
A Non-Functional Approach to System Integrity
Simon N. Foley, Member, IEEE

Abstract—Systems provide integrity protection by ensuring that
there is no unauthorized modification of information. Traditional
models of protection tend to define integrity in terms of ad-hoc
authorization techniques whose effectiveness is justified more on
the basis of experience and “best practice”, rather than on any
common theoretical foundation. A formal definition of integrity
is proposed that is independent of any particular implementation
mechanism. A series of simple examples are used to demonstrate
that existing integrity mechanisms such as separation of duties,
well-formed transactions, and so forth, can be regarded as imple-
mentation techniques for achieving integrity. The proposed char-
acterization of integrity is non-functional, that is, it falls into the
same category of properties as non-interference and its relatives.
As a consequence, validating that a system has integrity can be
expected to be as challenging as validating that a system upholds
non-interference.

Index Terms—Computer security, Cryptography, Data Secu-
rity, Fault tolerance, Modeling, Protection, Protocols, Reliability,
Software verification and validation, System analysis and design.

I. INTRODUCTION

Early security research [2] characterized integrity in terms of
read-write access controls between subjects and objects. This
provides for a very coarse interpretation of integrity [25]; for
example, once granted access to an account database, a bank
clerk can make any change to the customer’s account details.
Access triples, well-formed transactions, and the principles of
encapsulation [4], [18], provide finer grained control by con-
straining the operations that a subject may carry out on an ob-
ject: the bank clerk may execute only deposit or withdraw op-
erations to access an account database.
Many integrity compromises are a result of ‘insiders’ execut-

ing authorized operations that are fraudulent. For example, the
bank clerk executes an account deposit without lodging actual
funds. Separation of duty [4], [8], [29], [32] controls decrease
the potential for fraud by involving at least two individuals at
different points in a transaction: for example, by reconciling
bank accounts and funds received each day, a supervisor detects
and corrects the fraudulent deposit by the clerk. Role Based
Access Control models [26] and authorization models [1], [15]
provide integrity controls based on structures that organize re-
lated operations into roles and constrain the way in which roles
may be assigned and/or inherited by users; separation of duty is
expressed within these models using role constraints.
These conventional security models describe controls for

achieving integrity; they take an operational and/or implemen-
tation oriented approach by defining how to achieve integrity.
No attempt is made to formalize a property that defines what

Manuscript received April 2002; Revised August 2002.
Author’s address: Department of Computer Science, University College

Cork, Ireland (email: s.foley@cs.ucc.ie).

is meant by integrity. For example, [4] recommends a combi-
nation of separation of duties, access-triples and auditing as a
strategy for achieving integrity: it does not attempt to address
what is meant by integrity. Confidence is achieved to the extent
that good design principles have been applied; there is no assur-
ance that an integrity property is upheld. Thus, when we define
a complex separation of duty policy we do not know, for certain,
whether a dishonest user can bypass the intent of the separation
via some unexpected circuitous, but authorized, route.
Jacob [12] formalizes integrity as a functional property. This

means that an integrity mechanism determines whether the cur-
rent request for an operation is authorized, based on the his-
tory of past authorization requests leading to the current state.
In [9] and in this paper, we illustrate that integrity is non-
functional. Non-functionality means that in order to determine
authorization, it is necessary to examine every possible history
of requests that could have reached the current state. Non-
interference is an example of a non-functional property, and
while non-interference and its derivatives have been extensively
studied [6], [10], [22], [24], designing and verifying security
mechanisms that uphold non-functional properties is difficult
[17], [28]. Thus, we conjecture that building mechanisms to
uphold integrity can be expected to be as difficult as building
mechanisms to uphold non-interference.
The paper is organized as follows. Section II provides two

formal characterizations of integrity. The first characterization
defines integrity as an attribute of dependability based on the in-
terpretation in [16]. The second considers integrity as external
consistency as described in [4]. A series of simple examples in
Section III illustrate how various implementation mechanisms
achieve integrity. Section IV describes why integrity should be
regarded as a non-functional property and investigates some of
its properties. Section V considers how integrity might be cast
as a liveness-style property.
The Communicating Sequential Processes (CSP) process cal-

culus [21] is used to provide a consistent framework for pre-
senting the results in this paper. The Appendix provides a short
overview of CSP and the notation that is used in this paper.

II. CHARACTERIZING INTEGRITY
Traditional requirements analysis identifies the essential

functional requirements that define what a system must do. An
implementation defines how the system operates and must take
into consideration the fact that the infrastructure put in place
to support the requirements may be unreliable. For example,
experience tells us that a system’s infrastructure should include
a suitable backup and restore subsystem. While not part of the
essential requirements, it is a necessary part of the implemen-
tation, since the infrastructure can corrupt data. Infrastructure
is everything that serves the requirements: software, hardware,

users, and so forth. Even where a system is functionally cor-
rect, the infrastructure is likely to fail: software fails, users are
dishonest, do not follow procedures, and so forth. The system
must be designed to be resilient to these infrastructure failures.
To properly characterize integrity we must consider, therefore,
how the infrastructure can affect the behavior of the system.

Supplier consign
verify
P1

Infrastructure System

P2

payment
validate

inv

Enterprise
E

snote

pay

Fig. 1. A simple payment enterprise

Example 1: A simple enterprise receives shipments, and
generates associated payments for a supplier. For simplicity,
the value of a shipment is abstracted out of the description by
assuming that shipments have equal value. Requirements Anal-
ysis identifies the events snote and pay corresponding to the
arrival of a shipment (note) and its associated payment, respec-
tively. The enterprisemust ensure that the number of payments
issued do not exceed the number of shipments received. This is
specified by the CSP process ConsReq .

ConsReq snote ConsReq
ConsReqi pay ConsReqi

snote ConsReqi i

Figure 1 outlines a possible implementation of this requirement.
A clerk verifies shipment notes and enters invoice details (event
inv) to a computer system which, in turn, generates payment
(pay) to the supplier. This is specified as

Clerk snote inv Clerk
System inv pay System

and the enterprise design is specified as ConsImp
System Clerk. Intuitively, integrity is maintained since
ConsImp supports requirement ConsReq at its external inter-
face E with the supplier.
The example above illustrates integrity characterized as a

form of refinement—ConsImp refines ConsReq . In the traces
model of CSP, process S is a (safety) refinement of process R
if R S and traces S traces R , that is, every possi-
ble trace of S is permitted by R [21]. For example, the process
P snote pay P which alternates between snote and
pay, is a refinement of process ConsReq .
The Supplier (Example 1) is oblivious to the ‘internal’ event

(inv) and interacts with ConsImp abstracted through interface
snote pay , that is, ConsImp@ snote pay , where for pro-
cess S and set of events E,

S@E t traces S t E

and t E is the trace t with events absent from E removed. Every
trace the supplier can observe from ConsImp@ snote pay is
permitted by ConsReq and we say that ConsImp locally re-
fines ConsReq at that interface, that is, ConsReq snote pay

ConsImp.

Definition 1: (Local Refinement) R is locally refined by S at
event interface E iff R E S, where, R E S E R

S S@E R@E.
Example 2: Continuing Example 1, assume that the com-

puter system will behave reliably as System. However, it is
unreasonable to assume that the clerk will always act reliably
as Clerk. In practice, an unreliable clerk (Clerk) may take on
any behavior involving events snote and inv.

Clerk snote inv
ConsImp System Clerk

ConsImp is a more realistic representation of the actual en-
terprise. It more accurately reflects the reliability of its in-
frastructure than the previous design ConsImp. However, for
external interface E snote pay , since t inv pay
traces ConsImp , and t E pay traces ConsReq then
ConsReq E ConsImp , that is, when operating within its ex-
pected infrastructure, the design of System is not sufficiently
robust to be able to safely support the original requirements of
ConsReq.
In [16] integrity is given as one attribute of dependability,

that is, integrity is defined as “dependability with respect to ab-
sence of improper alterations”. Dependability is characterized
as a “property of a computer system such that reliance can be
justifiably placed on the service it delivers” [16]. Dependabil-
ity is not an absolute property, in the sense that its justifica-
tion will always be conditional on the proper behavior of some
components. Therefore, we choose to define dependability as a
relative property that can be used to determine whether one sys-
tem is at least as dependable as another system in the services
it provides.

Definition 2: (Dependability) If R gives the behavioral re-
quirements for an enterprise and S is its proposed implemen-
tation, including details regarding the nature of the reliability
of its infrastructure, then S is at least as dependably safe as R at
interface E if and only if R E S.
In comparing the dependability of two systems, we assume

that their specification can include details of potential improper
behavior within their infrastructure. This may include details
of improper alteration and therefore, based on the interpretation
of integrity from [16], local refinement may be used to compare
the integrity of two systems. Given suitable specificationsR and
S, then R E Smeans that for the service provided via interface
E then S is at least as dependable, with respect to improper
alterations, as R. R E S can be interpreted to mean that S
provides at least as much integrity protection for its interface E
as does R.

Example 3: ConsReq and ConsImp are functional specifi-
cations (Example 2). ConsReq assumes the correct behav-
ior of its components, while ConsImp includes an unreliable
clerk who can make improper alterations to invoices. We have
ConsReq E ConsImp , which means therefore, that relative
to ConsReq, ConsImp does not achieve integrity for services
provided via the interface E snote pay .
Another interpretation of integrity is that the system con-

cerned provides external consistency, that is, the “correct cor-
respondence between data objects and the real world” [4]. An

alternative viewpoint is that an external entity can achieve con-
sistent interactions with the enterprise, even in the presence of
failures within the infrastructure of the enterprise. We charac-
terize this notion of external consistency in terms of depend-
ability.

Definition 3: (External Consistency) Let S I and S I de-
scribe the behavior of system S operating within reliable, and
unreliable, infrastructures I and I, respectively. We say that S is
externally consistent at interface E if S I is as dependably safe
as S I, that is, S I E S I.

Example 4: Given the nature of an unreliable clerk (Ex-
ample 2), System is not externally consistent at E, that is,
System Clerk E System Clerk .

III. INTEGRITY MECHANISMS

A. Separation of Duties
Separation of duties is a common implementation technique

used to achieve integrity. While fault-tolerant techniques repli-
cate an operation, separation of duties can be thought of as a
partitioning of the operation.

Example 5: When a shipment arrives, a clerk verifies the
consignment at goods-inwards (entering details cons into the
system). When an invoice arrives, a different clerk enters de-
tails into the system, and if the invoice matches a consignment,
a payment is generated. While as the operations are separate
then a single clerk entering a bogus consignment cons or in-
voice inv can be detected by the system. For simplicity, we
assume that both consignment and invoice details are contained
within the shipment note snote; this is depicted in Figure 2.
To distinguish shipments, events are prefixed with identifiers

drawn from , the set of shipment-identifiers. For example,
n pay corresponds to the payment resulting from shipment-
note n snote. While shipment-identifiers are intended to be
unique, it is possible that a supplier may re-use identifiers.
Thus, n ConsReq (process ConsReq with events prefixed by
n) describes the behavior required when processing shipments
identified by n . The top-level requirement is

ConsReq n n ConsReq

The system allows arbitrary clerks u and v to verify consign-
ment (n cons u) and invoice (n inv v) for consignment n, after
which payment is generated.

AppSys n
u U

n cons u

v U n inv v n pay AppSys

This system allows the same clerk to perform both operations,
and a separation of duty mechanism is required to limit certain
behaviors. Specification

Sepv
u Stop cons u inv v cons v inv u

separates clerks u and v who may process invoices and con-
signments, respectively, but not vice-versa. If we assume that
the infrastructure has only two clerks U x y then a dy-
namic separation of duty mechanism, allowing a clerk to vary

operations between shipments is specified as DynaSep. Separa-
tion of duty is succinctly expressed using the the CSP external
choice operator “ ” [9], [23].

DynaSep n n Sepy
x n Sepx

y
StatSep n n Sepy

x n n Sepx
y

StatSep describes a static separation of duty mechanism requir-
ing a clerk to perform the same operation for all shipments. The
overall (reliable) system is described as

SepSys AppSys DynaSep

A reliable clerk u processing shipment n behaves as process
n Clerku, where

Clerku snote
cons u Clerku inv u Clerku

However, we make the assumption that, of our two clerks x
and y, then one may take on an unreliable or arbitrary behavior.
Thus, the unreliable infrastructure behavior is Clerks, where

Clerks n n Clerkx
Clerky

Clerky
Clerkx

Since the system and separation mechanism ensure that one
failing clerk cannot influence the generation of a payment with-
out the assistance of the other clerk, then, we can prove that for
any n and n E n snote n pay ,

ConsReq n E SepSys Clerks

As currently defined, our specification favors the payment-
enterprise, not the supplier: payments may be very late, or not
made at all, but are never bogus. If a clerk fails then payment is
not made. In reality, the infrastructure contains many additional
components; audit logs to record failures and supervisors, who
make judgments and rectify these inconsistencies.

Example 6: Example 5 illustrates how separation of duties
may be regarded as an implementation technique for achiev-
ing dependability. The implementation also maintains external
consistency on shipments, since,

SepSys Clerks n E SepSys Clerks

where Clerks n n Clerkx
i Clerky

i characterizes a reliable
infrastructure comprised of honest clerks.

B. Cryptographic Checksums
Example 7: Suppose that the application system and the

supplier (Example 1) share a secret cryptographic key that
is unknown to the clerk. The supplier provides a crypto-
graphic checksum/Message Authentication Code (MAC) with
each shipment note. This checksum (entered by the clerk with
the shipment details) is used by the application system to en-
sure that the shipment details are authentic and have not been
tampered with by the clerk.
Let be a data-type representing shipment-identifiers plus

associated MAC fields. Let be the set of all values from

E
invoice
verify
P2 STATUS

generate
cheque

P4

Supplier

consign
verify
P1

consign
update
P3cons

Application System
Infrastructure

inv

Enterprise

pay

snote

Fig. 2. Supporting separation of duties

that represent cryptographically secured shipment-identifiers,
that is, the MAC component corresponds correctly to the iden-
tifier. Values in cannot be generated/forged by an entity that
does not know the secret MAC key. Let represent all other
values in . The top-level requirement is as before, ex-
cept that we expect the supplier to use only cryptographically
secured shipment-identifiers.

ConsReq n n ConsReq

The system is expected to generate payments for valid in-
voices that it has not seen before. A system that has processed
P shipment-identifiers to date has behavior

MacSysP n P n inv n pay MacSysP n

n P n inv MacSysP

Invoices processed in the past (shipment identifiers from P), or
with invalid identifiers (from are processed, but payment is
not generated. Since the system knows the secret MAC key it
then has the ability to test the validity of a shipment-identifier.
A reliable clerk simply takes shipment details (including the

checksum) and enters the details as invoices to the system. This
behavior is described asMClerk n n Clerk , where Clerk
is defined in Example 1. If a cryptographically strong check-
sum scheme is used and since the clerk does not know the secret
key, then it is reasonable, to assume, therefore, that it is not fea-
sible for the clerk to forge messages in . Thus, an unreliable
clerk engaging in arbitrary events, can feasibly generate mes-
sages only from , or messages from that it has processed
in the past. Thus, an unreliable clerk that has processed P
messages in the past has the following behavior.

MClerkP n n snote ClerkP n

n P n inv ClerkP

Given this defintion, we can prove that the resulting enterprise
is as dependably safe as the original requirement:

ConsReq n E MacSys MClerk

Studying the effects of normal versus abnormal infrastructure
behavior has been successfully applied to cryptographic secu-
rity protocols, for example [5], [19], [20]. Analysis is based

on a generic behavior (called ‘Spy’ [20] or adversary [5]) char-
acterizing the untrusted network (abnormal infrastructure) over
which a security protocol operates. Our integrity analysis gen-
eralizes this by considering many ‘spys’, each one characteriz-
ing the infrastructure threats that a protection mechanism must
withstand.

C. Confidentiality
Confidentiality is a further attribute of dependability [16]

and, for the sake of completeness, this section illustrates how
multilevel security might be formally characterized in terms of
refinement.

Example 8: Using our fault model, the reliable part of a mul-
tilevel secure system is the Trusted Computing Base (TCB),
while the remaining operating system and applications make
up the unreliable infrastructure. Consider a TCB providing in-
terfaces to low and high users. The TCB has to be sufficiently
robust to be able to provide an externally consistent interface
to a low user regardless of the behavior of a high application,
that is, the TCB running a high application Ah is as dependably
safe as TCB running any other high application Ah. Or, in other
words, that TCB is externally consistent at the low interface.

Al Ah Ah Al Lo Ah Ah Hi
Ah TCB Al

Lo Ah TCB Al

This can be shown to simplify to TCB StopHi
Lo TCB, and

simplifies further to TCB StopHi @Lo TCB@Lo. This cor-
responds to non-information flow [7], [14] and is not unlike
non-deducibility [31]. If Lo and Hi partition the entire alpha-
bet of TCB, then it simplifies further to non-inference [14]:
TCB@Lo TCB.

D. Fault-Tolerance
Another approach to dealing with unreliable systems (infras-

tructure) is to replicate the faulty components to make the sys-
tem fault tolerant. We can make the payment enterprise fault
tolerant if we replicate the clerk. We assume that every ship-
ment is processed by k replicated clerks. The system votes
(on the k invoices) to decide whether or not a consignment
is valid. In this case, the abnormal behavior of the infrastructure
is represented by at least k clerks having normal behavior,

and we argue that the resulting enterprise is as dependably safe
as ConsReq at interface n E.
Non-interference techniques have been used previously to

verify fault-tolerance [21], [30], [33]. Faulty behavior is mod-
eled using special fault events and the system is fault-tolerant if
the fault events are non-interferingwith the critical events of the
system. In essence, engaging a fault event changes the system
from normal to abnormal behavior, and what may be thought of
as external consistency must be preserved on the critical events
that make up the external interface.

E. Security Kernels
In Example 5 we considered the integrity of the enterprise

with regard to the external supplier and assumed that SepSys
was reliable, that is, secure. A secure application system may
be built in terms of untrusted (unreliable) applications running
on an underlying Trusted Computing Base.

Example 9: Consider the application system used by the
payment enterprise (Example 5). Figure 3 depicts a design of
this system based on a simplistic model of an assured pipeline
[3]. The applications form an infrastructure composed of pro-
grams P1, P2 and P3 that run in respective domains D1, D2
and D3 provided by the pipeline. In this example we do not
attempt to model the usual confinement properties associated
with the domains. The integrity of an assured pipeline based
application relies on the separation enforced between domains,
and the ‘correctness’ of the applications along the pipeline.
We specify a model of the assured pipeline. It is highly

simplistic, but serves as an illustration. It does not consider
the usual confinement properties associated with the domains.
Event n d1 represents entry into domain D1 by program P1
(processing shipment n). Events n d2 and n d3 have similar in-
terpretations. The pipeline enforces a strict ordering on domain
entry.

Pipeline n n d1 n d2 n d3 Pipeline

When a cons event is engaged the program enters domain D1,
and similarly for inv (these events will eventually be prefixed
by shipment identifier).

P1 u U cons u d1 P
P2 u U inv u d2 P

The payment program P3 behaves slightly differently. Once
the pipeline enters domain d3 a payment may be generated.

P3 d3 pay P3

Our failure model assumes that one of the programs P1 or P2
may fail and engage in events arbitrarily. Failure of program
P3 can result in multiple payments and therefore it is neces-
sary to treat the payment program P3 as a reliable compo-
nent. This is not an unreasonable assumption: for example,
a typical guard pipeline regards that part which generates the
output as trusted [11]. Thus, the infrastructure is modeled as
Apps n n Trans , where Trans specifies the unreliable
processing of a single shipment.

Trans P1 P2 P2 P1 P3

And we can prove that AppSys AppSys Pipeline Apps.

IV. EVALUATING DEPENDABILITY
A. Non-Functionality
If we take the view that refinement is used to characterize the

property of interest [13], then trace refinement and local refine-
ment may be regarded as functional and non-functional proper-
ties, respectively. This observation is explained as follows.
Trace refinement is predicate on traces and is, therefore, con-

sidered a functional property in the sense of [17], [28]: the re-
finement

R S t traces S t traces R

means that the validity of t (as a trace of S) can be determined
by testing the validity of t (as a trace of R) independent of the
other traces. Therefore, building an implementationmechanism
S that upholds the requirements of R is straightforward in the
sense that, in any state of S then determining the validity of an
operation request is based on the past operations (trace) that led
to this state.
Local refinement, on the other hand, is expressed as a pred-

icate on sets of traces and is, therefore, considered a non-
functional property in the sense of [17], [28]: the refinement

R E S t traces S
t traces R t E t E

means that it is necessary to consider the set of traces of R to
determine the validity of t (as a trace of S). Building mecha-
nisms which uphold non-functional properties is difficult, since
determining the validity of an operation request (in some state
of S) is based on testing all possible similar traces that could
have led to this state.
Since local refinement is a non-functional property, then

it falls into the category of security properties such as non-
interference [10], deducibility [31], and so forth. This is not
surprising given that Example 8 cast (non) information flow in
terms of local refinement. The reader is referred to [17] and
[28] for consideration of the difficulties associated with build-
ing general mechanisms that uphold such properties.
Trace refinement preserves local refinement:

R S
E R

R E S

However, the converse does not necessarily hold, as illustrated
by the following example.

Example 10: Consider processes P and Q, where

P a b P a P
Q a b P

We have Q a P since both processes may be willing to en-
gage in any number of a’s through this interface. However,
Q P does not hold since traces P traces Q .
Trace refinement can be used as an approximation of local

refinement. For Example 8, suppose that TCB was designed
such that TCB StopHi TCB holds. By the law above, this
implies that TCB StopHi

Lo TCB holds. However such a TCB

Application System

P2

inv
process

P3

payment
make

P1

cons
process

inv
pay

cons

Infrastructure
Application

d1

d2

d3

P4
PipeLine

Fig. 3. Application running on a TCB

is not of much use—for every trace t of TCB then t Hi —it
is not willing to engage in any Hi event.
While an implementation system may trace refine a require-

ment, it is not necessarily the case that when the infrastructures
are considered then the overall enterprise (system plus infras-
tructure) dependably refines its requirement. This is illustrated
in the following example, which shows that trace refinement
does not necessarily preserve the external consistency of a sys-
tem.

Example 11: Consider system requirementP and implemen-
tation Q from Example 10. Let I and I define the normal and
abnormal infrastructures, respectively.

I a a b I
I a b

Under the trace model of a process we have P I P I P and
thus P is externally consistent at interface a . Specification Q
is also a trace refinement of P (P Q). However, we have
Q I a Stop and Q I Q and thus Q I a Q I, that
is, Q is not externally consistent at this interface.

B. Incremental Evaluation
We interpret R R S IS, to mean that the system S is suffi-

ciently resilient to the faults in IS to be able to (safely) support
the requirements R. This dependable component may then be
used in place of R which, in turn, may be used in place of some
other more abstract requirement. In general,

R E S IS S S P IP

R E P IP IS

Example 12: We have from Examples 5 and 9 for, n
and E snote pay ,

ConsReq n E AppSys DynaSep Clerks
AppSys AppSys PipeLine Apps

and it follows that

ConsReq n E PipeLine Apps DynaSep Clerks

Thus, a trusted computing base composed of the pipeline and
dynamic separation of duty mechanism is sufficiently resilient
to infrastructure failures (clerks and programs) and supports the
original requirement ConsReq.

C. Composition
Under certain circumstances, if systems S and S are depend-

able (according to requirements R and R) then so is their com-
position.

R E S R E S
R R E

R R E S S

We note, however, that if the side-condition R R E
does not hold, then R R E S S does not necessarily hold,
since synchronization on events in R R E may result
in behavior restrictions in R R that are not restricted in S S .

V. DISCUSSION: SAFETY AND LIVENESS
Based on the CSP traces model, the proposed definition of

integrity is a safety style property in the sense that fraudulent
(or abnormal) activity can be detected by the system, and the
integrity violation prevented. However, no guarantees can be
given regarding the subsequent liveness of the system. A trace
based analysis cannot verify whether the detected fraud will be
corrected and that the system will continue to provide service.
Considering Example 1, an application system Stop inv pay that
provides no service cannot be defrauded by a dishonest clerk
and, thus, relative to ConsReq, it has integrity.
The failures divergences [21] model of CSP may be used to

encode a ‘liveness’ style definition of integrity. The lazy ab-
straction [21], [22] of process P via interface E is defined as the
interleaving of P with events not in E, that is, P P E.
This provides abstraction by effectively camouflaging events
that are not in E. Lazy abstraction is applicable within the
failures divergences model of CSP and local refinement is re-
defined as:

R E
FD S R R E FD S S E

where FD is failures divergences refinement. This character-
ization means that guarantees can be given regarding the live-
ness of the system. That is, fraudulent (or abnormal) activity
will be detected and will be corrected.

VI. CONCLUSION
By considering the nature of the entire enterprise we pro-

vide a meaningful and implementation-independent definition

for integrity. This systems view has not been taken by conven-
tional integrity models which limit themselves to the bound-
ary of the computer system and tend to define integrity in an
operational/implementation-oriented sense.
We expect that the proposed interpretation of integrity may

be used in a number of ways. It may be used to verify the ef-
fectiveness of existing and new mechanisms. For example, val-
idate that the design of a mechanism that uses a combination of
separation of duty and protection domains upholds integrity for
certain classes of abnormal infrastructure. Alternatively, given
a system built using verified integrity mechanisms, one could
verify that integrity is upheld given some proposed infrastruc-
ture configuration. For example, given the intended authoriza-
tions of clerks and supervisors, will the security configuration
of the system ensure external consistency of bank balances?
Such analysis goes beyond existing analysis techniques such as
[27] which searches for possible conflicts between separation
of duty, user role assignment and role inheritance rules. Since
our approach provides a semantics for integrity, it may be used
to determine whether the separation of duty controls actually
achieve external consistency and whether the application uses
integrity mechanisms correctly. Using the proposed framework
to provide a formal basis for understanding the scope of ad-hoc
techniques such as [27] is a topic for future research.
This paper has sought to facilitate a better understanding of

integrity; further research is necessary to develop practical ap-
proaches to verifying the integrity of large complex systems.
For the sake of ease of exposition, the simple traces model of
CSP was used to define integrity in this paper, The result is
a non-functional interpretation of integrity that is closely re-
lated to existing security properties such as non-interference.
We expect that our approach could be re-cast in terms of other
non-interference style frameworks such as [6], [22], [24]. This
would provide access to a wide range of practical results on
composition, verification, and so forth.

REFERENCES
[1] E. Bertino et al. An authorization model and its formal semantics. In Pro-

ceedings of the European Symposium on Research in Computer Security,
pages 127–142. Springer LNCS 1485, 1998.

[2] K.J. Biba. Integrity considerations for secure computer systems. Tech-
nical Report MTR-3153 Rev 1 (ESD-TR-76-372), MITRE Corp Bedford
MA, 1976.

[3] W.E. Bobert and R.Y. Kain. A practical alternative to hierarchical in-
tegrity properties. In Proceedings of the National Computer Security
Conference, pages 18–27, 1985.

[4] D. D. Clark and D. R. Wilson. A comparison of commercial and military
computer security models. In Proceedings Symposium on Security and
Privacy, pages 184–194. IEEE Computer Society Press, April 1987.

[5] D. Dolev and A.C. Yao. On the security of public key protocols. IEEE
Transactions on Information Theory, 29(2):198–208, 1983.

[6] R. Focardi and R. Gorrieri. A classification of security properties for
process algebras. Journal of Computer Security, 3(1):5–33, 1995.

[7] S.N. Foley. A universal theory of information flow. In Proceedings 1987
IEEE Symposium on Security and Privacy, pages 116–121. IEEE Com-
puter Society Press, 1987.

[8] S.N. Foley. The specification and implementation of commercial security
requirements including dynamic segregation of duties. In ACM Confer-
ence on Computer and Communications Security, pages 125–134, 1997.

[9] S.N. Foley. Evaluating system integrity. In Proceedings of the ACM New
Security Paradigms Workshop, 1998.

[10] J. A. Goguen and J. Meseguer. Unwinding and inference control. In
Proceedings 1984 IEEE Symposium on Security and Privacy, pages 75–
86. IEEE Computer Society, 1984.

[11] P. Greve, J. Hoffman, and R.E. Smith. Using type enforcement to as-
sure a configurable guard. In Proceedings of the 13th. Annual Computer
Security Applications Conference, pages 146–153. ACM Press, 1997.

[12] J.L. Jacob. The basic integrity theorem. In Proceedings of the Computer
Security Foundations Workshop IV, pages 89–97. IEEEComputer Society
Press, June 1991.

[13] J.L. Jacob. The varieties of refinement. In J. M. Morris and R. C. Shaw,
editors, Proceedings of the 4th Refinement Workshop, pages 441–455.
Springer-Verlag, 1991.

[14] J.L. Jacob. Basic theorems about security. Journal of Computer Security,
1(4):385–411, 1992.

[15] S. Jajodia et al. A logical language for expressing authorizations. In
Symposium on Security and Privacy, pages 31–42. IEEE Press, 1997.

[16] J.C. Laprie(ed.). Dependability: Basic Concepts and Terminology.
Springer Verlag, 1992. IFIP WG 10.4-Dependable Computing and Fault
Tolerance.

[17] J. McLean. A general theory of composition for trace sets closed under
selective interleaving functions. In Proc. IEEE Symposium on Research
in Security and Privacy, pages 79–93, 1994.

[18] R. Needham. Later developments at Cambridge: Titan, cap and the cam-
bridge ring. Annals of the History of Computing, 14(4):57, 1992.

[19] L.C. Paulson. The inductive approach to verifying cryptographic proto-
cols. Journal of Computer Security, 6:85–128, 1998.

[20] A.W. Roscoe. Using intensional specifications of security protocols. In
Proceedings of the Computer Security Foundations Workshop, pages 28–
38. IEEE Press, 1996.

[21] A.W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall,
1997.

[22] A.W. Roscoe, J.C.P. Woodcock, and L. Wulf. Non-interference through
determinism. Journal of Computer Security, 4(1), 1995.

[23] P.Y.A. Ryan. Mathematical models of computer security. In Foundations
of Security Analysis and Design, number 2171 in LNCS. Springer, 2000.

[24] P.Y.A. Ryan and S.A. Schneider. Process algebra and non-interference. In
IEEE Computer Security Foundations Workshop, pages 214–227, 1999.

[25] R. Sandhu. A perspective on integrity mechanisms. In Proceedings of
the Computer Security Applications Conference, page 279, 1989. Panel
Discussion paper.

[26] R Sandhu et al. Role based access control models. IEEE Computer,
29(2):38–47, 1996.

[27] A. Schaad and D. Moffett. The incorporation of control principles into
access control policies. In Workshop on Policies for Distributed Systems
and Networks, Bristol, UK, 2001.

[28] F.B. Schneider. Enforcable security policies. ACM Transactions on In-
formation and Systems Security, 3(1):30–50, February 2000.

[29] R. Simon and M. Zurko. Separation of duty in role based environments.
In Proceedings of the Computer Security Foundations Workshop, pages
183–194. IEEE Press, 1997.

[30] A.C. Simpson. Safety through Security. PhD thesis, Oxford University,
Computing Laboratory, 1996.

[31] D. Sutherland. A model of information. In Proceedings 9th National
Computer Security Conference. U. S. National Computer Security Center
and U. S. National Bureau of Standards., 1986.

[32] U. S. Department of Defense. Integrity-oriented control objectives: Pro-
posed revisions to the trusted computer system evaluation criteria (TC-
SEC). Technical Report DOD 5200.28-STD, 1991.

[33] D. Weber. Specifications for fault-torerance. Technical Report 19-3,
Odyssey Research Associates, Ithaca, NY, 1988.

APPENDIX

A. Communicating Sequential Processes

In the traces model of CSP [21] the behavior of a process is
represented by a prefix-closed set of event traces. If P is a pro-
cess then traces P P where A is the set of all possible
sequences of events from the set of events A. The alphabet P
of process P is the set of events that P is defined in terms of. In
the traces model two processes are considered equivalent if their
traces are the same, that is, P Q traces P traces Q .
The subset of the CSP notation used in this paper is defined

as follows.

traces StopA

The process StopA is a deadlocked process that is not willing
to engage in any event from its alphabet A. Note that we often
omit subscript A if no ambiguity arises.

traces A A

Process A is willing to engage in any event in alphabet A.

traces a P t traces P a t

This process is willing to first engage in event a and then behave
like process P. For example, the process a b Stop a b
describes a process that is willing to first engage in event a, and
then to engage in event b and then deadlock. Processes may
be defined recursively, for example, P a b P . This
equation has a unique fixed-point: the process that repeatedly
alternates between being willing to engage in event a and will-
ing to engage in event b.

traces P Q traces P traces Q

Process P Q is willing to behave like P or likeQ. If the events
that P andQ are initially willing to engage in are different, then
the environment of P Q selects between P andQ by engaging
in the associated event. For example, the process

S a S b S

is willing to initially engage in either event a or b; if the en-
vironment selects (engages in) b then the subsequent process
behavior is S . In the traces model, if the environment selects
an event that both P and Q are willing to engage in, then the re-
sulting behavior is a choice between the subsequent behaviors
within P and Q. For example, given process S above and

T b T c T

then if the environment of the process S T engages in b then
the subsequent behavior of the process is S T .

traces P Q t P Q
t P traces P t Q traces Q

Process P Q is the parallel composition of processes P and
Q with synchronization on common events in P Q. For
example, given S above, then: S Stop a b Stop a b ,
since Stop a b is not willing to synchronize on any event;
S Run a b S, since Run a b is willing to synchronize on
any event offered by S, and S Stop a b S Stop a ,
since Stop a deadlocks event a but does not constrain the en-
gaging of other events.
In the paper we use indexed forms of concurrent composi-

tion and external choice. Process (i IP i) corresponds to the
concurrent composition of each P i indexed over i I; Process
(i I P i) corresponds to the external choice of each P i in-
dexed over i I. A prefixed process i P is the process Pwith
its events prefixed by label i. Thus, for example, we have

i i a b Stop
a b Stop a b Stop

B. Proof of Incremental and Composition Rules
Lemma 1: Given processes P and Q and interface E then

P Q @E P@E Q@E P Q E
P Q @E P@E Q@E

PROOF: Follows from the trace semantics of .
Theorem 1: Given systems S and P, and their corresponding

infrastructures IS and IP, then

R E S IS S S P IP R E P IP IS

PROOF: If S S P IP, then t traces P IP t S
traces S , implies that t traces P IP IS t S IS
traces S IS . Thus, S S P IP implies that P IP IS @ S
IS traces S IS , and since E R S IS, then it
follows that P IP IS @E S IS @E and from the hypoth-
esis S IS traces R , and by transitivity of the theorem
follows.

Theorem 2: Given requirements R and R and systems S and
S and an interface E such that R R E, then

R E S R E S R R E S S

PROOF: If S@E R@E and S @E R @E, then it fol-
lows that S@E S @E R@E R @E. Since, by defini-
tion R S and hypothesis R R E, we have
E S and, similarly, E S . Lemma 1 implies that
S S @E S@E S @E and since R R E then
R R @E R@E R @E. Thus, S S @E R R @E
and the theorem follows.
We should note that if R R E does not hold then,

from Lemma 1, P Q @E P@E Q@E does not necessarily
hold and thus R E S R E S R R E S S does not
hold in general.

Simon N. Foley is a Statutory Lecturer in Computer
Science at University College Cork where he teaches
and directs research on computer security. He serves
on the editorial board of the Journal of Computer Se-
curity and has served as Program chair of the IEEE
Computer Security Foundations Workshop and the
ACM New Security Paradigms Workshop. His re-
sesearch interests include formal methods, security
models and trust management

