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Abstract. Mandatory label-based policies may be used to support a
wide-range of application security requirements. Labels encode the secu-
rity state of system entities and the security policy specifies how these
labels may change. Building on previous results, this paper develops
a model for a kernelized framework for supporting these policies. The
framework provides the basis for, what is essentially, an interpreter of
multilevel programs: programs that manipulate multilevel label data-
structures. This enables application functionality and security concerns
to be developed separately, bringing with it the advantages of a separa-
tion of concerns paradigm.

1 Introduction

Conventional multilevel secure systems place all trust in the underlying trusted
computing base (TCB), regarding most of the operating system and applications
software as untrusted [20]. Clark and Wilson [3] argue that security should be
defined across both the operating system and applications. Under their model,
a secure system may be viewed as a certified application running on top of a
trusted computing base (TCB). Certifying an application is analogous to arguing
(to a degree) it’s correctness according to the application’s security requirements;
the TCB is expected to have undergone some sort of security evaluation.

A problem with this approach is that it encourages an intertwining of the
functional and security-critical code that makes up an application. For example,
interpreting the original Clark-Wilson model, the TCB is expected to support
(enforce) static segregation of duties. However it appears that dynamic segre-
gation of duty must be implemented/intertwined within the application itself
[4,12]. Intertwining makes the application complex and reasoning more difficult
since both security and functionality concerns have to be dealt with at the same
level of abstraction.

We argue that when developing an application the security and functionality
concerns of the application must be separated, both at the conceptual level and
at the implementation level. At the conceptual level, a loose coupling between
concerns facilitates the verification of security, while at the implementation level
we want an architecture and programming environment that will support the
concerns securely.



As a software engineering paradigm, techniques that support separation of
concerns for synchronisation, real-time constraints, failures and others have been
studied. The reader is referred to [7] for an introduction. One could view pol-
icy neutral architectures such as [13,17] as a step in the direction of providing
support for the separation of (security) concerns paradigm.

We are interested in supporting separation for multilevel security concerns.
In this case, an application developer designs and implements an application
in terms of separate security and functionality components. Once the security
concerns meet certain verification conditions, an underlying TCB is expected to
ensure multilevel security.

The dynamic label-based policies proposed in [4, 5] can be used to support
this separation. From an object-oriented perspective, labels are used to encode
security relevant characteristics of objects and provide relabel functions that
specify how the labels may change. Given some functional object, we then argue
that it also has an associated security object whose state corresponds to its label
and has methods that define how its state (label) may change. This security label
object is like a meta-object, providing security details about the information in
the associated object.

These label-based policies use the Bell-LaPadula model as their underlying
access control model and require a special trusted label manager which mediates
and interprets requests to update labels. A variety of application security policies
can be encoded in terms of label-based policies, including Chinese walls, dynamic
segregation of duties and group access policies [4, 5].

It is desirable to have a framework that can support a wide range of label-
based policies. In [5] a model is described that allows any subject to relabel any
object label, where the relabel functions meet certain security non-interference
style requirements. These secure canonical upgrade policies (SCUP) are sup-
ported securely so long as high-level changes may not be detected by low-level
subjects. A framework that supports such policies in a message-filter [8] based
multilevel secure object store is described in [5]. However, the framework in [5]
does not consider how the label manager might be developed in practice. This
paper develops a kernelized-based model of the label manager.

The paper is organised as follows. Sections 2 and 3 describe the basic model
for relabel policies. They are based on [5], but with some minor modifications
that make kernelization possible. Sections 4, 5 and 6 give the noninterference
analysis, kernelization, and correctness, respectively, of the label manager. A
number of state-invariants for the kernelized manager are explored in Section 7;
these would contribute towards an efficient implementation. Section 8 discusses
the results and contributions of the paper.

The Z notation [16] is used to provide a consistent syntax for structuring
and presenting the mathematics in this paper. In using Z, it has been possible
to check the mathematics using the Z/EVES tool [15]. Appendix A gives a brief
overview of the Z notation used in the paper.



2 Dynamic Label Policies

An information flow policy is defined in terms of a partial ordering (_ < _) of
security levels (C') which have the usual multilevel interpretation.

__FlowPolicy|C)|
_<_:C«C

Vu,v,w: Ce
(u<u)A
(u<vAhv<u=u=uv)A
(u<vAhv<w=u<w)

Security labels (L) are datatypes that are used to encode security relevant char-
acteristics of objects. For example, a purchase order object could have a label
indicating that it has been requested, but not yet authorised. In [5] the security
label is also used to specify the desired security level of an object. An object’s
label may change according to relabel functions which form part of the policy.

RelabelPolicy[C, L, F]
(FlowPolicy[C]

Fr:(FxCxL)—L

Given a set of relabel function identifiers F, then Fr(f, s, a) = b means that an
entity at level s may use function f € F to change label a to b.

Example 1 A simple mark-for-upgrade policy uses security labels to encode
details about future upgrade levels for an object. An object label has a format
u:-A, where u indicates it’s current level and A gives a list of future upgrade
levels. For example, the label (u:-[u,t]) of an unclassified (u) object indicates
that it should be upgraded to top-secret (t:-[t]) when an upgrade is requested.

A requester at level r invokes the function mark to tag the label with its
level (r). Function up upgrades the object’s label u:-A to the next level in A.
For example, the label (u:-[u,t]) becomes (t:-[t]), when up(u, (u:-[u,t])) is
invoked. For the purpose of illustration, Figure 1 gives a fragment of a (Haskell)
functional-style prototype of this relabel policy (project and Invisible will be
described later)!. Functions are specified in an equational-style and expression
[vlv<-tags, w<=v] is the list of all v that are members of list tags and that
dominate w. A

To determine whether the relabel functions mark and up are secure it is
necessary to first define, as part of the policy, how users at different levels view
labels. This is defined in terms of label projection, where a user at level v,
inspecting label a, actually sees the label b = (a [ v). A canonical policy may be

! This policy is valid only for flow policies that are total orders. A specification of a
more general policy can be found in [5].



data Label level = Invisible | level:-[level] --datatype for label

mark(req, (u:-tags)) —--level req request marks label (u:-tags)
| (u<req) = u:-(req:tags) --hi may mark lo label
| otherwise = u:-tags --no change in label
up(req, (u:-tags)) —--level req request upgrades (u:-tags)
| req<u && newtags==[] = (u:-tags)
| otherwise = (minimum newtags) :-newtags

where newtags [v |v<-tags,u<v]

project((u:-tags),v) --label (u:-tags), as seen from level v
| u<=v = (u:-[wlw<-tags, w<=v])
| otherwise = Invisible

Fig. 1. Sample Relabel Policy Prototype

thought of as a relabel policy that has a view-equivalence relation a [v="50 [ v
(in the non-interference sense) defined over its labels. By default, there is a
special label that is used to represent label projections that are invisible.

— CanonicalPolicy|C, L, F]
RelabelPolicy|[C, L, F]

_[_:LxC—1L
inwisible : L

Vu: C e invisible | u = invisible
Vu:C; f:F e Fr(f,u,invisible) = invisible

Example 2 Continuing Example 1, Figure 1 defines the projection operator for
the policy. A user may view only those tags on a label that the user’s level domi-
nates. Thus, project(s,u:-[u,t]) returns label (u:-[u]). If the label is not visible
to the viewer, then it is invisible. For example, project(u, s:-[s, t]) returns (by
label equivalence) the label Invisible.

There are a number of conditions that a canonical policy must uphold in order
to be secure. These ensure that a high-level user cannot interfere, in a visible
way, with low-level labels. Sections 3 and 5 describe a subsystem for managing
labels that is multilevel secure if the canonical policies that it supports uphold
these conditions.

_ CP_CView[C, L, F]
CanonicalPolicy[C, L, F

Vo,w:C; a:Le
w<v=alw=alvw




This condition (consistent view) specifies that a user may not test for differences
between two labels that are viewed as the same from the projection of the user.

_ CP_NWD|C, L, F]
CanonicalPolicy[C, L, F)
Vf:F;s,v:C;a:Le

“s<v=alv=Fr(f,s,a) v

This corresponds to the unwound non-interference requirement that a high-level

user may not interfere with a low-level view of a label (no write down).

__ CP_NRU|C, L, F|
CanonicalPolicy[C, L, F)
Vf:F;s,v:C;a:Le

fR(fvsva) rU:fR(fvsva {1))

This corresponds to the unwound non-interference requirement that a change
in a low-level view of a label may not depend on any high-level information in
the label (no read up). This requirement is slightly stronger than that originally
specified in [5], but was found to be necessary for the kernelization of the label
manager. We have,

theorem CP_NRUprev [C, L, F]
VY CP_NRU|C,L,F); f: F; s,v:C; a,b: Le
a [U:b fvéfR(fvé’va) {'U:F'R(fasab) [U

A policy that upholds these three conditions is called a secure canonical upgrade
policy (SCUP).

SCUP|C, L, F]
CP_CView|[C, L, F|
CP_NWDI[C, L, F|
CP_NRUI[C, L, F|

Example 3 The policy in Figure 1 is overly simplistic and is for illustrative pur-
poses only. The policy described in [5] is an example of a more detailed relabel
policy that was designed for the message-filter based model [8]. The scheme sup-
ports the relabelling of objects such that, when upgrades are requested, objects
are migrated from one (single-level) object store to another. Object migration
ensuring referential integrity may be achieved by viewing migration as a mul-
tilevel garbage collection [2] problem, or by encoding proxy information [10] in
security labels. See [5] for a more detailed explanation. A

3 Label Manager

The label manager [5] provides a trusted interface to a SCUP policy. Its trusted
operations make up the TCB extension required for standard multilevel secure



systems. While it was intended specifically for message-filter based multilevel
OODBMS, we believe it to be sufficiently general to be applicable to other
systems.

Object identifiers are used to uniquely identify objects within an object-
oriented database. An object identifier is given as a tuple (u, i), where identifier
1 uniquely identifies an object at a security level u. Thus, given ID, the set of
all identifiers, define

0ID[C] == (C x ID)

LabelStore defines the state of the label manager. It is accessed via the op-
erations that make up its programming interface. Each object o : OID has an
associated security label d(0).

LabelStore|C, L]
§: 0ID[C] + L

The label of an object may be changed according to the relabel functions
defined in a SCUP policy. This is done by invoking the Relabel operation, where
a request is made at level req? to apply the relabel function rfun? to the label
of object o0id?.

— Relabel[C, L, F|
SCUP[C, L, F]
ALabelStore[C, L)

req? : C

0id? : OID

rfun? : F

if (0id? € dom )

then ¢’ =6 @ {0id? — Fr(rfun?, req?, §(0id?))}
else § =0

The Operation ViewLabel returns, as lab!, the appropriate projection of the
label of object 0id? when requested at level req?. Note that if the object does not
exist then the label invisible is returned; this prevents a low-level user testing
the existence of high-level objects.

— ViewLabel[C, L, F]
SCUP[C, L, F]
Z LabelStore|C, L]

req? : C
0id? : OID
lab! : L

if (0id? € dom ¢ A first(oid?) < req?)
then lab! = (0 0id?) | req?
else lab! = invisible




4 Security Analysis

Since the actions of the label manager are not mediated by the security kernel
we must prove that it is multilevel secure. This is done by using an unwound
version of non-interference [6, 14] to prove that no series of high-level requests to
the manager can interfere with what a low-level, or disjoint-level, user can view.

State LabelStore looks the same as state LabelStore’, when viewed from se-
curity level vl, if the label projections of the objects, whose levels are dominated
by wvl, are equal. This is formally specified as follows.

_ VEquiv[C, L, F|
LabelStore[C, L]
LabelStore'[C, L]
SCUP|C, L, F]
vl C

Vo : OID[C] | first(o) < vl e
(0 € dom(d) & o € dom(d)) A
(0 € domdNdomd’ = (o) [ vl =08 (0) | vl)

The first unwinding condition requires that each operation, when requested
at a high-level, cannot interfere with a low-level view of the state (No Write
Down). We have

theorem Relabel NWD [C, L, F]
V Relabel[C, L, F]; vl : C' o
= (req? < ol) = VEquiv|C, L, F]

theorem ViewLabel NWD [C, L, F]
V ViewLabel[C, L, F]; vl: C
- (req? < vl) = VEquiv|[C, L, F|

The second unwinding condition requires that the outcome of an operation,
requested at a low-level, cannot be based in any way on the high-level part of
the state (No Read Up). We have

theorem Relabel_NRU [C, L, F]
V Relabel[C, L, F|;
Relabel[C, L, F|[6"/8,6" ]§']; ol : C
e VEquiv[C, L, F][0" /0'] = VEquiv[C, L, F][6"" /]

theorem ViewLabel NRU [C, L, F]
V ViewLabel[C, L, F;
ViewLabel[C, L, F][6" /6,0" /§', lab!" /1abl]; vl : C
o (VEquiv[C, L, F][6" /8] A (req? < vl))
= lab! = lab!”



5 A Kernelized Label Manager

The message-filter model [8] supports multilevel security in object-oriented database
systems according to the Bell and LaPadula (BLP) model [1]. A message filter
mediates all message passing between objects such that information may flow
according to the information flow relation. These database objects are viewed
both as objects and subjects in the Bell-LaPadula model. As objects, they have
state, and as subjects, they execute actions by sending messages.

Implementation of the message-filter model does not rely on the construction
of a special trusted OODBMS: if the message-filter lies within the TCB of a
multilevel system, then the remainder of the application can be based on existing
and untrusted OODBMSs. The (multilevel) persistent object store is partitioned
into a collection of single-level stores (see Figure 2). The underlying security
kernel, upholding the usual BLP axioms, ensures that it is not possible for an
(untrusted) OODBMS to violate the multilevel policy.

Object Stores

[u,t]] topsecret

Message
[u]] secret

Filter \ F
@ (w:-Tu] unclassified

Fig. 2. Message Filter & Single Level Stores

In [5], the label manager runs as a separate trusted-subject servicing requests
from objects in the the multilevel object store. Under this approach the entire
label store (0) forms part of the state of the manager, and since it is multilevel, it
must be protected from direct access by any untrusted object. While its high-level
specification (above) has been proven to be secure, an implementation should be
constructed in terms of untrusted components (kernelized), if at all possible. A
refinement of the label manager is now specified which, given a suitable message
filter, can be kernelized in its entirety.

The basic strategy is to replicate each label for every level. A relabel broad-
casts the request to every replicated label at levels that dominate the level of
the request. A request to view returns the value of the label, at the level of the
requester. The scheme works so long as broadcasts are implemented in a serial-
izable and secure manner. Section 7 will outline an optimisation to the scheme:
in practice it is not actually necessary to replicate at every level. Figure 2 il-
lustrates this replication. In the abstract state the object o : OID has label
6(0) = (u:=[u, t]). In the concrete state (implementation), the label is replicated
at every level whereby the replicated value gives that level’s view of the label.



Each replicated label is regarded as a single-level object (of type object label
class) contained in a single-level object store. These objects, in turn, provide
relabel and view-label methods.

LabelStore0[C, L]
FSO . C x OID[C] — L

CurrOIDs : P OID[C)

For the purposes of modelling this implementation approach, the concrete state
is specified in terms of a function dy whereby do(u, 0) gives the level u copy of
o’s label. The set CurrOIDs defines the current set of objects Any state may
serve as an initial state as long as replicated views are consistent.

__InitialLabelStore0[C, L, F
SCUP|C, L, F]
LabelStore0[C, L]

Yo: CurrOIDs; u,w: Clu<we
do(u, 0) = dg(w,0) [ u

It turns out that ImitialLabelStore0 also defines a state invariant that is main-
tained by the concrete relabel and view-label operations.

To relabel the label of object 0id? a relabel request message should be sent
to the replicated copy of the label (represented as d¢g(req?, 0id?)) at the level
of the requester req?. The relabel function rfun? is applied to this label and
the request is also broadcast to every replicated copy of the label whose level
dominates req?. This is specified by concrete operation Relabel0.

If these label objects are maintained in a multilevel object store then the effect
of the relabelling broadcast must be atomic across the single level stores. Thomas
and Sandhu [18,19] describe a message-filter based architecture that support
write-up in a secure and serializable manner. This means that the broadcast
(a write-up) specified in Relabel0 can be supported, in theory. The SINTRA
replicated database [9] also supports both replication and write-ups and therefore
should be capable of supporting the relabelling manager.

— Relabel0[C, L, F)
SCUP|C, L, F]
ALabelStore0[C, L]

req? : C
0id? : OID
rfun? : F

if (0id? € CurrOIDs)
then §) =g @ {u:C|reqg? <u
o (u, 0id?) — Fr(rfun?, req?, do(u, 0id?)) }

else &) =6y

CurrOIDs' = CurrOIDs




si-[s.t topsecret
{ {
}1:— u,s secret
1
@ =ti:-[u unclassified
Relabel(mark, s, 0) Relabel(up, u, 0)

Fig. 3. Applying Relabel Functions

Example 4 Figure 3 illustrates the effect of a secret request to mark the la-
bel of object o in Figure 2, followed by an unclassified request to upgrade the
object. In this figure the migration of o from unclassified to secret, as a result
of the upgrade, is also illustrated. How this migration is achieved in practice is
considered in [5]. A

At any moment, the value dg(u, 0) gives the view of label o from level w.
Therefore, the concrete version of ViewLabel is specified as follows.

_ ViewLabelO[C, L, F]
SCUPI[C, L, F]
Z LabelStore0[C, L)

req? : C
oid? : OID
lab! : L

if (0id? € CurrOIDs A first(oid?) < req?)
then lab! = dg(req?, 0id?)
else lab! = invisible

Thus, to determine the label of an object 0id?, the requester simply makes the
request to the replicated copy of the object’s label at the level of the requester.

Note that LabelStore( specifies that an object’s label is replicated at every
level and not just at those levels that dominate the object’s level. This may seem
surprising, but it is desirable if further restrictions on SCUP policies are to be
avoided. Maintaining a low-level version of a high-level object’s label means that
a low-level user can view the low-level effects that low relabel requests may have
on the high-level object.

If this flexibility is not required then low-level views of high-level object labels
could, for example, be assumed to be invisible, that is, 6(0) | v = invsible, where
first(o) £ w. Thus, we always have do(u, 0) = invisible for first(o) £ v and it
becomes necessary to replicate only the label of o at levels that dominate first(o).

In [5], a create label operation is specified which is used to enter a label for a
new object in the label store. Its specification and refinement is straightforward;

10



we do not include it here for reasons of space. However, we must address, at least
in broad terms, the issue of entering new object label details into the replicated
label store. Recording a new object label [5] is effectively a matter of adding
tuple ((req?, newid?) — lab) to J: a requester at level req? has created a new
object with identifier newid? (in the object store at level reg?) and wishes to
assign it label lab.

With the concrete state implementation this is achieved by adding replicated
entries {u : C | req? < u o (u,(req?, 0id?)) — lab | w} that correspond to
a broadcast write-up from level req?. If lab | u = inwvisible for all other levels
(req? £ u) then we are done. However, consider the case where the relabel policy
permits low-level information to be encoded in what are, ostensibly, high-level
labels. The message-filter will not permit a request at level req? to create a label
object at a disjoint or lower level. This problem is easily solved by adapting the
Relabel0 implementation such that the broadcast upwards will replicate missing
labels, assigning them default values that can be specified as part of the policy.

6 Correctness of Refinement

Since the kernelized label manager is designed to be implemented in terms of
untrusted components, with multilevel security enforced by the underlying TCB,
it is not strictly necessary to prove that it is secure. However, it is necessary to
prove that it is correct. This corresponds to proving that the behaviour of the
concrete label manager is consistent with its abstract specification, that is, it is
a refinement in the sense of [16].

Data Refinement In the kernelized label manger, do(u, o) gives the view of
label o from level u. In the abstract specification this corresponds to d(0) [ w.
Therefore, given any concrete state we can retrieve its abstract equivalent. The
abstraction (retrieve) relation relates the concrete and abstract states.

__Abs[C, L, F)
SCUP[C, L, F|

LabelStore|C, L]
LabelStore0[C, L]

dom 6 = CurrOIDs

Vo:CurrOIDs; u: C e
0(0) | u=do(u,o)

Initial States Theorem. Any state of LabelStore may serve as a suitable initial
abstract state. We can retrieve from any initial concrete state a valid abstract
state, that is,

theorem InitialStates [C, L, F)|
V InitialLabelStore0[C, L, F] o
3 LabelStore[C, L]  Abs[C, L, F)|

11



Operation Refinement All operations, both abstract and concrete are total,
in the sense that they are defined for all possible input values. Thus it is safe to
apply a concrete operation whenever it would be safe to apply the same request
to its corresponding abstract form. If the label manager is in some concrete state,
related to an abstract state by Abs, and the manager moves to a new concrete
state as a result of a concrete relabel, then this new concrete state must be
related (by Abs) to an abstract that can be reached by an abstract relabel from
the original abstract state. This is illustrated in Figure 4, where schema AbsAfter
is used to retrieve the abstract after state. Operation ViewLabel has a similar
correctness requirement.

LabelStore Relabel LabelStore’
Ab AbsAfter
LabelStore0 Relabell LabelStore0’

Fig. 4. Correctness of RelabelO.

AbsAfter[C, L, F] = Abs[C, L, F|[8'/6,0( /00, CurrOIDs' | CurrOIDs]

theorem RelabelCorrect [C, L, F|
¥ Relabel0[C, L, F]; Abs|C,L,F] e
34’ : OID[C] - L e AbsAfter[C, L, F] A Relabel[C, L, F]

theorem ViewLabelCorrect [C, L, F]
V ViewLabelO[C, L, F]; Abs[C,L,F] e
36’ : OID[C] + L e AbsAfter|C, L, F| A ViewLabel[C, L, F|

7 Optimisation

We outline an optimisation to the realization of the concrete label manager
which, wherever possible, avoids replicating labels. First, we extend the definition
of SCUP with the addition of a label join operator (_ ® _), where a ® b gives
a label representing the join of labels a and b. For consistency we assume that
joining a lower-level view to a label’s higher-level view makes no difference, that
is,u<v=alv=_(a]v)©®(a] u). Assuming a generalised form of the join
operator, () A, which joins the set of labels A, then the state invariant

Y LabelStore0[C, L]; v : C; o: OID[C]
do(v,0) =O{u:C|lu<vedy(u,o)}

12



follows, that is, we have a consistency between a view of a label and its lower
views. Under certain circumstances it may be possible to compute the view,
at level vl, of object vo’s label by simply joining those views that are strictly
dominated by vl. Define this view-invariant property as

— ViewInv[C, L, F]
SCUP|C, L, F]
LabelStore0[C, L]

ol . C
vo : OID[C]

do(vl,v0) = O{u:C|lu<vlAuuvled(u,vo)}

If this property holds for some vl and vo, the result is that it is not necessary to
store a replicated version of object vo’s label at level vl, as it can be computed
by joining its lower-level views. Thus, when a requester at level req? stores a new
label for a new object with id (req?, id?), just one entry (req?, (req?,id?)) — lab)
is stored (assuming that lab = lab | req?).

Relabelling maintains this view-invariant for views that cannot be altered by
the request, that is,

Y Relabel0[C, L, F|; ViewInv[C,L,F| e
= (reg? < ol) = ViewInv[C, L, F[6,/do)

Thus, if vo’s label is not replicated at level vl (req? £ vl) before the relabelling,
it is not necessary to replicate it after the operation (this trivially follows from
the definition of Relabel0). However, vo must be replicated at all levels that
dominate req?: this allows the relabel to be broadcast correctly. If vo is not
currently replicated at level req? then its value is computed from the joins of
lower-level views (that exist) and the relabel function applied. Since write-ups
are allowed by the relabel policy, a relabelling may modify higher-level views
differently to lower-level views. Therefore, the label computed for vo at level
req? must be broadcast (with the relabel function) to all levels that dominate
req?.

Example 5 Consider the policy from Example 1. An unclassified object o has
label (u:-[ul), which is stored in the unclassified object store (no replication).
When a top-secret user requests a mark, its top-secret view is computed as
(u:-[ul), function mark is applied, giving (u:-[u,t]), which is saved in the
top-secret store. A secret mark request to object o results in the computation
of a secret view of the label (u:-[ul), which is relabelled as (u:-[u,s]) and
stored. This relabel is also broadcast to the top-secret replicated label, changing
it to (u:-[u,s,t]). AN

The drawback of this scheme is that even with a modest number of relabel
requests, it is likely that an object’s label will end up being fully replicated. If

13



we limit the relabel policy such that write-ups are not permitted then it is not
necessary to replicate when the broadcast is complete.

_ SCUP_NWUIC, L, F]
SCUP[C, L, F]
Vf:F;s,v:C;a:Le

s#Ev=alv=Fr(f,s,a) v

In our opinion, this does not seem to be overly restrictive and we have,

VSCUP_NWU|C, L, F]; Relabel0[C, L, F]; Viewlnv[C,L,F] e
(req? # vl) = ViewInv|[C, L, F)[6{/d0]

In this case, if a label is not replicated at level vl (req? # vl) before the re-
labelling, it is not necessary to replicate it after the operation. A relabelling
operation must, if necessary, replicate the label at level req?, and then broadcast
the relabel function onto those existing replicated copies.

With this scheme, if a object label is not replicated at level req? then the
ViewLabelO operation must compute it by joining the object’s replicated labels
from lower views. If the flow policy forms a lattice then it is possible to define the
policy so that the label can be computed by joining labels whose lowest upper
bound equals that of the label being calculated (req?).

8 Discussion and Conclusion

The label-based framework may be used to support the separation of concerns
paradigm. An application may be developed, at a conceptual level, in terms of
functional and security components. The security concerns are modelled in terms
of objects or abstract data types: relabel functions (methods) which define how
labels (state) may change. These security and functionality concerns may also
be separately implemented. In addition to ensuring multilevel security of the
functionality concerns, the framework ensures multilevel security and integrity
of the security concerns.

This framework is based on the Message-Filter model for secure multilevel
secure OODBMSs, extended to incorporate a trusted label manager. Section 5
gave a model for its kernelization, relying on a secure and consistent write-up
mechanism such as those described in [9, 18]. But our results are not limited to
the Message-Filter model, we believe that they could be used in any multilevel
secure architecture that supports write-up.

The label-manager provides the basis for a multilevel program interpreter.
While the policy in Figure 1 is a very simple example of a multilevel program,
the framework could be used to support more elaborate security concerns such
as those in [4,5]. An interesting area for future study is to consider how this
framework could be combined with recent work on compile-time information
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flow analysis of programs [21,11] so that multilevel data-structures could be
supported. These are topics for future study.

In one sense, the label manager is like a ‘universal’ trusted subject: an in-
terpreter of trusted programs (relabel policies). A result of Section 4 is that if
the relabel policy is SCUP then multilevel security (confidentiality) is ensured.
However, an implication of Section 6 is that any relabel policy can be securely
supported by the kernelized manger, but to maintain integrity, it is necessary to
prove that the policy is SCUP.

We make two interesting observations about this relationship. Firstly, to
prove integrity for this system it is necessary to perform what is effectively
a non-interference analysis of the policy program. Secondly, if integrity is as
critical a requirement as confidentiality then, whether we kernelize or not, we
must nevertheless perform the non-interference analysis. We believe that similar
observations can be made about any ‘trusted’ subject.
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A The Z Notation

A set may be defined in Z using set specification in comprehension. This is of the
form { D | P e E }, where D represents declarations, P is a predicate and E an
expression. The components of { D | P @ E } are the values taken by expression
FE when the variables introduced by D take all possible values that make the
predicate P true. For example, the set of squares of all even natural numbers is
defined as {n : N | (n mod 2) = 0 ® n? }. When there is only one variable in the
declaration and the expression consists of just that variable, then the expression
may be dropped if desired. For example, the set of all even numbers may be
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written as {n : N | (n mod 2) = 0}. An equivalent way to define this set is as
{n :N e (2x%n)}—the predicate may be dropped if it equals true.

In Z, relations and functions are represented as sets of pairs. A (binary)
relation R, declared as having type A < B, is a component of P(A x B). For
a € A and b € B, then the pair (a, b) is written as a — b, and a — b € R means
that a is related to b under relation R. Functions are treated as special forms of
relations.

The Schema notation is used to structure specifications in Z. A schema
such as FlowPolicy defines a collection of variables (limited to the scope of
the schema), and specifies how they are related. Schema FlowPolicy[C, L, F| is
defined in terms of generic types [C, L, F], which must be instantiated when the
schema is used. Schemas may be defined in terms of other schemas. For example,
the inclusion of FlowPolicy within RelabelPolicy is equivalent to the syntactic
inclusion of the variables and predicates of FlowPolicy within RelabelPolicy.
Schema predicates are useful for writing theorems: in Section 6 the Initial States
Theorem is a universal quantification over all the variables of InitialLabelStoreQ
such that it’s predicate part implies the existence a ¢ such that the predicate
part of Abs holds.

The decorated schema LabelStore’[C, L] is LabelStore[C, L] with all variables
primed. Schema variables may be renamed in the usual way: LabelStore[C, L][¢' /9]
an alternative way of writing LabelStore’[C, L]. The schema ALabelStore is a
syntactic sugar for LabelStore A LabelStore’. 1t is typically used for specifying
state transitions, with undecorated variables representing ‘before values’ and
decorated (primed) variables representing ‘after values’. Schema ZSCUP is the
schema ASCUP, but with the constraint that variable values are unchanged.

first(a, b) Component a of ordered pair (a, b)

PA The power set of A

A< B Relations between A and B

A— B Total functions from A to B
A+ B Partial functions in A — B

dom R,ran R Domain and Range of relation R
fég The functional override of f by g

Fig. 5. Some Operators from the Z Toolkit

B Theorem Proving with Z/EVES

This paper was typeset using LaTeX with the z-eves style. Thus, the LaTeX
source of the paper acts as the input specification to the Z/EVES system [15].
In addition to using the system to syntax-, type- and domain- check the specifi-
cations in this paper, Z/EVES was used to verify the security and correctness of
the label manager. The specification source, along with the Z/EVES proof scripts
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for all theorems are available from the author or under the author’s WWW page
at <URL:http://www.cs.ucc.ie/sfoley.html>.

18



