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Abstract. Trust Management systems are typically explicit in their as-
sumption that principals are uniquely identifiable. However, the litera-
ture has not been as prescriptive concerning the uniqueness of the per-
missions delegated by principals. Delegation subterfuge may arise when
there is ambiguity concerning the uniqueness and interpretation of a per-
mission. As a consequence, delegation chains that are used by principals
to prove authorization may not actually reflect the original intention of
all of the participants in the chain. This paper describes an extension
to SPKI/SDSI that uses the notion of linked local permissions to elimi-
nate ambiguity concerning the interpretation of a permission and thereby
avoid subterfuge attacks.

1 Introduction

Trust Management systems such as [3,4,6,12] are intended to provide a decentral-
ized approach to constructing and interpreting trust/authorization relationships
between principals. Unlike a centralized authorization server-based approach,
authorization rules are defined and signed locally by issuing principals and these
cryptographic credentials can be distributed in any manner to suit the design
of the (Trust Management-based) access control mechanism. While credential-
based policy rules are inherently decentralized, many implicitly assume unique
and unambiguous global permissions [10], effectively originating from some cen-
tral authority that provides a permission namespace that everyone agrees to
consistently use. For example, relying on IANA as a central source of unique
identifiers for Internet resources [3], or relying on CCITT’s X500 names [5] as a
means of identifying principals.

However, principals may prefer not to have to trust some global author-
ity, whatever about the practicalities of such an authority providing permission
names for everything. Under reasonable assumptions, public keys can be con-
sidered to be globally unique and, by signing a permission, a principal can be
sure that the resulting value is globally unique. The position that underlies the
design of SPKI/SDSI [6] is that referencing public-key values as principal identi-
fiers is difficult and error prone and proposes the use of local names as a means
of providing a more effective way to identify principals. This paper starts from
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a similar position. That is, that the use of public key values as permission iden-
tifiers is equally problematic and proposes the use of local permission names,
whereby principals can use local names to reference globally unique permissions
in an unambiguous manner.

The paper is organized as follows. Section 2 provides a simple logic model for
reasoning over SPKI/SDSI credentials. SPKI/SDSI uses s-expressions to define
permissions and, in the absence of global agreement regarding their interpre-
tation, Section 3 describes how it can lead to subterfuge [10, 15] whereby it is
possible for an attacker to interfere with the intent of a delegation chain. Sec-
tion 4 extends the SPKI/SDSI logic by incorporating local permission names
and argues how the use of these permissions can avoid subterfuge. The logic
proposed in Section 4 supports truly decentralized Trust Management whereby
a principal may define, without reference to any central authority, its own local
permission namespace, define a permission ordering over that namespace and
also orderings relative to permissions in other namespaces. Section 5 describes
how this logic can be used to support subterfuge-safe Trust Management.

2 Trust Management

2.1 SDSI Names

SDSI [6] uses local names to refer to unique principals whereby local name (K N)
identifies a principal named as N in the namespace of the principal that owns
the public key K. A name certificate {|N, P, V |}sK is a statement signed by the
owner of public key K that principal P is a definition for the name N in K’s local
namespace, during validity period V . For example, certificate {|Bob, KB, V |}sKA

specifies that Bob is the name that principal KA uses to refer to (the owner
of) KB. Local names may be linked whereby an (extended) local name (P N)
identifies a principal named as N in the namespace of a principal identified by
local name P . For example, (KA Bob Clare) is the principal named Clare in the
namespace of the principal (KA Bob). Hereafter, we use local names and/or
public keys to reference principals.

Local name relationships are represented using the speaks-for relation whereby
statement P → Q denotes that the principal Q speaks-for the principal P . For
example, (KA Bob) → KB means that a message signed by the owner of KB can
be considered to originate from (KA Bob). The following rewrite rule provides a
speaks-for interpretation for name certificates. Note that for ease of exposition
we ignore validity period V .

{|N, P, V |}sK

(K N) → P
[N1]

Principal Name Reduction Speaks-for relationships may be reasoned over using
SDSI name reduction. Given local names (or public keys) P, Q, R and a name
N then:
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P → (Q N); Q → R

P → (R N)
[N2]

For example, given (KA Clare) → (KA Bob Clare) and (KA Bob) → KB then
deduce (KA Clare) → (KB Clare). Given a collection of name certificates then
we limit reasoning in the logic to determining whether P → Q can be deduced
for given principals P and Q. In this case, it is safe for us to assume that the
speaks-for relation is reflexive, that is P → P . This simplifies our definition of
the logic, and following [2] we assume that principal (P null) can be re-written
as P and thus given principals P, Q and R then rule N2 can be used to infer that

(P → Q ∧ Q → R) ⇒ P → R (1)

holds.

2.2 SPKI Delegation

A delegation statement P
X

=⇒ Q indicates that principal P delegates authority
for permission X to principal Q. Delegation is implemented as a SPKI certificate
{|P, X, D, V |}sK , whereby the owner of public key K signs a statement that it
trusts principal P for permission X . For ease of exposition we ignore the delega-
tion bit D and validity period V . The following rule provides an interpretation
for delegation.

{|P, X, D, V |}sK

K
X

=⇒ P
[D1]

Delegation Reduction Delegation statements may be reasoned over using SPKI
reduction. Given principals P, Q, R, S and permissions X and Y then

P
X

=⇒ Q; Q → R

P
X

=⇒ R
[D2]

P
X

=⇒ Q; Q
Y

=⇒ R;

P
X⊓Y
=⇒ R

[D3]

where X ⊓Y denotes permission intersection. The set of all permissions PERM

may be considered to form a preorder (PERM,⊑) with intersection ⊓ providing
a lower bound operator. For example, the set of all s-expression permission tags
used by SPKI/SDSI form a preorder with tag intersection providing a greatest
lower bound operation.

3 Subterfuge in SPKI/SDSI

While Trust Management systems are typically explicit in their assumption that
principals are uniquely identified, the literature has generally not been as pre-
scriptive regarding the uniqueness of permissions. Delegation subterfuge [10]
arises when there is ambiguity concerning the uniqueness and interpretation of
a permission. This issue is considered in the following example.



4 Simon N. Foley and Samane Abdi

good.com bad.com

KA

(KA users)

doc

KM

(KM users)

doc

KB

KE

doc

doc doc

Fig. 1. Subterfuge in the delegation of permission doc

Suppose that the web-servers at Internet domains good.com and bad.com use

Trust Management for controlling access to web-pages. The statement KA
doc
=⇒

(KA users) by the owner KA of website good.com delegates authority to access
web-page doc (representing a local document path) to a (SDSI) group of reg-
istered principals (KA users) where (KA users) → KB and (KA users) → KC .
Suppose that principal KB is also registered on website bad.com that is ad-
ministrated by the (malicious) owner of KM who in turn applies similar access
controls on its group of users identified as (KM users).

A delegation statement KB
doc
=⇒ KE results in subterfuge since it is not

clear whether the (non-unique) permission doc refers to the authority to ac-
cess the document on the good or bad websites. This uncertainty might arise
in practice if KB is unaware of this ambiguity. For example, KM , intercepts

the delegation certificate KA
doc
=⇒ (KA users) and replaces it by the certificate

KM
doc
=⇒ (KM users), leading KB to believe that permission doc is related to

KM ’s access to website bad.com. KB is willing to grant KE access the bad web-

site and writes KB
doc
=⇒ KE . However, KE, colluding with KM , can use the

intercepted certificate KA
doc
=⇒ (KA users) to obtain access to the good website

(KA
doc
=⇒ KE).

It might be argued that this inadequacy in the permission design is ‘obvious’
and that additional information should be included in the name of the permis-
sion. For example, the permission good.com/doc is clearly related to its website.

However, on receipt of a certificate KM
good.com/doc

=⇒ (KM users), KB may unwit-

tingly delegate KB
good.com/doc

=⇒ KE, not understanding that KM has no authority

over good.com and the intercepted certificate KA
good.com/doc

=⇒ (KA users) can be
used by KE to obtain access to good.com. Furthermore, design of the permis-
sion good.com/doc assumes that there is a non-transient association between the
domain good.com and some principal. However, domain name owners change in
practice, intentionally or otherwise [14], and therefore, permission good.com/doc
should not be considered to necessarily specify an unambiguous authorization.
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Arguing that prior to issuing a delegation statement KB has a responsibility
to confirm that KM owns the good.com website is inappropriate since it places
part of the reasoning outside of, and is contrary to the intent of, the Trust
Management system [4].

A variety of ad-hoc techniques could be used to ensure that a permission is
globally unique and its interpretation unambiguous. For example, on the basis
that public keys can be considered as unique then KA:doc provides a unique
permission doc for KA’s website. However, in order for this scheme to avoid
subterfuge, the recognition of a permission string such as

(

Modulus (1024 bits): c0 fd 51 7b 70 29 51 d7 d8 8d 59 c4 a1 bb da c9 fc c6 51 fc 90 b3 46 83 bd 45
22 98 47 1c e8 2c 56 2f fe 2c e4 d4 fd 4b 3d b4 8a 82 e0 e5 c8 08 4d fe 80 a7 cf d4 5f 4f 31 08 4d e5
e5 f0 14 e3 40 f1 12 4c b0 7f 97 b9 fa 29 c0 88 bf 23 8f bc b2 df 49 1c f6 72 a3 1f fa fe 83 11 c8 45
89 fb e4 1f fa 02 57 59 68 a5 d0 d8 a6 f0 29 9f eb d9 43 86 ea f9 1f 70 48 2d f1 4c e4 e7 70 43 b4 7f
Exponent (24 bits): 01 00 01

)

: doc

is required, which is, in itself, subject to confusion. Notwithstanding this issue,
it is argued [15] that subterfuge can be avoided by including the originator of

the permission in a delegation statement of the form KA
Ko:p
=⇒ KB, whereby

principal KA delegates the permission p, originating from the principal Ko, to
the principal KB. There is also an argument that a permission built using X500
Distinguished Names is, by definition, globally unique. If it were referenced in an
extended validation certificate [1] then it is, in some legal sense, unambiguous,
and is therefore not subject to subterfuge. However, X509-style approaches suffer
from a variety of practical problems [7] when used to identify principals.

Delegation subterfuge is a consequence of non-unique permissions that have
ambiguous interpretations in the sense of what they entitle the holder to do.
Rather than relying on ad-hoc permission-naming strategies we are interested
in characterizing what is meant by subterfuge and developing a Trust Manage-
ment system that is subterfuge-free. A number of subterfuge scenarios and their
defense are discussed in [10, 15]. It is argued in [15] that the problem of delega-
tion subterfuge is analogous to the problem of a message freshness-attack in a
security protocol and a BAN-like logic is developed that can be used to analyze
a delegation scheme for subterfuge. In this paper we build on this and develeop
an extension to SPKI/SDSI that ensures subterfuge-freedom.

4 Local Permission Names

Subterfuge-freedom can be achieved using delegation statements of the form

KA
Ko:p
=⇒ KB [15]. However, as observed above, simply referencing a public key

within a permission identifier is impractical. SDSI’s rationale of using local names
as reliable references to principals is extended in this section to include local
names for permissions that are linked to principal namespaces.

A signed permission {|N |}sK represents an authorization named N that orig-
inates from a principal owning public key K. On the basis of the assumption
that a public key is considered to be globally unique then a permission signed
by the key can be considered to be a globally unique permission identifier and
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is assumed unambiguous in the sense that, by signing {|N |}sK , its originator K

has just one interpretation for N .
A local permission name 〈P N〉 identifies a permission named locally as N

in the namespace of the principal P . In general, a permission name certificate
{|N, X |}sK is a statement signed by the owner of public key K that the permission
with name N in K’s local namespace is defined as X with the interpretation
that a principal that holds permission 〈K N〉 may be considered to hold the
permission X . For example, {|doc, {|doc|}sKA

|}sKB
is a statement by KB that

when it refers to permission name doc in its namespace then it refers to signed
permission {|doc|}sKA

.

4.1 Permission Holding

When defining (originating) a new permission, we assume that the principal
signs a self-signed name certificate {|N, {|N |}sK |}sK that binds the name N to
the globally unique value {|N |}sK . In doing this, the principal is considered to
hold the permission, denoted K ∋ 〈K N〉. Thus, given a key K and name string
N we define the following inference rule.

{|N, {|N |}sK |}sK

K ∋ 〈K N〉
[H1]

For example, in defining permission doc by signing {|doc, {|doc|}sKA
|}sKA

, prin-
cipal KA is considered to hold the permission, that is, KA ∋ 〈KA doc〉.

Delegation of a permission does not necessarily imply that the recipient holds
the permission: it depends on whether the delegator has (holds) the permission
to give away in the first place. We have,

P ∋ X, P
X

=⇒ Q

Q ∋ X
[H2]

In our delegation logic we make a distinction between a principal being
delegated a permission and actually holding the permission. In determining
whether a request (permission X) from Q is authorized, rather than just checking

P
X

=⇒ Q (SPKI/SDSI), the principal P should confirm Q ∋ X can be deduced.
Figure 2 depicts the web-server example using local permissions with KA dele-
gating its local permission doc to its users group, whereupon by Rules H1 and
H2, (KA users) ∋ 〈KA doc〉 can be deduced.

If a principal can speak for another principal then the former is considered
to implicitly hold the permissions of the latter, that is, given principals P and
Q and local permission X then

P ∋ X, P → Q

Q ∋ X
[H3]

Returning to Figure 2, since KB can speak for the group (KA users), then KB

holds the permission 〈KA doc〉. Note that if KB is unaware of the delegation
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good.com bad.com

KA

(KA users)

〈KA doc〉

KM

(KM users)

〈KM doc〉

KB

KE

〈KM doc〉

〈KM doc〉

Fig. 2. Avoiding ambiguity in delegation using local permissions

KA
〈KA doc〉

=⇒ KB (or it did not occur) then in the presence of a malicious dele-

gation statement KM
〈KA doc〉

=⇒ KB, KB cannot deduce KB ∋ 〈KA doc〉, that is,
KB cannot mistakenly think that it holds the permission.

4.2 Permission Ordering

Conventional Trust Management systems assume that the set of all permis-
sions are globally understood and implicitly have a globally defined preorder
(PERM,⊑). For example, a preorder exists over conventional SPKI/SDSI s-
expression permission tags and thus, for instance,

(tag (http good.com/doc)) ⊑ (tag (http ( * prefix good.com/)))

However, local permissions are created locally and a principal must explicitly
define how the permissions that it originates, relate to other permissions.

An ordering relation is defined between local permissions whereby X ; Y

defines that permission Y dominates permission X , in the sense that Y is no less
authoritative than X . In this case a principal that is authorized for permission
Y is considered to be authorized for permission X . For example, 〈KB read〉 ;

〈KA readWrite〉 means that the holder of local permission 〈KA readWrite〉 also
has authority for permission 〈KB read〉. Principals use permission certificates to
define permission orderings: {|N, X |}sK is a statement by K that the permission
X is no less authoritative than the permission 〈K N〉 in its namespace.

The following inference rule provides an interpretation, under this ordering,
for permission certificates. Given public key K, permission X and name N then:

{|N, X |}sK , K ∋ X

X ; 〈K N〉
[P1]

Note that the principal K must hold the permission X over which it asserts au-
thority ordering X ; 〈K N〉 relative to the permission 〈K N〉 in its namespace.
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If this were not the case then a malicious principal KM could, for example, effec-
tively obtain (hold) permission 〈KA doc〉 by simply signing {|doc, 〈KA doc〉|}sKM

,
resulting in 〈KA doc〉 ; 〈KM doc〉.

The ordering relationship ; between permissions is, by definition, reflexive.

P ∋ X

X ; X
[P2]

The relationship is defined only between valid permissions, that is permissions
that originate from/are held by some principal. This avoids introduction of re-
lationships between arbitrary values (that do not define permissions).

A principal holding permission Y , holds all permissions X dominated by Y .

P ∋ Y ; X ; Y

P ∋ X
[P3]

Note that we assume that there is sufficient redundancy in the implementa-
tion of a permission name certificate that will enable a principal to distinguish a
permission name from a principal name certificate, thereby providing distinction
between the principal (P N) and the permission 〈P N〉.

4.3 Permission Delegation

In delegating a permission Y to principal Q, principal P implicitly delegates
authority for any permission X dominated by Y .

P
Y

=⇒ Q; X ; Y

P
X

=⇒ Q
[P4]

Continuing the web-server example, if KB delegates its local name file for the

good.com document permission as KB
〈KB file〉

=⇒ KD where 〈(KB good.com) doc〉 ;

〈KB file〉, then by L1 (defined in Section 4.5) we deduce 〈KA doc〉 ; 〈KB file〉

and by P4 we deduce KB delegates the original permission, that is KB
〈KA doc〉

=⇒
KD.

It follows from Rule P4 and Holding Rules H2 and H3 that if the delegat-
ing principal holds the permission then the recipient also holds any dominated
permission:

(P ∋ X ∧ P
Y

=⇒ Q ∧ X ; Y ) ⇒ Q ∋ X (2)

or more generally, any recipient holds the permissions:

(P ∋ X ∧ P
Y

=⇒ Q ∧ X ; Y ∧ Q → R) ⇒ R ∋ X (3)

The conventional SPKI delegation reduction rule defines that the permission
delegated via a delegation chain is computed as the intersection of the permis-
sions along the chain. The definition of intersection as a greatest lower bound
operation requires that all permissions and their ordering are globally known; in
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SPKI/SDSI this is effectively defined as intersection over s-expression permis-
sion tags. However, in the proposed model it is assumed that a principal is aware
only of the local permissions (and orderings) for which it holds permission name
certificates. Therefore, the principal cannot compute a reliable greatest lower
bound of given permissions since there may exist, unknown to the principal,
a permission that is a lower bound and dominates the claimed greatest lower
bound.

Based on the permission orderings that a principal is aware of, it is safe for
a principal to infer that any permission that is a lower bound of permissions X

and Y is dominated by the greatest lower bound of X and Y . This is defined by
the permission intersection reduction rule

Z ; X ; Z ; Y

Z ; (X ⊓ Y )
[P5]

Combining this rule with the SPKI-delegation rule in Section 2.2 allows the
following inference to be made. Given principals P, Q, R and permissions X, Y, Z

then we have

(P
X

=⇒ Q ∧ Q
Y

=⇒ R ∧ Z ; X ∧ Z ; Y ) ⇒ P
Z

=⇒ R (4)

4.4 Delegation Accountability

A principal is considered to be accountable for a permission if it accepts responsi-
bility for how the permission is used by other principals. For example, in hosting
documents on good.com, the principal KA is considered to accept responsibil-
ity for the use of the (copyright) documents. In delegating access to documents
to KB, principal KA asserts that she accepts responsibility for how the docu-
ments are subsequently handled by KB (that is, KA trusts KB). This notion of
accountability is at the heart of subterfuge. Subterfuge is considered to occur
when there is ambiguity regarding the accountability of the permission. In the
original web-server example (Figure 1) subterfuge occurs because accountability
for the actions authorized by permission doc is unclear; in delegating doc to KE ,
KB wants to be sure about who can be held accountable.

A principal with public key K that originates a permission 〈K N〉 is con-
sidered, by definition, to be accountable, denoted K � 〈K N〉 for any actions
enabled by that permission. We have,

K ∋ 〈K N〉

K � 〈K N〉
[A1]

For example, by signing a permission granting access to the good.com web-site
documents then KA is implicitly accepting accountability for the use of those
documents.

A principal K may elect to accept accountability for an arbitrary permission
X that it holds by signing a statement to that effect, and we have:
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{|accept accountability(X)|}sK , K ∋ X

K � X
[A2]

For the web-server example, perhaps KA choses not to delegate her doc authority
on good.com to KB unless KB signs a statement accepting accountability, in
which case KB � 〈KA doc〉. Note that the principal asserting accountability
must hold the permission; this ensures that a malicious principal cannot claim
accountability for a permission for which they are not trusted. For the web-server
example, regardless of an assertion by KM that it is willing to be accountable
for 〈KA doc〉, KB cannot deduce KM � 〈KA doc〉. Therefore, as we shall see in

the next section, KM maliciously concealing KA
〈KA doc〉

=⇒ (KA users) from KB

and replacing it by KM
〈KA doc〉

=⇒ (KM users), cannot result in KB unwittingly
delegating this unaccountable permission 〈KA doc〉 to KE.

A local name may be used to refer to the originator of the permission:

Q � X, P → Q

P � X
[A3]

Thus, in general P �X reflects that there exists some principal who can speak for
P and that can be held accountable for permission X . Note that the converse is
not the case, for example, membership of a group P that is accountable for some
permission does not necessarily imply accountability of an arbitrary member.
Similarly, if a member holds a permission and asserts accountability then while
the group implicitly holds the accountability, it does not necessarily hold that
the group holds the permission, since by Rule H3, it would imply that all its
members also hold the permission.

Accountability follows on reduction of a principal name referenced within a
local permission, that is,

R � 〈P N〉, P → Q

R � 〈Q N〉
[A4]

Thus, for example, a principal accepting accountability for a group permission
accepts accountability for any any group-member reference to that permission.
Note, however, that we do not define a similar relationship between permission
ordering and accountability. One should not infer Q�X given Q�Y and X ; Y ;
if this were permitted then should KB name his own permission 〈KB file〉 and
assert 〈KA doc〉 ; 〈KB file〉 then since KB is by default accountable for all
the permissions he names then he would hold accountability for the 〈KA doc〉
permission.

A valid permission must originate from some principal and, therefore, the
principal is accountable for that permission, that is we can prove:

Q ∋ 〈Q N〉 ⇒ Q � 〈Q N〉 (5)

This effectively generalizes Rule A1—that a key is accountable for any permission
it originates—to any principal name for which the key speaks for.
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4.5 Local Permission Name Reduction

Local principal names can be used to refer to principals in a local permission
ordering. We define

〈P N〉 ; X ; P → Q

〈Q N〉 ; X
[L1]

For the web-server example, suppose that KB uses the local (principal) name
(KB good.com) to refer to KA, that is, (KB good.com) → KA and suppose that
KB refers to the permission locally as 〈KB file〉, that is, 〈(KB good.com) doc〉 ;

〈KB file〉. In this case, by Rule L1, we can deduce that 〈KA doc〉 ; 〈KB file〉.
If P ∋ 〈Q N〉 then it follows that 〈Q N〉 is a valid permission and thus

(reflexivity) 〈Q N〉 ; 〈Q N〉 and if Q → R then by L1 and P3 the following
holds.

P ∋ 〈P N〉 ∧ P → Q ⇒ 〈Q N〉 ; 〈P N〉 (6)

The permission ordering ; is intended to be reflexive and transitive. Tran-
sitivity can be influenced by the reduction of a local principal name referenced
within a local permission name. Permission reduction is defined by the following
rule, whereby given principals P and Q, permissions X and Y and a name N

then

X ; 〈P N〉; P → Q; 〈Q N〉 ; Y ; Q � 〈P N〉

X ; Y
[L2]

If we consider well-defined (held by principals) permissions X, Y and Z then by
reflexivity of → and ; it follows that permission ordering is transitive in the
sense that:

X ; Y ∧ Y ; Z ∧ Q � Y ⇒ X ; Z (7)

One can consider proposition (7) in the context of a conventional Trust Man-
agement system whereby some ‘super security authority’ effectively asserts a
global preorder over permissions (PERM,⊑). For example, the ordering over
s-expression tags as implicitly defined by [13]. This ‘super user’, corresponding
to Q in Proposition (7), can, in a sense, be regarded as accepting accountability
for the ordering and thus the set (PERM, ;) forms a preorder. In the truly
open/decentralized scenario there is not one but a number of separate super
security authorities, each asserting accountability and defining the ordering over
the permissions that originate within their domain.

Rule L2 supports inferences based on principal name reduction, that is,

〈Q N〉 ; X ∧ P → Q ∧ Q � 〈P N〉 ⇒ 〈P N〉 ; X (8)

and

X ; 〈P N〉 ∧ P → Q ∧ Q � 〈P N〉 ⇒ X ; 〈Q N〉 (9)
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Thus, for the web-server example, suppose again that KB uses local (principal)
name (KB good.com) to refer to KA, that is, (KB good.com) → KA, and uses
local permission file to refer to KA’s document permission, that is, 〈KA doc〉 ;

〈KB file〉. As originator of the permission we have KA � 〈KA doc〉, and on the
basis that (KB good.com) is a local name for KA, then by Rule A3 we have
(KB good.com) � 〈KA doc〉 and in turn, by Rules L1 and A4 we can deduce
(KB good.com) � 〈(KB good.com) doc〉.

By reflexivity 〈Q N〉 ; 〈Q N〉 on well-defined permissions, it follows from
Proposition (8) that

P → Q ∧ Q � 〈P N〉 ⇒ 〈P N〉 ; 〈Q N〉 (10)

The reader should compare this proposition (10) with

P → Q ∧ Q ∋ 〈P N〉 ⇒ 〈Q N〉 ; 〈P N〉 (11)

which can be derived from Rule L1 (by reflexivity 〈P N〉 ; 〈P N〉). Intuitively,
as far as permission ordering is concerned, there is no distinction between using
a group name or its member name in a permission when the member is willing
to be accountable. However, if the member is not willing to be held accountable
((10) does not apply), then it is not necessarily the case that a permission in
the members name space is as authoritative as that permission for the group.
This also illustrates why, within the logic, it is not considered safe to arbitrarily
apply principal name reduction to principal names within permissions.

5 Subterfuge-Safe Trust Management

A conventional Trust Management compliance check, given a collection of dele-
gation statements/credentials, corresponds to a query: (by principal P ) is it safe
to carry out the action authorized by permission X, as requested by principal

Q? This is evaluated by determining whether P
X

=⇒ Q can be deduced. If the
principal P originates the permission as X = 〈P N〉 then it follows that the
principal holds (P ∋ X) and is accountable (P �X) for the permission and that
there is no ambiguity as to the meaning of the permission.

However, P may wish to carry out a compliance check on permissions that it
did not originate. For the web-server example, perhaps KB provides a mashup
that includes documents from good.com, and checks whether the requester holds
a permission 〈(KB good.com) doc〉 that originated from KA. In this case, KB

will want to be sure that the permission can be tied to a principal willing to be
held accountable, that is that (KB good.com) � 〈(KB good.com) doc〉. A check
for authorization is therefore defined as follows.

5.1 Checking for Subterfuge-Safe Authorization

A subterfuge-safe compliance check corresponds to the query: (by principal P )
is it safe to carry out the action authorized by permission X, as requested by
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principal Q with principal R held accountable? This is evaluated by determining
whether the requester holds the permission (Q ∋ X) and that R is accountable
(R � X) can be deduced. In this paper we assume that the principal claimed to
be accountable is provided in the query. Future research will consider how an
accountable principal might be searched for as part of the query.

Note that P may wish to check, in addition, whether it delegated the author-

ity to Q (P
X

=⇒ Q) or whether Q received the permission X from another source
(that is presumably trusted by P , by virtue of P willingness to query Q ∋ X).

5.2 Subterfuge-Safe Delegation

Before signing a delegation statement a principal should determine whether it
might lead to subterfuge, in particular the delegating principal should check
that some principal can be held accountable for actions associated with the
permission.

A subterfuge-safe delegation check corresponds to the query: (by principal P )
is it safe to delegate permission X to Q whereby R can be held accountable? This
is evaluated by determining whether R is accountable (R�X) and that P trusts

the principal providing the accountability (P
X

=⇒ R). If the check succeeds then

P asserts P
X

=⇒ Q.
Reconsider the subterfuge attack from Section 3, but where local permissions

are used. Suppose that KM intercepts the delegation KA
〈KA doc〉

=⇒ KB so that

KB is unaware of its existence. Principal KM asserts KM
〈(KM bad) doc〉

=⇒ KB,
and informs KB that (KM bad) → KM . However, KM conceals from KB that
(KM bad) → KA and therefore, its not unreasonable for KB to mistakenly think
that 〈(KM bad) doc〉 is a permission related to the bad domain. In thinking this,
KB wishes to delegate the permission (with (KM bad) accountable) to KE who
is considered to be associated with the bad domain. However, this delegation is
not subterfuge-safe since it is not possible to derive (KM bad)�〈(KM bad) doc〉.
While KM does originate 〈KM doc〉 and by rule A3 we can infer (KM bad) �

〈KM doc〉, however, we cannot infer that the principal is also accountable for
〈(KM bad) doc〉.

Continuing the web-server example, the malicious principal KM could elect to
assert accountability for this permission and thus (KM bad) � 〈(KM bad) doc〉
can be derived. This highlights an underlying assumption in the logic that a
declaration of accountability is taken as formal evidence of the principal’s will-
ingness to be held to account, regardless of their actual intent or reputation
outside of the logic. Therefore, subterfuge-safe delegation also requires that the
accountable principal is trusted by the delegator. In this case KB does not trust

permissions issued by KM , that is, KB
〈(KM bad) doc

=⇒ KM cannot be derived.
Note that the current version of the logic assumes that if we trust a principal for
some permission then we are willing to accept any assertion the principal may
make over their willingness to accept accountability for that permission. While
it is possible to avoid this by using separate permissions to reflect authorization
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versus accountability, distinguishing between trust for authorization versus trust
for accountability within the logic is a topic for future research.

6 Discussion and Conclusion

Signed permissions are an effective approach to avoiding ambiguity in permis-
sion names. This paper follows SDSI’s rationale for local principal names and
proposes an extension to SPKI/SDSI that uses local permission names in or-
der to provide support signed permissions and thereby provide an authorization
language that is delegation subterfuge-safe. The logic supports truly decentral-
ized Trust Management whereby a principal may define, without reference to
any central authority, its own local permission namespace, define a permission
ordering over that namespace and also orderings relative to permissions in other
namespaces.

Typical trust management/distributed authorization systems make the im-
plicit assumption that there exists a ‘super security authority’ that defines the
permission namespace and ordering. In [16] a role-based distributed authoriza-
tion language is described that provides subterfuge-freedom by constraining del-
egation to permissions that have an associated ‘originating’ public key. While
effective, this approach suffers the challenge of reliably referencing public keys
and relies on a globally-defined function to define permission relationships (corre-
sponding to ordering). The FRM distributed policy management framework [8,9]
permits principals to locally define their permissions and orderings, and while it
does permit a principal to define permission relationships with local policies of
other principals, it is limited to permission orderings that form tree-hierarchies.
FRM also uses signed permissions to avoid subterfuge, but effectively relies on
using public key values/X509 certificates as principal identifiers.

The proposed logic is comprised of 13 axioms in addition to the 5 axioms that
describe SPKI/SDSI. The focus of this paper has been to propose and develop
an understanding for linked local permission names. While the 10 propositions
derived from these axioms provide some degree of confidence in the logic, future
work will develop a semantics in order to demonstrate soundness and complete-
ness. Like Subterfuge Logic [15], this paper does not characterize subterfuge as
a behavioral property, rather it is implicit in its axioms and the interpretation
of accountability. Given the analogy between subterfuge-attacks on certificate
chains and freshness-attacks on authentication protocols [15], we are currently
investigating an attacker-model approach based on [11] to verify the proposed
model.
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