propagation over the hypergraph built in
Section 5. Our aim is to find the best path/tree
simultaneously reaching all the desired trustees, which
is only one of the possible choices when computing
trust [22]. According to multipath propagation, when
multiple propagation paths (in this case, trees) exist
between A and C (in this case, several trustees at
the same time), all their relative trust scores can
be composed together in order to have a single
result balanced with every opportunity. To attain
multipath propagation we need to use the expectation
semiring [40] as explained in Section 5.

In SCLP a clause such as c(ni, [nj , nk]):- tvalue,
means that the graph has connector from ni to nodes
nj and nk with tvalue cost. Other SCLP clauses can
describe the structure of the path/tree we desire to
search over the graph. Notice that possible cycles in
the graph are automatically avoided by SCLP, since
the × of the semiring is a monotonic operation.

We use CIAO Prolog [10] as the system to solve
the problem. CIAO Prolog has also a fuzzy extension,
but it does not completely conform to the semantics
of SCLP defined in [7] (due to interpolation in the
interval of the fuzzy set). For this reason, we inserted
the cost of the connector in the head of the clauses,
unlike the SCLP clauses which have the cost in the
body of the clause.

Copyright c© 0000 John Wiley & Sons, Ltd.
Prepared using secauth.cls

Security Comm. Networks 00: 1–16 (0000)
DOI: 10.1002/sec

10 S. BISTARELLI ET AL

C
o

n
n

e
c
to

rs

2)

3)

4)

L
e
a
v
e
s leaf([n1], [1,1]).

leaf([n2], [1,1]).
leaf([n3], [1,1]).
leaf([n4], [1,1]).
leaf([n5], [1,1]).

connector(n1,[n2], [0.9,0.9]).
connector(n1,[n3], [0.5,0.4]).
connector(n1,[n2,n3], [0.8,0.79]).
connector(n2,[n3], [0.9,0.94]).
connector(n2,[n4], [0.8,0.88]).
connector(n2,[n3,n4], [0.8,0.82]).
connector(n3,[n4], [0.8,0.8]).
connector(n3,[n5], [0.7,0.88]).
connector(n3,[n4,n5], [0.9,0.93]).
connector(n4,[n5], [0.2,0.98]).

1)
trustrel(X,[X], [T,C]):-
 leaf([X], [T,C]).

trustrel(X, Z, [T,C]):-
 connector(X,W, [T1,C1]),
 trustrelList(W, Z, [T2,C2]),
 times([T1,C1], [T2,C2], [T,C]).

trustrelList([],[], [1,1]).

trustrelList([X|Xs],Z, [T,C]):-
 trustrel(X, Z1, [T1,C1]),
 append(Z1, Z2, Z),
 trustrelList(Xs, Z2, [T2,C2]),
 times([T1,C1], [T2,C2], [T,C]).

:- module(trust,_,_).
:- use_module(library(lists)).
:- use_module(library(aggregates)).
:- use_module(library(sort)).

times([T1, C1], [T2, C2], [T, C]) :-
 T is (T1 * T2),
 C is (C1 * C2).

plus([], MaxSoFar, MaxSoFar).

plus([[T,C]|Rest], [MT,MC], Max):-
 C > MC, plus(Rest, [T,C], Max).

plus([[T,C]|Rest], [MT,MC], Max):-
 C = MC, T > MT,
 plus(Rest, [T,C], Max).

plus([[T,C]|Rest], [MT,MC], Max):-
 C < MC,
 plus(Rest, [MT,MC], Max).

plus([[T,C]|Rest], [MT,MC], Max):-
 C = MC,
 T < MT,
 plus(Rest, [MT,MC], Max).

trust(X, Y, Max):-
 findall([T,C], trustrel(X, Y, [T,C]), L1),
 plus(L1,[0,0],Max).

p
lu

s
ti

m
e
s

tr
u

s
t

Table II. The CIAO program representing the and-or graph in
Figure 2

From the and-or graph in Figure 2 we build the
corresponding CIAO program of Tab. II as follows.
First, we describe the connectors of the graph with

facts such as:

connector(trustor, [trustees list],

[trust value, condifence value])

The fact connector(n1, [n2, n3], [0.8, 0.79]) repre-
sents the connector of the graph (n1, n2, n3) with
a trust/confidence value of 〈0.8, 0.79〉 (ni represents
the name of the node). The set of connector facts is
highlighted as Connectors in Tab. II, and represents all
the trust relationships of the community. The Leaves
facts of Tab. II represent the terminations for the
Prolog rules. Their cost must not influence the final
trust score, and then it is equal to the unit element
of the × operator of the Strust semiring presented
in Section 5, i.e. 〈1, 1〉. The times and plus clauses
in Tab. II respectively mimic the × and + opera-
tion of Strust = 〈〈[0, 1], [0, 1]〉, +p,×p, 〈0, 0〉, 〈1, 1〉〉
explained in Section 5. The trust clause is used as the
query to compute trust in the network: it collects all the
results for the given source and destinations, and then
finds the best trust/confidence couple by using the plus
clauses.

Lastly, the rules 1-2-3-4 in Tab. II describe the
structure of the relationships to be found over the
social network: with these rules it is possible to
find both 1-to-1 relationships (i.e. for classical trust
propagation) or 1-to-n relationships (i.e. for multitrust
propagation, described in Section 2). Rule 1 represents
a relationship made of only one leaf node, Rule 2
outlines a relationship made of a connector plus a
list of sub-relationships with root nodes in the list of
the destination nodes of the connector, Rule 3 is the
termination for Rule 4, and Rule 4 is needed to manage
the junction of the disjoint sub-relationships with roots
in the list [X|Xs]. When we compose connectors
and tree-shaped relationships (Rule 2 and Rule 4), we
use the times clause to compose their trust/confidence
values together.

To solve the search over the and-or graph problem
it is enough to perform a query in Prolog language:
for example, if we want to compute the cost of the
best relationship rooted at n1 (i.e. n1 is the starting
trustor) and having as leaves the nodes representing
the trustees (i.e. n4 and n5), we have to perform
the query trust(n1, [n4, n5], [T, C]), where T and
C will be respectively instantiated with the trust
and confidence values of the found relationship. The
output for this query corresponds to the cost of the
tree in Figure 3, i.e. 〈0.72, 0.78〉. Otherwise, if we
are interested in knowing the best trust relationship
between one trustor (e.g. n1) and only one trustee

Copyright c© 0000 John Wiley & Sons, Ltd.
Prepared using secauth.cls

Security Comm. Networks 00: 1–16 (0000)
DOI: 10.1002/sec

SEMIRING-BASED FRAMEWORKS FOR TRUST PROPAGATION AND COALITION FORMATION CRITERIA 11

n1 n 2

<0.9,0.9>

n 3

<0.9,0.94>

n 5

n 4

<0.9,0.93>

0.9 x

0.9 x

0.9 =

0.72

Confidence

 result:

0.9 x

0.94 x

0.93 =

0.78

Trust

result:

Fig. 3. The best trust relationship that can be found with the
query trust(n1, [n4, n5], [T, C]) for the program in Tab. II.

(e.g. n4), as in classical trust propagation, we should
perform the query trust(n1, [n4], [T, C]).

Notice that if the ratings of our trust relationships
are objective (see Section 5) then it is possible to
program the ◦ operator in CIAO Prolog. In this case
the n-connectors with n > 1 are constructed in the
program by applying the ◦ operator on the relevant
1-connectors. In the program in Tab. II all the n-
connectors are, instead, directly expressed as facts,
and not automatically built with clauses. In this sense,
an extension to the program in Tab. II is provided in
Tab. III: the connectors are created from the edges
in a dynamic way and the computation of their cost
is obtained by using the ◦ function directly in the
Connector clauses. In this case, ◦ ≡ max for both the
trust/confidence values. The sort predicate is used to
reduce the number of the created connectors, i.e. only
(n1, n2) and not also (n2, n1).

7. An Implementation of the Model

To develop and test a practical implementation
of our model, we adopt the Java Universal
Network/Graph Framework [14], a software library
for the modeling, analysis, and visualization of data
that can be represented as a graph or network.
The WattsBetaSmallWorldGenerator included in the
library is a graph generator that produces a random
small world network using the beta-model as proposed
in [41]. We use this small-world generator because
social and trust networks usually show small-world
properties [11, 12, 13]. The basic idea is to start with
a one-dimensional ring lattice in which each vertex
has k-neighbors and then randomly rewire the edges,

E
d

g
e

s

edge(n1,[n2], [0.9, 0.9]).
edge(n1,[n3], [0.5, 0.4]).
edge(n2,[n3], [0.9, 0.94]).
edge(n2,[n4], [0.8, 0.88]).
edge(n3,[n4], [0.8, 0.8]).
edge(n3,[n5], [0.7, 0.88]).
edge(n4,[n5], [0.2, 0.98]).

m
a

x
C

o
n

n
e

c
to

r

use_module(library(sort)).

max([X, Y], X) :- X >= Y.
max([X, Y], Y) :- X < Y.

connector(X, [Y], L, [T,C]):-
 edge(X, [Y], [T,C]),
 nocontainsx(L, Y),
 insert_last(L, Y, Z),
 sort(Z,Z).

connector(X, [Y|Ys], L, [T,C]):-
 edge(X, [Y], [T1,C1]),
 nocontainsx(L,Y),
 insert_last(L, Y, Z),
 sort(Z,Z),
 connector(X, Ys, Z, [T2,C2]),
 max([T1,T2], T),
 max([C1,C2], C).

Table III. These clauses show how 1-to-1 relationships (i.e. the
edges) can be composed with the ◦ operator to form 1-to-n
relationships (i.e. the connectors).

with probability β, in such a way that a small-world
networks can be created for certain values of β and
k that exhibit low characteristic path lengths and high
clustering coefficient.

We generated the small-world network in Figure 4
(with undirected edges) and then we automatically
produced the corresponding program in CIAO
(considering the edges as directed), as in Section 6.
The results reported in Figure 4 suggest the small-
world nature of our test network: a quite high
clustering coefficient and a low average shortest path.

With respect to the program in Tab. II we
added the Trust Hops < d2 ·Avg Shortest Pathe
constraint: in this case, Trust Hops < 9, which is
also the diameter of the network (see Figure 4).
This constraint limits the search space (the depth
of possible found paths) and provides a good
approximation at the same time: in small-world
networks, the average distance between two nodes is
logarithmic in the number of nodes [15], i.e. every
two nodes are close to each other. Therefore, this
constraint limits the number of found paths (by using

Copyright c© 0000 John Wiley & Sons, Ltd.
Prepared using secauth.cls

Security Comm. Networks 00: 1–16 (0000)
DOI: 10.1002/sec

12 S. BISTARELLI ET AL

Nodes Edges Clustering Avg. SP Min Deg
150 450 0.44 4.26 4

Max Deg. Avg. Deg Diameter
8 6 9

Fig. 4. The test small-world network generated with
JUNG [14] and the corresponding statistics.

their depth), but however a large number of alternative
routes fall within short distance from the source.
Performance clearly benefit from this cut on the search
space.

We performed 50 tests on the graph in Figure 4,
and in every case the propagation between two nodes
was computed within 5 minutes. Clearly, even if
the results are promising and the small-world nature
allows them to be repeated also on larger graph due
to the logarithmic increase of average shortest path
statistics, we need some improvements to further relax
the Trust Hops constraint. These improvements are
suggested in Section 7.1.

7.1. Complexity Considerations

The representation of TN given in Section 5 can lead
to an exponential time solution because of the degree
of the nodes: for each of the individuals, we have a
connector towards each of the subsets of individuals in
their social neighborhood, whose number is 2d, where
d is the out-degree of the node. The complexity of the
tree search can be reduced by using Tabled Constraint
Logic Programming (TCLP), i.e. with tabling (or
memoing) techniques. Tabling efficiency, w.r.t. not-
tabled queries is shown in [42]: the improvement
strongly depends on the considered problem instance,
for example the time is reduced by a factor 100 in [43].
The calls to tabled predicates are stored in a searchable
structure together with their proven instances, and

Alice

Football
Rugby

Basketball

Bob

Charlie

Dave

Fig. 5. The small-world of sports.

subsequent identical calls can use the stored answers
without repeating the computation: a partial solution
is already present in a table.

The work in [44] explains how to port Constraint
Handling Rules (CHR) to XSB (acronym of eXtended
Stony Brook), and in particular its focus is on technical
issues related to the integration of CHR with tabled
resolution. CHR is a high-level natural formalism to
specify constraint solvers and propagation algorithm.
At present time, from the XSB system it is possible
to load a CHR package and to use its solving
functionalities combined with tabling. SCSPs have
already been successfully implemented in the CHR
system [45].

The procedure of finding such a goal table for each
single sub-community is much less time consuming
than finding it for a whole not-partitioned social
network. For this reason we can take advantage
from the highly clustered nature of small-worlds. In
Figure 5 it is represented the community of people
practising sports; the community is clustered into
three sub-groups: Football, Basketball and Rugby. The
individuals that represent the bridges among these
groups are people practising two different sports, and
are called pivots; their very important relationships are
instead called weak ties (as we explained in Section 2),
and can be used to widen the knowledge from a sub-
group towards the rest of the small-world. If Alice (a
pivot in the Basketball cluster) wants to retrieve a trust
score about Bob (a pivot in the Football cluster), she
could ask to Charlie and Charlie to Dave (pivots in
the Rugby cluster). Therefore, the pivots should store
a “tabled vision” of their community to improve the
performances for intra-community relationships.

Copyright c© 0000 John Wiley & Sons, Ltd.
Prepared using secauth.cls

Security Comm. Networks 00: 1–16 (0000)
DOI: 10.1002/sec

SEMIRING-BASED FRAMEWORKS FOR TRUST PROPAGATION AND COALITION FORMATION CRITERIA 13

C

C

1

2

x
1

x
2

x
3

x
4

x
5

x
6

x
7

r

r

1

2

T (C x) > T (C)1 14

r (t (x ,x), t (x ,x), t(x ,x)) > (t (x ,x), t (x ,x), t(x ,x))1 r24 4 4 4 4 41 2 3 5 6 7

Fig. 6. A graphical intuition of two blocking coalitions.

Therefore, our idea is to solve the problem for each
distinct medium-size cluster of elements, and then to
compose the results by benefiting from the clustered
nature of social networks, in order to solve the problem
over wider network.

8. Using Soft Constraints to Represent
Different Coalition Formation Criteria

In this Section we consider the partitioning of the set
of entities into different coalitions, whereby a single
entity can appear in only one coalition at time. With
multitrust, even the trust score of a coalition is related
to the view of the evaluating trustor entity, while in this
Section the score is objective. Notice that in both these
frameworks, the trust score of a coalition is obtained
with the ◦ operator (see Section 5 and Def. 2).

Cooperation involves a degree of risk arising from
the uncertainties of interacting with autonomous self-
interested agents. Trust [20] describes node’s belief
in another node’s capabilities, honesty and reliability
based on its own direct experiences. Trust metrics
have been already adopted to perceive this risk, for
example, by estimating how likely other agents are to
fulfill their cooperative commitments [35, 36]. Since
trust is usually associated with a specific scope [20],
we suppose that this scope concerns the task that the
coalition must face after its formation; for example,
in electronic marketplaces the agents in the same
coalition agree with a specific discount for each
transaction executed [36, 37]. Clearly, an entity can
also trust itself in achieving the task, and can form a
singleton coalition.

In the individually-oriented approach an agent
prefers to be in the same coalition with the agent

with whom it has the best relationship [36]. In the
socially-oriented approach the agent, instead, prefers
the coalition in which it has most summative trust [36].
Alternatively, in this Section we model different
optimization criteria based on different semirings (see
Section 2). To do so, in Def. 2 we formalize how to
compute the trustworthiness of a whole coalition:

Definition 2 Given a coalition C of agents defined by
the set {x1, . . . , xn} and a trust function t defined on
ordered couples (i.e. t(xi, xj) is the trust score that
xi has collected on xj), the trustworthiness of C (i.e.
T (C)) is defined as the composition (i.e. ◦) of the
1-to-1 trust relationships, i.e. ∀xi, xj ∈ C. ◦ t(xi, xj)
(notice that i can be equal to j, modeling the trust in
itself). Therefore, the multitrust (see Section 4) score
among all the elements inside a coalition is computed
to define its trustworthiness.

The ◦ function has already been defined in
Section 5; it models the composition of the 1-to-1 trust
relationships. For the sake of simplicity, in this paper
we consider objective ratings [20] in order to easily
represent and compute trust with a mathematical
operator: therefore, we use a ◦ function common
to every node in the graph, i.e. a single operator.
For instance, some practical instantiations of the ◦
function can be the arithmetic mean or the max
operator (as in Tab. III): ∀xi, xj ∈ C. avg t(xi, xj)
or ∀xi, xj ∈ C. max t(xi, xj). Notice that, differently
from previous sections, we now consider more than
one coalition at once as the result of the partition,
and thus we need to compute a trust score internal
to each coalition. This is accomplished by using the
◦ function. With respect to Section 5, this step simply
consists in aggregating all the 1-to-1 hyperarcs internal
to the same coalition with the same ◦ operator (where
n is the number of other elements in the coalition).
Therefore, it represents the aggregation of the costs of
all the individuals in the coalition, that is the multitrust
score w.r.t. each entity inside it.

As described in Section 5, changing the semir-
ing structure allows different trust-propagation/trust
metrics [17, 19] to be constructed. Organization of
principals into optimal coalitions can be based on
different principals, such as minimizing a general
cost of the aggregation or maximizing “consistency”
evaluation of the included entities, i.e. how much their
interests are alike. In order to represent more complex
interactions among the entities and the coalitions, we
propose also a mandatory stability condition that is
able to model a local requirement of an entity, w.r.t.

Copyright c© 0000 John Wiley & Sons, Ltd.
Prepared using secauth.cls

Security Comm. Networks 00: 1–16 (0000)
DOI: 10.1002/sec

14 S. BISTARELLI ET AL

to the global optimization considering all the formed
coalitions. In this paper, this condition is inspired by
the stability condition of classical Stable Marriage
problem [21, 46], but other conditions can be designed
and cast in the framework by using different soft
constraints. Blocking coalitions are defined in Def. 3:

Definition 3 Two coalitions Cu and Cv are defined as
blocking if, an individual xk ∈ Cv exists such that,
∀xi ∈ Cu, xj ∈ Cv with j 6= k, ◦xi∈Cut(xk, xi) >
◦xj∈Cv

t(xk, xj) and T (Cu ∪ xk) > T (Cu) at the
same time.

A set {C1, C2, . . . , Cn} of coalitions is stable, i.e.
is a valid solution, if no blocking coalitions exist
in the partitioning of the agents. An example of
two blocking coalitions is sketched in Figure 6: if
x4 prefers the coalition C1 (i.e. relationship r1 in
Figure 6) to the elements in its coalitions C2 (i.e. r2

in Figure 6), i.e. ◦(t(x4, x1), t(x4, x2), t(x4, x3)) >
◦(t(x4, x5), t(x4, x6), t(x4, x7)), and C1 increases its
trust value by having x4 inside itself, i.e. T (C1 ∪
x4) > T (C1), then C1 and C2 are two blocking
coalitions and the partitioning {C1, C2} is not stable
and thus, it is not a feasible solution of our problem.

We therefore require the stability condition to be
satisfied, but at the same time we want also to
optimize the trustworthiness of the partitioning given
by aggregating together all the trustworthiness scores
of the obtained coalitions.

The results of this Section can be applied also to
model the formation and the consequent behaviour of
the other organizational paradigms, e.g. Holoarchies,
Federations or Teams [16]. To do so, we need to
represent the different grouping relationships among
the entities with soft constraints.

8.1. A Formalization of the Problem

In this Section we define the soft constraints needed to
represent the coalition-extension problem. We adopt
the Fuzzy semiring 〈[0, 1],max,min, 0, 1〉 in order
to maximize the minimum trustworthiness of all the
obtained coalitions (as proposed also in [17, 18]).
The following definition takes the general ◦ operator
(presented in Section 5 and Section 8) as one of its
parameters: it can be considered in some sense as a
“lower level” operator with respect to the other two
semiring operators (i.e. + and ×).

The variables V of this SCSP (see Section 2)
problem are represented by the maximum number of
possible coalitions: {co1, co2, . . . , con} if we have to
partition a set {x1, x2, . . . , xn} of n elements. The

domain D for each of the variables is the powerset
of the element identifiers, i.e. P{1, 2, . . . , n}; for
instance, if η(co1) = {1, 3, 5} it means the the
coalition co1 groups the elements x1, x2, x5 together
(η : V → D is the variable assignment function shown
in Section 2). Clearly, η(coi) = ∅ if the framework
finds less than n coalitions.

1. Trust constraints. As an example from this
class of constraint, the soft constraint ct(coi =
{1, 3, 5}) = a quantifies the trustworthiness of
the coalition formed by {x1, x3, x5} into the
semiring value represented by a. According to
Def. 2, this value is obtained by using the
◦ operator and composing all the 1-to-1 trust
relationships inside the coalition. In this way we
can find the best set of coalitions according to
the semiring operators.

2. Partition constraints. This set of constraints is
used to enforce that an element belongs only to
one single coalition. For this goal we can use a
binary crisp constraint between any two coali-
tion, as cp(coi, coj) = 0 if η(coi) ∩ η(coj) 6=
∅, and cp(coi, coj) = 1 otherwise (with i 6=
j). Moreover, we need to add one crisp
constraint more, in order to check that all the
elements are assigned to one coalition at least:
cp(co1, co2, . . . , con) = 0 if |η(co1) ∪ η(co2) ∪
· · · ∪ η(con)| 6= n, and cp(co1, co2, . . . , con) =
1 if |η(co1) ∪ η(co2) ∪ · · · ∪ η(con)| = n.

3. Stability constraints. These crisp constraints
model the stability condition as proposed in
Def. 3. We have several ternary constraints for
this goal: cs(cov, cou, xk) = 0 if k ∈ η(cov)
(i.e. xk belongs to the cov coalition),
◦i∈η(cou)t(xk, xi) > ◦j∈η(cov)t(xk, xj)
and ct(η(cou) ∪ k) > ct(cou). Otherwise,
cs(cov, cou, xk) = 1.

The above constraints provide one example of how
formation constraints can be imposed on coalitions;
many other formation constraints are possible so long
as they can be encoded as constraints within our
model. For example, the Partition constraints in 2
above could be weakened to support Chinese Wall
style partitioning. In this case, a coalition is a group of
market analysts working together for some company.
Market analysts can be assigned to a number of
different coalitions so long as it does not violate the
conflict of interest partition constraint. Assuming that
the company is also an individual (the trustor) in the
coalition, then we’d like to maximize the trust (with
the analysts) within each coalition.

Copyright c© 0000 John Wiley & Sons, Ltd.
Prepared using secauth.cls

Security Comm. Networks 00: 1–16 (0000)
DOI: 10.1002/sec

SEMIRING-BASED FRAMEWORKS FOR TRUST PROPAGATION AND COALITION FORMATION CRITERIA 15

9. Conclusions and Future Work

We have defined the concept of multitrust and
provided a method to represent and solve the trust
propagation problem using a combination of and-
or graphs and SCLP programming. Our framework
allows different trust metrics to be encoded as a
semiring; in this paper we used trust and confidence,
providing an estimation of the trust observation. We
believe that multitrust can be used in many real-world
cases: trusting a group of individuals at the same
time can lead to different conclusions with respect
to simply aggregating together the trust values of the
single individuals in the group.

A small-world interpretation of the trust model
has been evaluated, whereby all the individuals are
reachable within few hops. Exploiting the small-world
properties show that the framework can be effectively
used with small/medium networks containing a few
hundreds of nodes.

Different coalition formation criteria based on
distinct trust metrics were presented. These criteria
can be enriched with particular stability conditions
that represent the local requirements of the entities
(w.r.t. the global optimization of coalitions). The
model proposed in Section 8, is inspired by the
stability condition of classical Stable Marriage
problem [21, 46]. This framework and the one based
on multitrust represent two possible ways to use
semiring-based frameworks to expressively organize
entities into coalitions by using trust scores.

Future work on improving the performance of
multitrust evaluation includes the use of memo-
ization/tabling techniques, to filter out redundant
computations and the use of branch and bound
techniques to prune the non promising partial
solutions. Some preliminary results obtained with
ECLiPSe [47] and its branch and bound pruning
confirm this observation.

A further goal for future research is to find
a structure able to aggregate distinct trust paths
in a single trust value, i.e. to compute multipath
propagation (e.g. an average cost of the independent
paths). A solution could be represented by the
expectation semiring [40], which is however somehow
in contrast with pruning algorithms. In addition, we
would like to introduce the notion of “distrust” in
the model and to propagate it by using the inverse
of the semiring × operator [26]. At last, we would
like to study operators similar to those proposed by
in [48], in order to embed them in our semiring-based
framework.

References

1. Klusch M, Gerber A. Dynamic coalition formation among
rational agents. IEEE Intelligent Systems 2002; 17:42–47, doi:
http://doi.ieeecomputersociety.org/10.1109/MIS.2002.1005630.

2. Ziegler CN, Lausen G. Propagation models for trust and
distrust in social networks. Information Systems Frontiers
2005; 7(4-5):337–358, doi:http://dx.doi.org/10.1007/s10796-
005-4807-3.

3. Theodorakopoulos G, Baras JS. Trust evaluation in ad-hoc net-
works. WiSe ’04: Workshop on Wireless security, ACM, 2004;
1–10, doi:http://doi.acm.org/10.1145/1023646.1023648.

4. Bistarelli S, Santini F. Propagating multitrust within trust
networks. SAC, Wainwright RL, Haddad H (eds.), ACM, 2008;
1990–1994.

5. Martelli A, Montanari U. Optimizing decision
trees through heuristically guided search.
Commun. ACM 1978; 21(12):1025–1039, doi:
http://doi.acm.org/10.1145/359657.359664.

6. Bistarelli S. Semirings for Soft Constraint Solving and
Programming, LNCS, vol. 2962. Springer, 2004.

7. Bistarelli S, Montanari U, Rossi F. Semiring-based constraint
logic programming. Proc. IJCAI97, Morgan Kaufman, 1997;
352–357.

8. Bistarelli S, Montanari U, Rossi F. Semiring-based constraint
solving and optimization. Journal of the ACM 1997;
44(2):201–236.

9. Bistarelli S, Montanari U, Rossi F, Santini F. Modelling
multicast QoS routing by using best-tree search in and-or
graphs and soft constraint logic programming. Electr. Notes
Theor. Comput. Sci. 2007; 190(3):111–127.

10. Bueno F, Cabeza D, Carro M, Hermenegildo M, López-Garcı́a
P, Puebla G. The CIAO prolog system: reference manual.
Technical Report CLIP3/97.1, School of Computer Science,
Technical University of Madrid (UPM) 1997.

11. Gray E, Seigneur JM, Chen Y, Jensen CD. Trust propagation
in small worlds. iTrust, Springer-Verlag, 2003; 239–254.

12. Venkatraman M, Yu B, Singh MP. Trust and reputation
management in a small-world network. In Proceedings of
Fourth International Conference on MultiAgent Systems,
2000; 449–450.

13. Buchanan M. Nexus: Small Worlds and the Groundbreaking
Theory of Networks. W. W. Norton & Co., Inc.: New York,
NY, USA, 2003.

14. O’Madadhain J, Fisher D, White S, Boey Y. The JUNG (Java
Universal Network/Graph) framework. Technical Report, UC
Irvine 2003.

15. Watts DJ, Strogatz SH. Collective dynamics of small-world
networks. Nature 1998; 393:440, doi:10.1038/30918.

16. Horling B, Lesser V. A survey of multi-agent organizational
paradigms. Knowl. Eng. Rev. 2004; 19(4):281–316, doi:
http://dx.doi.org/10.1017/S0269888905000317.

17. Bistarelli S, Santini F. Propagating multitrust within trust net-
works. SAC ’08: Proceedings of the 2008 ACM symposium on
Applied computing, ACM: New York, NY, USA, 2008; 1990–
1994, doi:http://doi.acm.org/10.1145/1363686.1364170.

18. Bistarelli S, Santini F. SCLP for trust propagation in small-
world networks. CSCLP, Lecture Notes in Computer Science,
vol. 5129, Fages F, Rossi F, Soliman S (eds.), Springer, 2007;
32–46.

19. Theodorakopoulos G, Baras JS. Trust evaluation in ad-hoc
networks. WiSe ’04: Proceedings of the 3rd ACM workshop
on Wireless security, ACM: New York, NY, USA, 2004; 1–10,
doi:http://doi.acm.org/10.1145/1023646.1023648.

20. Jøsang A, Ismail R, Boyd C. A survey of trust
and reputation systems for online service provision.
Decis. Support Syst. 2007; 43(2):618–644, doi:
http://dx.doi.org/10.1016/j.dss.2005.05.019.

Copyright c© 0000 John Wiley & Sons, Ltd.
Prepared using secauth.cls

Security Comm. Networks 00: 1–16 (0000)
DOI: 10.1002/sec

16 S. BISTARELLI ET AL

21. Bistarelli S, Foley S, O’Sullivan B, Santini F. From marriages
to coalitions: A soft CSP approach. Recent Advances in
Constraints 13th Annual ERCIM International Workshop
on Constraint Solving and Constraint Logic Programming,
CSCLP 2008, Revised Selected Papers, LNAI, Springer, 2008.

22. Twigg A, Dimmock N. Attack-resistance of computational
trust models. WETICE ’03, IEEE Computer Society, 2003;
275–280.

23. Granovetter MS. The Strength of Weak Ties. The American
Journal of Sociology 1973; 78(6):1360–1380.

24. Čapkun S, Buttyán L, Hubaux JP. Small worlds in security
systems: an analysis of the PGP certificate graph. NSPW
’02: Proceedings of the 2002 workshop on New security
paradigms, ACM: New York, NY, USA, 2002; 28–35, doi:
http://doi.acm.org/10.1145/844102.844108.

25. Allenby R. Rings, Fields and Groups. Butterworth-
Heinemann, 1992.

26. Bistarelli S, Gadducci F. Enhancing constraints manipulation
in semiring-based formalisms. ECAI 2006, IOS Press, 2006;
63–67.

27. Georget Y, Codognet P. Compiling semiring-based constraints
with clp (FD, S). CP ’98: Proc. of Principles and Practice
of Constraint Programming, Springer-Verlag: London, UK,
1998; 205–219.

28. Bistarelli S, Montanari U, Rossi F. Constraint solving
over semirings. Proc. IJCAI95 (Morgan Kaufman), Morgan
Kaufman, 1995; 624–630.

29. Jaffar J, Maher M. Constraint logic programming: a survey.
Journal of Logic Programming 1994; 19/20:503–581.

30. Abdul-Rahman A. The pgp trust model. edi-forum. Journal of
Electronic Commerce 1997; .

31. Abdul-Rahman A, Hailes S. A distributed trust model. NSPW
’97: Proceedings of the 1997 workshop on New security
paradigms, ACM: New York, NY, USA, 1997; 48–60, doi:
http://doi.acm.org/10.1145/283699.283739.

32. Bistarelli S, Martinelli F, Santini F. A semantic foundation for
trust management languages with weights: An application to
the rtfamily. ATC, Lecture Notes in Computer Science, vol.
5060, Rong C, Jaatun MG, Sandnes FE, Yang LT, Ma J (eds.),
Springer, 2008; 481–495.

33. Bistarelli S, Martinelli F, Santini F. Weighted datalog and
levels of trust. ARES, IEEE Computer Society, 2008; 1128–
1134.

34. Costa AC, Roe RA, Taillieu T. Trust within teams: the relation
with performance effectiveness. European Journal of Work
and Organizational Psychology 2001; 10(3):225–244.

35. Griffiths N, Luck M. Coalition formation through motivation
and trust. AAMAS ’03: Proceedings of the second interna-
tional joint conference on Autonomous agents and multiagent
systems, ACM: New York, NY, USA, 2003; 17–24, doi:
http://doi.acm.org/10.1145/860575.860579.

36. Breban S, Vassileva J. A coalition formation mechanism based
on inter-agent trust relationships. AAMAS ’02: Proceedings of
the first international joint conference on Autonomous agents
and multiagent systems, ACM: New York, NY, USA, 2002;
306–307, doi:http://doi.acm.org/10.1145/544741.544812.

37. Lerman K, OShehory. Coalition formation for large-scale
electronic markets. ICMAS, IEEE Computer Society, 2000;
167–174.

38. Reiter MK, Stubblebine SG. Path independence for authen-
tication in large-scale systems. CCS ’97: Proceedings of
the 4th ACM conference on Computer and communications
security, ACM: New York, NY, USA, 1997; 57–66, doi:
http://doi.acm.org/10.1145/266420.266435.

39. Mingwu Z, Bo Y, Wenzheng Z. A semiring privacy protect
model. NPC ’07: Proceedings of the 2007 IFIP International
Conference on Network and Parallel Computing Workshops,
IEEE Computer Society: Washington, DC, USA, 2007; 255–
262.

40. Eisner J. Parameter estimation for probabilistic
finite-state transducers. ACL ’02, Association
for Computational Linguistics, 2001; 1–8, doi:
http://dx.doi.org/10.3115/1073083.1073085.

41. Watts DJ. Small worlds: the dynamics of networks between
order and randomness. Princeton University Press: Princeton,
NJ, USA, 1999.

42. Ramakrishnan IV, Rao P, Sagonas KF, Swift T, Warren DS.
Efficient tabling mechanisms for logic programs. International
Conference on Logic Programming, The MIT Press, 1995;
697–711.

43. Wunderwald JE. Memoing evaluation by source-to-source
transformation. LOPSTR ’95: Proceedings of the 5th
International Workshop on Logic Programming Synthesis and
Transformation, Springer-Verlag: London, UK, 1996; 17–32.

44. Schrijvers T, Warren DS. Constraint handling rules and tabled
execution. ICLP, LNCS, vol. 3132, Springer, 2004; 120–136.

45. Bistarelli S, Frühwirth T, Marte M. Soft constraint propagation
and solving in chrs. SAC ’02: Proc. of the 2002 ACM sympo-
sium on Applied computing, ACM Press: New York, NY, USA,
2002; 1–5, doi:http://doi.acm.org/10.1145/508791.508793.

46. Iwama K, Miyazaki S. A survey of the stable marriage prob-
lem and its variants. International Conference on Informatics
Education and Research for Knowledge-Circulating Society
(icks 2008), IEEE Computer Society, 2008; 131–136.

47. Apt KR, Wallace M. Constraint Logic Programming using
Eclipse. Cambridge University Press: New York, NY, USA,
2007.

48. Jøsang A, Hayward R, Pope S. Trust network analysis with
subjective logic. ACSC, CRPIT, vol. 48, Estivill-Castro V,
Dobbie G (eds.), Australian Computer Society, 2006; 85–94.

Copyright c© 0000 John Wiley & Sons, Ltd.
Prepared using secauth.cls

Security Comm. Networks 00: 1–16 (0000)
DOI: 10.1002/sec

