Building Chinese Walls in Standard Unix*

Simon N. Foley
Department of Computer Science,
University College, Cork, Ireland.

(s.foley@cs.ucc.ie)

Abstract

The set-user-id facility in Unix can be used to form the basis for the
implementation of a wide variety of different security policies in Unix.
We show how the Chinese Wall security policy can be implemented
using this facility. The approach is not appropriate for security criti-
cal applications: it serves to illustrate that it can be done in a rather
simple way, and may be useful for less critical applications. Our tech-
nique also provides an approach to implementing dynamic segregation
of duties in Unix.

KEYwORDS: SECURITY Poricy MoDEL, CHINESE WALL, UNIX Pro-
TECTION, ACCESS CONTROL, CLARK-WILSON INTEGRITY MODEL.

1 Introduction

The Chinese Wall security policy is an excellent example of a commercial
non-disclosure policy. Consultants, or market analysts, consult for organi-
zations that are quoted on the Stock Exchange. An analyst must maintain
the confidentiality of organization information and is not permitted to ad-
vise an organization where she has insider knowledge of another competing
organization.

Brewer and Nash [2] formalize the Chinese Wall policy in terms of a
mandatory computer security model: organization information is stored in
datasets (objects) and a consultant (user) is not allowed access organization
information if it leads to a violation of the Chinese Wall policy. Initially,
each user has the potential to access any dataset, but as accesses are made
to particular datasets, the potential to access others is lost. This ensures

*Registered Trademark

that no conflict of interest can arise, that is, a consultant may not access
information of competing organizations.

We capture a Chinese Wall security policy in terms of a conflict-of-
interest relation [7] (ORG,_] -), where ORG is the set of organizations,
and given a,b € ORG, then a|b means that ¢ is in competition with 5. A
system enforces a Chinese Wall policy if it ensures that it is not possible
for a consultant (user) to access information about a,b € ORG, with a1b
(conflict of interest). We assume that the _| _ relation is symmetric.

Example 1 Oil companies z and y and banks z and w are quoted on the
stock exchange. The conflict-of-interest relation may be defined as

N Y
e[V
y |V
: v
w J
A consultant, Smith, working for bank, z, may not have access to bank
w information. Similarly, consultant, Jones, working for bank, w, may not
access bank z information. But both have the potential to access oil company
z and y information.
Information dissemination must be considered in the Chinese Wall policy.

z w

For example, a system must ensure that it is not possible for consultant
Jones to pass on any bank w information to Smith, leading to a conflict
of interest. Whereas Smith and Jones can conduct insider trading outside
the security perimeter of the system, possible Trojan Horse attack should
be considered. For example, a Trojan Horse embedded in software run by
Jones that forwards bank w information to Smith. A

Since the publication of the original Chinese Wall policy model [2] there
have been a number of generalizations and interpretations made; these in-
clude [4, 5, 7, 8,9, 12]. Lin [8] and Kessler [7] generalize the original model
and consider non-transitive conflict of interest, whereby alb and blc¢ does not
necessarily imply a | ¢. In this paper we use the conflict-of-interest relation
[7] to specify a Chinese Wall policy. In [4, 9, 12] the Chinese Wall policy is
modeled in terms of lattice-based Bell-LaPadula [1] style requirements, im-
plying that a Chinese Wall policy can be enforced by a suitably configured
multilevel secure system. A Chinese Wall policy can be viewed as a form of
label-based aggregation policy, and a non-interference based semantics for
such policies is given in [5].

In this paper we consider how the Chinese Wall policy can be enforced
using the standard Unix protection mechanisms. Section 2 describes a simple
method of encoding the policy in terms of Unix users and groups. Since
standard Unix enforces discretionary access controls, it cannot, in general,
constrain the arbitrary dissemination of data. This is unlike the mandatory
access control models [4, 7, 8, 9, 12] which do constrain the dissemination of
data. Thus an inherent problem with the approach proposed in Section 2 is
that it open to Trojan Horse attack such as that considered in Example 1.

This class of attack can be limited if, instead of providing arbitrary access
to organization files, files may be accessed only via special secure applica-
tions. Section 3 considers how such secure applications should be supported.
The Clark-Wilson model [3] is used to provide a basis for modeling and eval-
uating these secure applications. We show how the Chinese Wall policy can
be encoded in a slightly modified version of the Clark-Wilson model and
consider how this, in turn, can be supported within Unix. Section 4 outlines
how the Chinese Wall policy can be applied to existing secure applications
that are already described in terms of the Clark-Wilson model.

Section 5 illustrates that a Chinese Wall policy, which is usually thought
of as an aggregation policy, can alternatively be viewed as a segregation of
duty policy, and thus our proposed mechanism can be used for supporting
such policies.

2 Capturing Conflict of Interest

2.1 TUser-Groups and Access-Control in Unix

Unix supports simple access-control based protection policies. These are
defined in terms of user-ids, group-ids and access-permissions on files.

Let UID represent the set of all user-ids in a Unix system. This is
effectively the user-id entries contained in the file /etc/passwd. Let GID
represent the set of all group-ids in a Unix system. Each user is a member
of one or more of these groups. Details on group membership is contained
in files /etc/passwd and /etc/group. For simplicity we characterize this
by the function mbrs, where mbrs(g) gives the set of user-ids of users that
are members of the group g.

Associated with each file f is the file owner’s user-id, group-id and access
permissions. The latter specify the access rights that users may have on the
file. Access permissions (including, r, w and x access) may be set for: the
owner of the file (user-access); any user who is a member of the file’s group-

id (group-access), and any other user that is not the owner or in the file’s
group (other-access). The reader is referred to [6] for further information on
the Unix protection mechanisms.

Example 2 A system has user-ids smith and jones, and group-ids sales
and admin, where mbrs(sales) = {smith, jones}, mbrs(admin) = {smith}.
A file, comms, of sales commissions is created by jones and may be read by
anyone in the sales group. Permission bits, and so forth, can be captured
in a self-explanatory way by the following protection profile.

user group other

comms‘ TW- | r-- | --- |
jones sales

A

Example 3 Ounly the system administrator (user root) may create group-
ids and specify group membership. Thus we have the protection profile:

user group other
/etc/group | TW- | r-- | r-- |
root wheel

2.2 Representing Chinese Walls as User-Groups

In our initial scheme every consultant is allocated a unique user-id and
every organization a € ORG is allocated a unique phantom user-id, denoted
as uorg(a) and a unique group-id denoted gorg(a) (functions uorg and gorg
are one-to-one). A phantom user-id has no associated user. Examples of
existing phantom user-ids include uucp and daemon.

Each file (dataset) f containing data from organization a has owner user-
id uorg(a), group-id gorg(a), and protection bits rw set for group access only.
Thus, at any moment mbrs(gorg(a)) represents the users (consultants) who
may access files of organization a.

Initially mbrs(gorg(a)) is empty for every organization a. The system
administrator (root) is willing to add a consultant to an organization group

if, based on current organization group membership, no conflict of interest
can arise as defined by (ORG, _).

Example 4 The conflict-of-interest relation described in Example 1 can be
enforced by our scheme. A file with name f, containing information about
bank z, has protection profile:

user group other
JESNTREE.
uz gz

where uorg(z) = uz and gorg(z) = gz, and initially mbrs(gz) = {}. The
consultant with user-id cons can be granted access to Bank z files by setting
mbrs(gz) = mbrs(gz) U {cons}. However, given the conflict-of-interest re-
lation, this consultant may not be subsequently added to the group of bank
w. A

2.3 Automated Arbitration for Conflict of Interest

The arbitration procedure carried out by the system administrator can be
automated by implementing it as a set-user-id (suid) root program. Such a
program (file) is owned by root, and has its suid permission bit set. When
executed by an arbitrary user, it temporarily runs with an effective user-id
of that of root (rather than that of the invoker).

Given the conflict-of-interest relation (ORG, -1 -), implemented in a file
/etc/conflict, Figure 1 defines an atomic suid root operation consultl(e, o),
which may be invoked by a consultant ¢ wishing to access organization o
files. Use of suid root programs make a system vulnerable to certain types
of attack. Section 6 considers this and proposes an implementation that is
resilient to these attacks.

consultl(cons: UID;o: ORG){
consfor — {a : ORG|cons € mbrs(gorg(a))};
if (Va € consfore —alo) then
mbrs(gorg(o)) — mbrs(gorg(o)) U {cons}
else
reject: conflict of interest

Figure 1: Granting Organization Access: Unix Encoding.

Proposition 1 It is not possible for a consultant to gain access to files
owned by competing organizations.

This follows from the definition of consultl, given the assumptions:
that all organization files and consultants have protection profiles as out-
lined above; that organization groups may grow according only to operation
consultl, and that user root is trusted not to modify the protection profiles
or violate the conflict-of-interest relation in any way. O

3 Controlling Insider Trading

A problem with the proposed scheme is that insider trading is still possible.
The mechanism works at the granularity of access-rights: Proposition 1
states that a consultant cannot gain access to files owned by competing
organizations; it does not constrain the propagation of organization data.
A consultant can copy organization data into a public area. This could be
done inadvertently, deliberately or by a Trojan Horse.

Standard Unix enforces discretionary access control which in general does
not constrain the propagation of data. The attack can be limited if, instead
of providing arbitrary access to organization files, the files may be accessed
(read and/or write) only via special secure applications. These applications
support the Chinese Wall policy and are expected not to permit arbitrary
copying of organization data. Standard Unix provides support for secure
applications. For example, a user may have (write) access to the password
file only when running the passwd program.

3.1 Modeling and Evaluating Secure Applications

Clark and Wilson [3] propose a model for (integrity) security that can be
used for systems where security is enforced across the operating system and
the application systems. Their model is based on commercial data processing
practices and can be used as a basis for evaluating the security of a complete
application system.

The Clark-Wilson (CW) model is defined in terms of enforcement rules
and certification rules. Enforcement rules specify security requirements that
should be supported by the protection mechanisms in the underlying oper-
ating system. The certification rules specify security requirements that the
application system should uphold. There are nine rules in total, but for
reasons of space we will consider only those rules that are immediately rel-
evant to supporting Chinese Walls. The reader is referred to [3] for a more

in-depth discussion.

The model components include: the Users of the system; Constrained
Data Items (CDIs) representing data objects with integrity, and Transform
Procedures (TPs) that operate on CDIs and represent the well-formed trans-
actions that provide the functionality of the application system.

Enforcement Rule F2. The main access-control requirement underlying
the CW-model is that users may not directly access CDIs, but only via TPs,
and then only if the access is specified in the F2-access relation. For our
purposes, the FE2-access relation is a set of access-triples configured for a
particular application system. An access-triple, given as (u,t,¢), is inter-
preted to mean that the user « may use the TP ¢ to access the CDI ¢!. This
requirement forms of the basis of the CW model enforcement Rule F2 and
must be enforced by any system supporting an application to be evaluated
according to the CW-model.

Certification Rule C2. The application system TPs must be certified
to operate correctly on the CDIs. This is documented in the (C2-access
relation which is a set of certification tuples of the form (¢,¢), where ¢ is
a TP and ¢ a CDI. Given a TP ¢, then C2-access is interpreted to mean
that ¢ has been certified to to correctly operate on the CDIs given in the set
{ ¢: CDI|(t,c) € C2-access }. This requirement forms the basis of the CW
model certification Rule C'2.

Example 5 Organizations # and y store data in CDIs cdx and cdy, re-
spectively. A statistical application may be used to access these CDIs. The
TP stats provides appropriate statistics about an organization, while TP
modify is used to update an existing CDI. We have

C2-access 2 {(stats, cdx), (stats, cdy), (insert, cdx), (insert, cdy)}

reflecting that the TPs stats and insert have been certified to correctly
operate on the given CDIs. Given users smith and jones, define

E2-access = {(smith, stats, cdy), (smith, insert, cdy),
(jones, stats, cdx), (jones, insert, cdx)}
Enforcement Rule E2 requires that (the system ensures that) user smith

may only use TP insert to update CDI cdy. Certification Rule C'2 rep-
resents the requirement that the implementation of insert appropriately

!This is a simplification of the usual definition of access triple [3]. It is sufficient for
our exposition and has a closer correspondence to its Unix implementation.

updates CDI cdy and does not, for example, store a copy of it in a public
place. A

3.2 Encoding the Chinese Wall policy in Clark-Wilson

To limit Trojan Horse attacks we will formulate the Chinese Wall policy in
terms of a CW-model, where access to organization data may be made only
via certified secure applications.

Consider an application that is used to access organization data. Let the
set CDI represent the set of organization files (CDIs), TP represent the set
of application operations (TPs), and let own(c) give the organization that
owns the CDI c.

Certification Rule C'2. We consider the most general case where every
application TP may potentially access any collection of organization CDIsZ.
It must be certified that each TP correctly accesses the CDlIs, in particular,
each TP does not copy information between CDIs owned by different orga-
nizations. Furthermore, the TPs must not copy any CDI information such
that it becomes visible to all users, that is, data is not copied to objects
that do not correspond to CDIs. This certification carried out for Rule C'2
attempts to ensure that TPs do not contain Trojan Horses. Thus for the
Chinese Wall policy we define

C2-access 2 7p x CDI

Enforcement Rule F2. Consultants may access CDIs only via TPs. Ini-
tially consultants may not access any CDI.

E%-access 2 {}

A consultant cons wishing to access organization o data invokes operation
consult2(cons, o), which appropriately updates the E2-access relation if it
does not result in a conflict of interest. Operation consult2(c, o) is defined in
Figure 2. If there is no conflict of interest then a series of access triples are
added to E2-access, giving the requesting consultant TP access to all CDIs
owned by the specified organization. Note, the syntax for set specification
is interpreted as: given variable declarations D, predicate P and expression
E then the components of {D|P e E} are the values taken by expression F

2For the sake of clarity we do not consider the case where the application has its own
CW-model based security requirements. Supporting such applications is considered in
Section 4.

consult2(cons: UID;o0: ORG){
consfor — { t: TP;c: CDI|(cons,t,c) € E2-access e own(c) };
if (Va: consfore -alo) then
E2-access — E2-access U ({cons} x TP x {c: CDIown(c) = o})
else
reject: conflict of interest

Figure 2: Granting Organization Access: CW-Model Encoding.

when the variables introduced by D take all possible values that make the
predicate P true.

Proposition 2 Given that the E2-access relation may change according
only to operation consult2 defined in Figure 2 then it follows that it is
not possible for a consultant to gain access to CDIs owned by competing
organizations. O

Example 6 Consider the statistical application system in Example 5 sup-
porting the Chinese Wall policy described in Example 1. There are CDIs
cdx, cdy, cdz and cdw, owned by organizations z, y, z and w, respectively.
TPs insert and stats must be certified to uphold that they do not copy
data from cdx to cdy, and so forth. Given consultants smith and jones we
have, initially
E2-access 2 {}

The requests consult2(smith, z) and consult2(jones,y) result in

E2-access = {(smith, insert, cdx), (smith, stats, cdx),

(jones, insert, cdy), (jones, stats, cdy)}

Note that smith will be subsequently refused the request consult2(smith, y)
due to a conflict of interest between banks, that is, # | y. However, both
consultants may request to consult for organization z, resulting in

E2-access = {(smith, insert, cdx), (smith, stats, cdx),
(smith, insert, cdz), (smith, stats, cdz), (jones, insert, cdy),

(jones, stats, cdy), (jones, insert, cdz), (jones, stats, cdz)}

While both users share access to cdz, the certification Rule C2 reflects that
it is not possible for a Trojan Horse running as smith to copy cdx data to
cdz where it could be accessed by jones. A

3.3 Implementing Clark-Wilson Chinese Walls in Unix

The Unix set-user-id mechanism can be used to support CW access-triples
[11, 14]. The essence of the strategy is as follows. Given an access triple
(uyty¢), then by appropriate configuration of user-groups, the user v has
execute and suid access to the TP ¢, TP ¢ has access to CDI ¢, and only
when executing the suid program ¢ does the user u gain access to CDI c.

As proposed earlier, every organization a is allocated a unique phantom
user-id uorg(a) and a unique group-id gorg(a). Each CDI ¢ corresponds to
a file and has owner user-id uvorg(own(c)), group-id gorg(own(c)), and has
protection bits rw set for group access only.

Initially, assume that there is just one consultant cons. We allocate
an additional unique phantom user-id and group-id, denoted utp and gtp,
respectively. Each TP ¢ is taken to represent an executable program stored in
a separate file which has owner user-id utp, group-id gtp, and has protection
bit x set for group access and protection bit sr set for owner. No other
protection bits are set.

Consultant cons may invoke any t € TP and thus mbrs(gtp) = {cons}.
Initially, application TPs may not access any CDI, that is, for every organi-
zation o then mbrs(gorg(o)) = {}. When consultant cons wishes to consult
for organization o she requests the Unix suid root operation consultl(utp, o),
as defined in Figure 1. If there is no conflict of interest then the user-id utp is
added to group gorg(o), and thus user cons may subsequently use the TPs
to access all files owned by organization o. It follows from Proposition 1
that, for this case of one consultant, the Chinese Wall policy is enforced.

Example 7 Consider just one user smith, CDI cdx (owned by organization
z), and TPs insert and stats from Example 5. We have the following
initial user-groups and protection profiles

uvorg(z) = ux mbrs(gx) = {}
gorg(z) = gx mbrs(gtp) = {smith}

user group other user group other
cdx | --- | rw- [--- | imsert | st- | x—- | --- |
ux gx utp gtp

10

And the TP stats has a protection profile similar to TP insert. Under
this configuration smith may invoke the TPs, but cannot access any CDL
This corresponds to the initial state E2-access = {}.

When smith requests consultl(utp,z), there is no conflict of interest
and thus mbrs(gx) is updated to {utp}. This has the effect of granting the
TPs access to organization z files. In this case we have

E2-access 2 {(smith, insert, cdx), (smith, stats, cdx)}

If another user jones requests access to organization y files then she must
access these files using a different copy of TP insert. Otherwise, granting
the existing insert TP access to organization y would result in user smith
indirectly acquiring access to organization y files; a conflict of interest. A

To generalize the implementation to many consultants we require unique
copies of TPs for each consultant or use TP wrappers, as proposed in [11].
This is done as follows. For every consultant cons we allocate an additional
unique phantom user-id and group-id, denoted utp(cons) and gtp(cons), re-
spectively. Each consultant cons is allocated their ‘own’ unique copies of
TPs, each stored in a separate file with owner user-id utp(cons), group-id
gtp(cons), and protection bits set as before.

Each consultant cons may invoke their copies of the TPs, that is, we have
mbrs(gtp(cons)) = {cons}. Initially these TPs may not access any CDI,
that is, for every organization o then mbrs(gorg(o)) = {}. To consult for
organization o a consultant cons requests consult3(cons, o), which is defined
in Figure 3.

consult3(cons: UID;o: ORG){
consultl(utp(u), o);
}

Figure 3: Granting Organization Access: Unix CW-model Encoding.

Proposition 3 The user-group encoding of the Chinese Wall policy based
on consult3 correctly implements the CW-model encoding of the Chinese
Wall policy based on consult2. The proof is given as an appendix. O

11

4 Supporting Secure Applications

Sections 3.2 and 3.3 capture and implement the Chinese Wall policy in terms
of a slightly modified CW-model, but do not consider the case where the
original application is itself already modeled and evaluated according to the
CW-model.

Our scheme can be generalized to support such secure applications, that
is, to support an application’s security requirements and the Chinese Wall
policy. In this case, the certification Rule C'2 is applicable only to the original
secure application’s C2-access relation, which we represent by the relation
AC2-access.

If AE2-access specifies the access-triples for this secure application, then
consult2(cons, o) should update E2-access only with access triples that do
not contradict the application’s original A F2-access access triples, that is,
if there is no conflict of interest, then

E2-access — E2-access U AFE2-access
N{t: TPya: CDI|(t,c) € AC2-access A own(c) = o

e (cons,t,a) }

It is straightforward to implement this revised encoding of a Chinese Wall
policy in Standard Unix given the guidelines in [11].

5 Dynamic Segregation of Duties

Dynamic segregation of duties [10] may be viewed as an integrity dual of
aggregation policies (such as Chinese Walls) [5]. For example, a clerk may
etther generate a purchase order or process an invoice, but not both. Rep-
resenting this as a conflict-of-interest (inv(po) allows it to be supported by
our mechanism. Given initial E2-access = {}, the clerk may access invoices
(consult(inv)) or purchase orders (consult(po)), but not both.

6 Discussion

The effectiveness of the proposed technique relies heavily on the suid feature
of Unix. Use of suid makes a system vulnerable to certain types of attack
[6]. For example, a suid shell-script owned by root cannot be made secure;
there is always the potential that the invoking user will interrupt it and
subsequently gain arbitrary root access. Sometimes suid programs have

12

to be written, and for these situations, [6] suggests using tainted Perl [15]
which provides a degree of security against subversion that is not available
in shell or C programs. Appendix B gives a tainted Perl implementation of
consultl.

Individual TP’s are also suid programs and need to be checked for vul-
nerabilities to suid attack. However, they are not owned by root, and a
compromise may be considered less critical than compromise of suid root
programs. As noted in [11], this checking should form part of the certifica-
tion performed on TPs during the CW-model evaluation of the application.

Security kernel based systems implementing the multilevel formulations
of the Chinese Wall policy [4, 5, 9, 12] assume that applications running
on the system are untrusted, and therefore the application programs do not
require security policy certification. The approach in this paper adopts the
Clark-Wilson philosophy that the security of an application system is spread
across both the underlying system and the application(s) running on it.

In terms of encoding a Chinese Wall policy within the CW-model an
issue is whether it is feasible and/or desirable to require that consultants
access organization files only via secure applications. In a highly structured
and proceduralized information system where consultants may use only pre-
defined programs to access organization files it would be reasonable to adopt
this approach. However, if consultants require arbitrary access to organiza-
tion files then it becomes more difficult to model the system as an application
that can be realistically evaluated.

7 Conclusion

This paper illustrated that it is possible to enforce the Chinese Wall security
policy using standard Unix protection mechanisms. The approach is not
appropriate for security critical applications: it serves to illustrate that it
can be done in a rather simple way, and may be useful for less critical
applications.

References

[1] D. E. Bell and L. J. La Padula. Secure computer system: unified
exposition and MULTICS interpretation. Report ESD-TR-75-306, The
MITRE Corporation, March 1976.

13

[2]

[3]

D.F.C. Brewer and M.J. Nash. The Chinese Wall security policy. In
Proceedings of the 1989 IEEE Symposium on Security and Privacy,
pages 206-214. IEEE Computer Society Press, May 1989.

D. D. Clark and D. R. Wilson. A comparison of commercial and mili-
tary computer security models. In Proceedings 1987 IEEE Symposium
on Security and Privacy, pages 184-194. IEEE Computer Society Press,
April 1987.

S.N. Foley. Secure information flow using security groups. In Proceed-
ings of the Computer Security Foundations Workshop, pages 62-T2.
IEEE Computer Society Press, 12-14 June 1990.

S.N. Foley. Aggregation and separation as noninterference properties.
Journal of Computer Security, 1(2):159-188, 1992.

S. Garfinkel and G. Spafford. Practical Uniz & Internet Security.
O’Reilly & Associates, 1996.

V. Kessler. On the chinese wall model. In Furopean Symposium on
Research in Computer Security, pages 39-54. Springer Verlag, LNCS
875, 1992.

T. Lin. Chinese wall security policy - an aggressive model. In Pro-
ceedings Aerospace Computer Security Applications Conference, pages
282-289. IEEE Computer Society Press, 1990.

C. Meadows. Extending the Brewer Nash model to a multilevel con-
text. In Proceedings Symposium on Security and Privacy, pages 95-102,
Oakland, CA, 1990. IEEE Computer Society Press.

M.J. Nash and K.R. Poland. Some conundrums concerning separation
of duty. In Proceedings Symposium on Security and Privacy, pages
201-207, Oakland, CA, May 1990. IEEE Computer Society Press.

W.T. Polk. Approximating Clark-Wilson access triples with basic
UNIX controls. In Uniz Security Symposium IV, pages 145-154, 1993.

R.S. Sandhu. Lattice based access control models. IFEE Computer,
26(11):9-19, November 1993.

J. M. Spivey. The Z Notation: A Reference Manual. Series in Computer
Science. Prentice Hall International, Hemel Hempstead, UK, second
edition, 1992.

14

[14] D.J. Thomsen and J.T. Haigh. A comparison of type enforcement and
Unix setuid implementation of well-formed transactions. In Computer
Security Applications Conference, pages 304-312. IEEE Computer So-
ciety Press, 1990.

[15] L. Wall and R. Schwartz. Programming with Perl. O’Reilly & Asso-
ciates, 1991.

A Proof of Proposition 3

We prove that the user-group encoding of the Chinese Wall policy based on
consult3 is a refinement, in the sense of [13], of the CW-model encoding of
the Chinese Wall policy based on consult2.

A.1 System State

The set E2-access characterizes the state of the CW-model encoding of the
Chinese Wall policy. At any moment in time this defines what accesses a
consultant may make. At any moment in time the Unix user-group config-
uration as constructed in Section 3.3 is intended to implement F2-access,
defining the accesses that a consultant may make.

Much of the Unix user-group configuration remains unchanged from its
initial configuration: permission-bits, owner user-ids and group-ids. Only
the group membership function mbrs changes, and for the sake of simplicity
we think of this function as characterizing the state of the Unix user-group
implementation.

A.2 Data Refinement

Given a state of the user-group implementation that is characterized by
mbrs we can re-construct the abstract CW-model state it implements using
the abstraction mapping E2-access = Abs(mbrs), where

Abs(mbrs) 2 { cons: UID;t: TP;c: CDI

| utp(cons) € mbrs(gorg(own(c)))
e (comns,t,c) }

Since, by definition, we have cons € mbrs(gip(cons)) then cons may in-
voke its own copy of . Thus utp(cons) € mbrs(gorg(own(c))) implies that
cons may access ¢ using ¢, that is, we have the access-triple (cons,t,¢). If

15

utp(cons) ¢ mbrs(gorg(own(c))) then cons cannot use any ¢ to access CDI
¢, that is, we do not want the access-triple (cons,t, c).

Under this interpretation of state implementation, it follows that ev-
ery (legal) user-group state configuration implements a corresponding CW-
model state.

We also have that the initial state configurations for both schemes are
equivalent.

A.3 Operation Refinement

We must prove that consultd correctly implements the consult2 operation.
That is, given a request consult3 that changes mbrs to mbrs’, and given that
mbrs implements CW-model state E2-access (E2-access = Abs(mbrs)) then
applying consult2 to E2-access produces a state E2-access that is properly
implemented by mbrs' (E2-access = Abs(mbrs')).

Consider consult3(cons, o) requested in state mbrs. This is equivalent
to the request consultl(utp(cons), o). In this implementation state the set
of organizations that cons may currently access is defined as

consfor = { 0 : ORG|utp(cons) € mbrs(gorg(o)) }

and, since every TP can potentially access every CDI, we can rewrite the
above as

{o: ORG|(3c: CDI e utp(cons) € mbrs(gorg(own(c))))}
= {t: TP;c: CDI|utp(cons) € mbrs(gorg(own(c))) s own(c)}

consfor

Applying the abstraction mapping to mbrs we thus have, in the abstract
CW-model state,

consfor = {t : TP;c: CDI|(cons,t,c) € E2-access e own(c)}

which corresponds to its definition in consult2.

Therefore, if consult3 is applied to state mbrs and there is a conflict of
interest, then by its definition mbrs’ = mbrs. If consult2 is applied to state
Abs(mbrs) = E2-access, then we similarly have a conflict of interest and by
its definition E2-access = E2-access.

If there is no conflict of interest then consultl(utp(cons), o) changes mbrs
to mbrs’, where mbrs(o)' = mbrs(o)U{utp(cons)}, and for a # o, mbrs'(a) =

16

mbrs(a). Thus we have

Abs(mbrs') = {u: UID;t: TP;c: CDIlutp(u) € mbrs'(gorg(own(c)))}
= {u: UID;t: TP;c: CDlutp(u) € mbrs(gorg(own(c)))}
U{u: UID;t : TP;c: CDIutp(u) = utp(cons) A own(c) = o}
= E2-accessU ({cons} x TP x {c: CDIown(c) = o0})

!
= FE2-access

Therefore, applying consult2(cons, o) to state E2-access = Abs(mbrs) pro-
duces a state E2-access = Abs(mbrs’), and thus consult3(cons, o) is a re-
finement of operation consult2(cons, o).

B Tainted Perl Implementation of consultl

#!/usr /local /bin/taintperl
Command—line format: consult(<organization>)

SENV{'PATH'}= '/usr/bin:/usr/local/bin:/usr/ucb';
if ($#ARGV#0){die "usage: $0 <organization>\n"};

$reqorg= $ARGV][0]; #requesting consult for this organization
$reqcons= getlogin; #user making request
$groupfile= "/etc/group";

$conflict= "/etc/conflict"; #Implements conflict —of—interest relation

#format is similar to /etc/group

Qconflict gives groups in conflict with requested organization
open(COL"$conflict") || die "Fail: Chinese Wall not installed\n";

flock(COI,2); #start mutex: consult is atomic
while (<COI>)
{last if /" $reqorg/;} #scan until line entry for $reqorg found

if (!<COI>) {die "0rganization $reqorg not defined in policy\n"};
chop; @conflict= split(/ |:|,/); shift(@conflict); #extract conflicting groups

@consfor gives organizations that consultant works for.

$G=‘groups $reqcons‘; chop($G); #returns users group membership
@consfor=split(/ /,$G); #format into array

17

Test if there is conflict of interest.
foreach $corg (@conflict){
foreach $uorg (@consfor){
if ($corg eq $uorg){
die "Conflict of interest. Already consulting for $uorg\n\
which is in competition with organization $reqorg\n"};

H

Add user $reqcons to this group.
‘tm —f /tmp/group > /dev/null‘ ;
‘mv $groupfile /tmp/group;
open(OLDGRP, "/tmp/group") || die "Failure: No group file.\n";
open(NEWGRP, ">$groupfile");
while(<OLDGRP >){
s/8/,8reqcons/ if (/" $reqorg:/ && !/$reqcons/);
S/:a/:/;
print NEWGRP;
}
close(OLDGRP);
‘rm —f /tmp/group > /dev/null‘ ;
close(NEWGRP);
print "Start a new shell to access $reqorg datasets\n";
flock(COI,8); #end of mutex region
close(COI);

18

