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Abstract. Service oriented architectures provide a simple yet flexible
model of a computing system as a graph of services making requests
and providing results to each other. In this paper we define a formal
model of a service oriented architecture and using it, we define metrics for
performance, for availability, and for various security properties. These
metrics serve as the basis for expressing the business requirements. To
make trade-offs possible we also define a set of cost metrics, denominated
in a uniform currency, to measure the cost of not meeting a requirement.
The model, the property metrics, and the cost metrics are then used to
generate a Constraint Satisfaction Problem where the objective function
is set to minimize the aggregate system cost. We have written these
constraints and defined realistic requirements in OPL and we have used
them to generate system configurations that minimize the overall cost
by optimally trading off the business requirements.

Computing systems are designed to meet the security, performance availability,
and economic requirements of the procurer. Sometimes not all of these require-
ments are simultaneously attainable to the maximum degree. In order to get
as close as possible to meeting the requirements, trade-offs must sometimes be
made between the individual requirements. In order to make these trade-offs in
a sensible way and to find a system configuration that best meets our overall
goals, we need a model of a system which can be evaluated quickly to determine
how well the system is meeting its requirements and a uniform cost model that
we can use to manage the trade-offs on the different requirements.

In this paper we use formal techniques to define a precise model of a service
oriented architecture, a flexible yet simple computing model that underlies the
Web Service standards so popular in data processing and integration applica-
tions. We argue that this model is close enough to the reality of such systems
to be interesting. We then formally define various properties of the model that
correspond to important properties in real systems. The properties that we de-
fine and optimize for are different aspects of data security, server throughput,
service availability and network bandwidth. We do not claim that these are the



only formal definitions of these properties that are sensible but that the ones we
present are interesting and they capture important aspects of the system.

We then encode this model and properties into an Optimization Program-
ming Language (OPL) application so that a combination of mathematical and
constraint programming techniques that are part of the OPL implementation
can be brought to bear on this problem to produce a set of optimal assignments
of logical components to physical resources. Using the facilities of OPL, we write
a system model that defines the data to be presented and its constraints. This
model can be instantiated to represent any computing system that falls within
the model. Once instantiated, the model can be solved by OPL to find the op-
timal configuration of resources that meets the requirements. This separation
of the model, its instantiation and solution technique allow such systems to be
used by systems administrators without a degree in operations research. Finally
we show the results of this model when applied to a realistic system.

Novel aspects of this work include:

- The simultaneous modelling of important system metrics and the definition
of a cost model that allows multiple business goals, defined in terms of these
metrics, to be played off against each other.

- The careful definition of quantifiable security properties that correspond to
properties that security experts attempt to optimize for. Security is often
thought of as a binary property but the use of security metrics allows greater
flexibility to the configuration process.

1 Modelling a Service-Oriented Architecture

In this section we define the components of our model and the information a
user of the system has to provide about each component and the information
that the optimizer needs to produce to specify a configuration of the system. In
the next section we describe how we use this information to define properties of
the system that meet the planning needs of system administrators. A UML class
diagram showing the relationship between the components is shown in Figure 1.

Service. The fundamental system component in a service-oriented architecture
is, of course, the service. We define a service to be an entity that can perform
a set of operations on behalf of callers on a defined set of data. For example,
Hertz may offer a car rental booking service that allows clients to book its cars.
Avis may offer a distinct service that provides access to its cars. Travelocity and
LastMinute may each run a travel agency that offers services that allow clients
to book cars on either Hertz or Avis. These form four distinct services.

We denote the set of all services being modelled as a set named Service.
To specify the load generated by an invocation of a service on the server

running the service we define a function loadU that defines the expected load
units caused by a single invocation of the service.

loadU : Service → R+



Service 

Interface
Service

Service 

Dependency

Deployable 

Unit
Server

Routing 

Rule

1

*

1 *

1

1..*

* 1..*

1

1

1

1

*

*

*

*
Subnet

Fig. 1. A UML diagram of the service oriented model

Service Interface. Each service implements a certain protocol or language to fa-
cilitate communication with it and its invokers. We call this protocol the interface
to the service. To facilitate interoperability, many services may implement the
same interfaces. In a Web Services infrastructure an interface may be specified as
a WSDL object and identified by a URL. In a Corba infrastructure, an interface
may be specified by an IDL file and identified by a UUID.

Formally we can represent this as a set ServiceInterface and an implements
function that represents the relationship between the service interface and the
services that implement it.

implements : Service → ServiceInterface

Service dependencies. Services may be composed from other services. For each
service we assume we have a set of services that are used in this service’s imple-
mentation and that we have determined the expected number of invocations of
those subsidiary services for each invocation of the entry service. This can some-
times be determined by code inspection and sometimes by measurement. Even
if service binding is done dynamically, data can be collected on the long-term
behaviour of a particular installation.

Each subsidiary service may be used by any number of layered service im-
plementations. For simplicity, we assume that there are no cycles in the service
implementation dependency directed graph. Since this information refers only
to direct dependency we call the function representing this information depen-
dency1.

dependency1 : Service × Service → R+



We use this information to estimate the complete dependency matrix, the num-
ber of calls generated, directly or indirectly, by a single call to a service on every
other service. We estimate the complete dependency matrix by computing the
transitive closure of the dependency1 matrix. However if the complete graph has
been measured, it should be used in preference to the estimate. This is the same
approach used in gprof in estimating call graph values [1].

dependency : Service × Service → R+

Client Service. We define a distinguished client service whose function is to
invoke the externally accessible services. The client service makes the correct
mix of requests that match the expected calls from all the system’s clients. The
client service is special in that we do not attempt to model its internal behaviour
or allocate resources to it. The distinguished client service gives us a single row of
the dependency matrix to concentrate on that defines the expected call load that
we are expecting for each service. Since there are no calls to the client service,
one should think of the counts in the client row of the dependency matrix as
representing the number of calls on the indicated services by external clients per
unit time.

Formally, client is simply a distinguished element in Service.

client ∈ Service

In addition each service may have an availability requirement that defines the
minimum probability that this service must be up and providing the needed
service to the distinguished client service. We can define this requirement as a
function that specifies the minimum probability that this service is allocated
enough resources to perform its function. If there is no availability requirement
on a particular service, the function may have value 0.

AvailableToClient : Service → [0, 1]

Note that this function is used along with the dependency information to gen-
erate the complete service availability function in the next section.

Deployable unit. Each separate service is not typically deployable on a server
independently. A developer or administrator will typically build or configure a set
of services into a deployable unit that can be installed on one or more machines.
The developer may decide services need to be collocated in the same process or
on the same machine to maintain efficiency or to reduce development time. When
services are combined into a deployable unit, we do not model the dependencies
between these services; instead the load and dependencies are rolled up into the
services that are invoked externally. The form a deployable unit takes depends
on the system being used. In J2EE a deployable unit might be represented as
a preconfigured WAR, or web application archive, on Linux a deployable unit
might take the form of a preconfigured RPM [2] file. Unlike an unconfigured
WAR or RPM file, which might contain a generic service implementation, a



deployable unit contains all information to configure the implementation to take
the role as a particular service, e.g., the data it will be accessing and the other
services that it may need to contact.

Formally, the deployable units are just a set Deployable with a function de-
ploys to represent the composition of a deployable unit out of its constituent
services.

deploys : Service → Deployable

Server. A server is an entity on which services can be executed. Servers are not
referred to directly by applications; instead applications reference services that
are automatically mapped to the servers on which they are deployed. Servers
are typically hardware components, though servers can be constructed logically
using virtual machine technology.

For each server we have a specified failure probability. This specifies the
minimum long-term probability that the server is available and providing its full
execution service. This is used in the next section to compute the probability
that a service is available and providing service. We specify the server availability
with a function:

ServerAvailability : Server → [0, 1]

Associated with each server is a rate at which it can perform load units, expressed
in the same time units that were used for the client counts in dependency1 and
the same load unit that was used for loadU. We specify the execution rate of a
server with the function powerU :

powerU : Server → R+

Resources on servers are assigned by the configuration system to deployable
units. A deployable unit may not consume more resources on a server than it
is assigned. A single deployable unit may be deployed on many different servers
simultaneously, in which case the load on the component services is divided
among the servers, according to the ratio of resources assigned by the server to
the deployable unit. We define the number of load units per unit time allocated
to a deployable unit on a server as:

allocU : Deployable × Server → R+

Unlike the functions defined so far, this function is not defined by the admin-
istrator, but is instead an output of the optimization process. It specifies what
services a server should run and the amount of server resources that should be
assigned to each deployable unit. In the next section we develop constraints that
will ensure that the allocation of resources to deployable units satisfies the sys-
tem requirements. The resulting allocation must not overload the server, that is
the following constraint must hold:

∀serv ∈ Server ,
∑

∀d∈Deployable

allocU (d, serv) ≤ powerU (serv)



Subnet. A subnet represents a portion of the network containing a set of servers.
Servers on the same subnet can communicate more cheaply, but servers on dif-
ferent subnets can be protected from each other by router based filtering and
firewalls. Formally, a subnet is just a set, Subnet, and a function subnet that
assigns servers to subnets.

subnet : Server → Subnet
clientSubnet ∈ Subnet

Routing rule. The filtering that can take place between subnets is represented
as a set of allowable service interfaces whose messages may pass between the
subnets. Typically a routing rule will be assigned to a router or firewall to ensure
that only the required communication can be passed and that this required
communication is safe. Like the allocation of deployable units to servers, the
configuration optimization process produces the set of subnet rules.

Formally the set of filter rules is a function, rules, from pairs of subnets to
a subset of allowable service interfaces whose messages are allowed to pass from
one subnet to the other.

rules : Subnet × Subnet → ℘(ServiceInterface)

2 Properties of a Service-Oriented System

One measure of the usefulness of a model of a system is whether properties of
the model can be defined that correspond to properties of the original system.
In this section we present some interesting system properties that can be defined
using our model and argue for their relevance.

Service Availability Requirement. A service’s availability requirement is the prob-
ability that a service responds to a given request by one of its clients. A service’s
clients may include the distinguished client service as well as arbitrary other ser-
vices that use this service. For a service to be available, in addition to the service
itself being available all the service’s dependencies must be available. Assuming
that the availability of each request on each service is independent, we use the
following constraint to define a serviceAvailability function that depends on the
administrator-provided availableToClient as well as the dependency1 function.

availableToClient(s1) ≤
serviceAvailability(s1) ≤

∏
∀s2∈Service:

dependency1(s1,s2)>0

serviceAvailability(s2)

Informally this says that the service can be no more available than its con-
stituents, but that it must be at least as available as any clients need it to be.

These constraints can be solved by starting with the services called only
by the distinguished client service. Such a service is likely to have a nonzero



value for the availableToClient function. This value can be factored to determine
availability requirements for each of the services it calls. This process can be
repeated until service availability requirements are derived for all of the services.
As might be expected this process causes lower level services to have higher
availability requirements.

Availability with Throughput. We define execution throughput and availability
constraints simultaneously, as for a service to be properly configured the prob-
ability that the service is meeting its throughput requirements must be as large
as its availability requirement. An acceptable configuration must assign enough
resources to each deployable unit so that with large enough probability all the
services that are part of the deployable unit are getting enough execution re-
sources to perform their function. We must also assign the resources in such a
way that we never exceed the capacity of any server.

We can express the fact that a server may not be over allocated with the
predicate:

∀serv ∈ Server :
∑

∀d∈Deployable

allocU (d, serv) ≤ powerU (serv)

This specifies that for all servers, that the sum of the load units allocated to
each deployable is less than total load units provided by the server.

To form a predicate that insists that the needed throughput be provided with
the required probability, consider a subset S of the Server set that represents
the set of servers that are available at a moment in time. For each such subset
S ∈ Server there is a well defined probability that exactly those servers are
available. Assuming that the availability of each server is independent, that
probability is given by:

setProbability(S) =
∏

∀serv∈S

serverAvailability(serv)×∏
∀serv∈Server−S

(1− serverAvailability(serv))

That is, the probability that exactly the set of servers S is available is the
probability that each server in S is available times the probability that each
server not in S is not available. For each subset S, there is also an expression that
represents the number of load units among the servers in S that are assigned to
a given deployable unit, d ∈ Deployable. We compute this as a function allocSU :

allocSU (d, S) =
∑

∀serv∈S

allocU (d, serv)

For the set S to have adequate capacity to be classed as being available for d,
the number of load units allocated to the unit d must be sufficient for performing
the required load per unit time on the services making up d. We can compute



this for a unit d by:

reqLoadU (d) =
∑

∀s∈Service:d=deploy(s)

dependency(client,s)× loadU (s)

that is, the sum, over all services that are part of the deployable unit, of the
number of invocations on that service per unit time multiplied by the number
of load units consumed by each invocation. This gives us the load units required
per unit time, the same units as the allocation units for server resources assigned
to a deployable in allocSU.

The availability of a deployable unit d in a given configuration is the sum
over all subsets S of Server where the load units allocated to the deployable unit
is sufficient to meet the execution requirements of the services that are part of
the deployable unit, of the probability that the server configuration S exists. We
define the following.

deployAvailable(d) =
∑

∀S⊆Server:
allocSU(d,S)≥reqLoadU(d)

setProbability(S)

If for each deployable unit this probability is larger than the maximum service
availability requirement of all the services in the deployable unit, that is, when

∀d ∈ Deployable : deployAvailable(d) ≥ max
∀s:d=deploy(s)

serviceAvailability(s)

then the allocation of resources meets the availability and throughput require-
ments.

Security Distance. One of the important security considerations that must be
taken into account when building a service infrastructure is router and firewall
configuration. There are some services in which considerable skill and attention
have been lavished in making sure that the service is ready to withstand the
slings and arrows of outrageous hackers and other services which, while nominally
secure, had best not be accessible to outside users. There are also services that
store such sensitive data that best practices dictate that they should be locked
away behind many levels of firewall.

One simple way of rating network service security is by the minimum num-
ber of subnet hops needed to get from the attacker to the target service. Each
step along such a shortest path represents a subnet that has to be traversed
and presumably hacked, in order to reach the target service. For example, in
many web application infrastructures the service network is divided into 5 suc-
cessively deeper subnets as illustrated in Figure 2: a content subnet, a UI subnet,
a business logic subnet, a database subnet and a SAN subnet. Each deeper level
provides a lower level abstraction with less fine grain access checking and often
less secure authentication. Accessing each successive subnet also requires hacking
a different set of systems, typically using a different set of techniques.

When configuring routing rules it is important to allow communication be-
tween subnets where it is needed, e.g. services running on those subnets need
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Fig. 2. A Typical Subnet Structure

direct communication, but at the same time we want to insist that certain ser-
vices be run on servers that are deeply hidden from clients, that is there is a
large security distance between the service and the attacker. Network subnet
distance is a simplification of the security restrictions one might contemplate,
but it is a reasonable start and it mirrors current best practices [3].

The constraint on the existence of rules allowing all needed communication
can be stated as:

∀s1, s2 ∈ Service : dependency1(s1, s2) > 0 ⇒
∀serv1,serv2 ∈ Server :

(allocU (deploys(s1), serv1) > 0 ∧
allocU (deploys(s2), serv2) > 0)
⇒ interface(s2) ∈ rules(subnet(serv1), subnet(serv2))

which states that for all pairs of services that communicate, and all servers
that are assigned to run those services, then the interface those services use to
communicate must be present in the rules set of the router that connects the
two subnets.

Given the rule above, the security distance between two services, which we
will denote as securityDistance(s1, s2), can be defined by the following recur-
rence.

First we define a predicate connected that determines whether there is a
direct communications link between the two services, that is, whether any of the



servers assigned to the services are on the same subnet.

connected(s1, s2) = ∃serv1, serv2 ∈ Server :
allocU (deploys(s1), serv1) > 0 ∧
allocU (deploys(s2), serv2) > 0 ∧
subnet(serv1) = subnet(serv2)

Then we define the security distance with the following recurrence.

securityDistance(s1, s2) =
0, if connected(s1, s2)
1, if dependency(s1, s2) > 0

∧¬connected(s1, s2)

min
∀s3∈Service

{
securityDistance(s1, s3)+
securityDistance(s3, s2)}

}
otherwise

The security distance computed in this way can be used in constraints to insist
that a sensitive service be a large distance from the client subnet. This can be
used to restrict the optimizer from doing something silly like running a database
service on the network DMZ in order to take advantage of its lightly loaded
servers.

Data Risk. In another paper [4], a security metric based on the aggregate risk
of having data from different customers make use of the same device is defined.
For example, a storage service provider may decide to store data from a single
commercial bank on a storage unit and to accept a level of risk r in making that
assignment while adding an airline’s data to that storage unit may increase the
risk of the assignment by a small amount but adding a competitive bank to the
same unit may raise the risk considerably.

In the service-oriented context, a similar measure of data risk can be defined
that quantifies the risk of placing deployable units on the same server or on the
same subnet. The risk depends on the assurance level or trust we have in the
server or the subnet’s ability to keep the data separate and the risk associated
with the information being accessed from the dependent services.

This metric is not used in the OPL implementation described in this paper,
but was used in a separate OPL model described in [4].

Network Bandwidth. The network bandwidth used in a system can sometimes
be an important consideration in system design. The internal switching inside a
subnet is generally implemented by high performance switching equipment that
has been optimized for network performance. Communication between subnets is
performed by routers that have been optimized for security and for implementing
many hundreds of complex filtering rules. Limiting the load on these expensive
routers can sometimes be an important consideration.

To help express constraints or optimizer objective functions dealing with
bandwidth, we define a new traffic function. The value traffic(sn1, sn2, interface)
reports the number of invocations per unit time of the given interface that may



travel between the given subnets. If the subnets are equal, the function gives
the amount of intra-subnet traffic using the given interface. This function can
be used to define constraints or minimize the usage of network traffic.

First we define the function runsIn that computes the set of subnets used
for executing a given service:

runsIn(s) =
⋃

∀serv∈Service:
allocU(deploys(s),serv)>0

subnet(serv)

Given this function we can define the traffic function as:

traffic(sn1, sn2, i) =
∑

∀s1,s2∈Service:
i=implements(s2)

∧sn1∈runsIn(s1)
∧sn2∈runsIn(s2)

dependency(client , s1)×dependency1(s1, s2)

As can be seen this sums over all pairs of services where the second service
implements the given interface and the services run on the given subnets. For
each pair we look at the expected number of service invocations of the given
type that will be requested per unit time. This is given by the expected number
of invocations from the client to service s1 times the number of invocations that
s1 makes directly to s2.

3 Optimizing a Service-Oriented System

In the previous sections we have seen how to describe a service-oriented system
and how to define properties and constraints on a service-oriented system; we can
now look at optimizing a service-oriented system. In mathematical programming,
optimization is driven by an objective function.

The difference between an objective function and a constraint is that a con-
straint must hold in order to have a solution, while the objective function is
merely optimized from among the solutions meeting all the constraints. While
there can be many constraints in a constraint satisfaction problem, there can
only be one objective function.

Some useful objective functions include those for:

- Minimizing the cost of the system. In this case the objective function may be
the number of servers that have not been allocated to any deployable unit.
That is to maximize:

| {serv ∈ Server | ∀d ∈ Deployable : allocU (serv , d) = 0} |

- Maximizing the security of a service. In addition to setting minimum se-
curity distance constraints, the administrator may be looking to maximize
the minimum security distance from an attacker subnet to a given set of



services. That is, given a priority set of services, Protected, we might want
to maximize

min
s∈Protected

securityDistance(clientSubnet , s)

- Maximizing the capacity of a system. If the load on the services may grow
unexpectedly, the administrator may wish to build a system out of an exist-
ing hardware base that can respond quickly to unexpected spikes in demand
by spreading any extra capacity evenly throughout the service deployments.
We can compute the percentage of over capacity allocated to a service and
attempt to maximize the minimum level of over capacity over all the deploy-
able units by maximizing:

min
d∈Deployable

(
allocSU (d,Server)

reqLoadU (d)

)
- Minimizing the number of routing rules. Routing rules consume resources

on a router and having too many rules can cause the router to become
overloaded, usually causing operators to ill advisedly remove rules. If an
organization’s routers are on the edge, minimizing this objective function
could be important:

max
sn1,sn2∈Subnet

∣∣∣∣∣∣
⋃

i∈Interface

rules(sn1, sn2, i)

∣∣∣∣∣∣
There are many other objective functions that can be defined. This list is just
meant to be illustrative.

4 Implementation Experience

To test the usefulness of this approach we wanted to apply the model to a
realistic test case. In this test case we defined a configuration consisting of 26
services in 17 deployable units, with 8 different service interfaces, deployed on 160
servers in 8 different server classes running on 5 subnets. The availability of the
servers varied from 3 nines of availability (i.e. 99.9%) to four nines. The service
availability requirements of the top-level services varied from three to four nines.
The derived service availabilities for the deeper services went up to five nines
and these deeper services were constrained as needing a security distance from
the client of at least 3. We set the objective function to maximize the minimum
level of over capacity from among the 17 deployable units.

The services were designed to model a modern multi-tier web based sys-
tem consisting of client accessible static content and reverse web proxy services
fronting for an inner tier of application services providing the application UI
control and page generation. The UI services were then built on a tier of busi-
ness logic services. Unlike the other service layers, the business logic services are



available both from the proxy layer, the UI layer and itself. The business logic
services in turn build on a set of file and database services, which are in turn
built on a set of virtual disk services implemented by a storage area network.

Considerable tuning in the search procedure was needed to order the configu-
rations tested so that the progress towards a solution progressed at a reasonable
rate. At this point, OPL is able to find acceptable solutions after running for
several minutes on a single 1.5 GHz processor. Finding optimal solutions for non-
trivial objective functions is more elusive as the entire solution space often has
to be searched, taking over 10 hours for the sample problem. For many uses this
performance is adequate, for example, in configuring an enterprise data center
for a new application or an application service provider for a new customer. For
other uses, such as online reconfiguration after a device failure or configuring a
dynamic grid computer, this performance is not adequate.

Note that a numerical instability in the availability computations currently
limits the number of servers per server class to 21. This result indicates that this
approach to solving configuration problems is promising; though much more
work remains to be done to show that it is practical and efficacious.

5 Related Work

A modelling based approach to quality of service prediction is standard fare in
queuing theory, but the focus is generally on the much more difficult measure of
response time, a measure we leave out of our analysis because of its complexity.
However the typical server graph used in queuing theory carries over to the
dependency graph used here.

Other attempts have been made to model quality of service properties of
distributed systems, most recently in the context of a service grid [5], but many
fewer properties are being optimized for. Other current work on service grids is
focused on mechanism of configuration rather than the optimization of configu-
rations [6].

The most closely related work to this has been done in the area of provisioning
of storage in a storage network. Data storage and services are closely related,
and in fact one can think of data access as a special case of service provisioning,
where it happens that the services allow for data access. Work done in this area
includes innovative work done at HP [6–9] in configuring storage systems. The
authors have made their own forays into storage management in [4, 10].

Other related work lies in network provisioning, where resources needed to
provide the required quality of service are reserved in advance. In this work the
model is more based on dynamic load rather than the static load model used in
this work. Examples include [11, 12].

A subset of the service provisioning problem being considered here was ad-
dressed using constraint satisfaction in [13], but the problem was simple enough
that the big guns of constraint satisfaction was not necessary for the solution.

The SmartFrog [8] system from HP provides tools for describing and deploy-
ing configurations.



6 Conclusion and Future Plans

The approach of producing an abstract model of a complex system and reasoning
about that abstract model is an oldie but a goodie. In this paper we have applied
this technique to the problem of configuring a service oriented architecture. We
have shown how to compute properties of the resulting network and to use those
properties to drive the automatic optimization of that network to meet a set of
requirements defined over those properties.

A necessary future step for this research is to experiment with configuring
real systems to verify that the promised gains are actually achievable. This can
also be used to determine if there are constraints missing in our model that allow
the production of flawed configurations.

Another area for extension is the development of new types of security mea-
sures. Our security distance metric can be refined by allowing each routing rule
to have a separate breakage cost, instead of the unit cost used here. The attacker
would search for the lowest cost path to the inner systems. In addition the rules
can be arranged in a partial order to represent which rules are implicitly bro-
ken when another rule is hacked. This can be used to model the fact that once
a successful attack on a system is found, the same attack can be used against
similar systems with no additional cost.

In this paper we define availability as a service having enough available re-
sources to perform its function. This definition does not mean that the service
has those resources for a long enough contiguous interval of time to actually
perform its function. For example, a diabolical highly available server with a
very short MTBF but an incredibly small MTTR, may provide high availability
using our definition, but unacceptable performance in real situations. We would
like to define service availability as the probability that a given request is suc-
cessfully processed however, this doesn’t easily match up with the definition of
availability for a server, which is necessarily time based.
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