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Abstract. How does one defend Cyber-Physical Systems (CPSs) in the
face of changing security threats without continuous manual interven-
tion? These systems form a critical part of national infrastructure and
exist within an ever changing dynamic threat environment. The static
security policies programmed into systems cannot react quickly to chang-
ing threats. We describe how a MAPE-K-based threat-centered dynamic
policy framework could reconfigure CPSs in the face of attack. The frame-
work encodes threats, their mitigations, and a threat posture as a mech-
anism for deciding how best to react. We describe our framework, a pro-
totype implementation and show how it be integrated within a testbed
CPS demonstrator. Threat centered dynamic policies allow us to harden
a system as the threat assessment evolves, reconfiguring a system and
how on the basis of policy and perceived threat.

1 Introduction

The large Cyber-Physical Systems (CPSs) used in Supervisory Control And
Data Acquisition (SCADA) systems, power grids, water treatment and high-
value manufacturing, are increasingly connected to other enterprise systems.
This enhances the visibility of the physical processes and allows for improved
remote monitoring, optimization and gleaning greater business intelligence from
the production processes. However, security wasn’t a core design feature of the
software, hardware and networking protocols in these systems. Their long lifes-
pans, legacy devices and increased connectivity, therefore, expose them to a
range of attacks. In the last few years we have seen high profile attacks against
the Florida’s water treatment plants, the Ukrainian Power Grid and a German
Steel Mill [6,27,29], which alongside attacks like Stuxnet [26,25,12] have become
international news.

Attacks, such as the Triton malware [20], show that the threats against such
systems are continuously evolving and becoming more sophisticated. Securing
such CPSs, therefore, presents a unique set of challenges. The devices employed
in them are often resource-constrained in terms of available energy, processing
power and bandwidth. Critically, they have strong real-time constraints: it is
not always feasible to deploy resource-intensive security policies—for example
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Fig. 1. MAPE-K loop for threat-driven dynamic policies.

continuous active monitoring of a Programmable Logic Controller (PLC) in a
SCADA system, heavyweight cryptographic functions or authentication services
all risk overloading the PLC and compromising its core monitoring and control
functions. Whilst a large CPS has at any time a number of security vulnera-
bilities or compromised elements, it is not desirable in most cases to suspend
the system’s operation to fix them. For example, shutting down or restarting a
power grid is a non-trivial undertaking leading to societal disruption and busi-
ness losses. CPSs need to operate in a risky environment, where it is infeasible
to deploy traditional mitigations all of the time.

We propose moving from traditional static policy management to dynamic
threat-centered policies. Instead of describing the policy in terms of what the
administrator wants the system to do, we describe it in terms of the threats to the
system and the appropriate actions to mitigate them. Suppose that an operator
becomes aware that an attacker is attempting to remotely upload malicious
firmware to CPSs within a city’s electrical grid: the operator wishes to disallow
remote updates whilst the attack is ongoing. When there are only a few such
systems in a city, the feasibility of this manual change is okay—but the number
of CPS is growing: there were almost 400 electricity power stations (each with
similar control systems) in New York in 2018 alone [31], and these approaches
are barely feasible on a city-wide, let alone regional or national scale.

Our approach provides a threat-centered view on policy administration based
on a MAPE-K [23] loop (Figure 1). Given a catalog of threat mitigations, when
an attack occurs the approach uses the catalog to provide options for policy
change—whether chosen by users in the policy administration loop, or through
automation. Following the MAPE-K loop, we Monitor changes to the efficacy
of the security policy, our threat posture and any changes in threat catalogs
(Knowledge); Analyze based on best practices and standards as encoded in the
policy catalog and decide whether we need to take action; Plan how to adapt
the policy in order to mitigate the threats, and Execute by deploying the pol-
icy and enforcing its rules through an Event Condition Action (ECA)-based
approach [28]. By managing policy knowledge in terms of threats [15,39], the
threat-centered approach provides a framework in which security policies can
be dynamically administered, rapidly and on-demand, in the face of unfolding
attacks on a CPS.

Our contributions are as follows:

– A threat-centered policy framework for adapting CPS configuration on the
basis of active threats, rather than a static administrator-driven policy.
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– An implementation of our policy framework showing how policies can be
enforced by reconfiguring a CPS testbed dynamically.

2 Threat-Centered Security Policies

2.1 Scenario

To describe our threat-centered policy framework, we first introduce a hypothet-
ical water treatment plant to illustrate it, similar to other water treatment plants
such as the one in Oldsmar, Florida that suffered a cyber attack in 2021 [6]. Wa-
ter treatment plants take in waste water and sewage, and produce clean water.
The job of the plant is to ensure that only clean water is output from the plant.
If the plant fails at its task then the local area’s water supply will be poisoned
by sewage and chemicals. Alternatively, if the plant is shutdown then swathes of
the population will be impacted by the disruption to the water supply.

The plant consists of a tank, with sensors, pumps and valves. Sensors monitor
the bacterial level in the water treatment tank and filters. The pumps’ rate is
also controlled by a sensor and the PLC. All sensors send the raw data to a PLC
which normalizes the data and stores it in a writable register. The value in the
writable register is copied to the readable registers every hour. Whilst the values
are written to the writable register frequently and instantaneously, the copying
from the writable register to the readable register occurs only periodically as
the control system is computationally limited. Faster refresh rates are possible,
but have a computational and power cost, and so are generally avoided. Data
from the PLC is available from an onsite Human-Machine Interface (HMI), and
remotely via offsite analytics.

To attack the plant an attacker might aim to disrupt its functioning and,
ideally, cause the water output to be poisoned or trigger a shutdown. Doing so
would cause the plant operator to need to spend additional resources and money
to protect and repair their plant. Alternatively, attacking a plant may disrupt
the water supply to the local area. They might attempt this by tampering with
the sensors to add more or less chlorine to the water, or by overloading the
pumps and damaging the plant physically4.

To defend against attack the plant has policies (that is, rules determining
what should and is allowed to happen) in place which describe how the plant
should operate and how it should react when certain threats occur. These policies
can be related to functionality (e.g. the pump should run continuously), safety
(e.g. if the pumps reach 80% of capacity then switch off to prevent damage),
or security (e.g. only engineers can interact with the HMI)—the policies define
how the plant works. They are typically enforced statically: the policies are
hard coded into the devices and mechanisms within the plant. If one wanted
to change the PLC’s safety cut off, then the PLC would have to be physically

4 One of the earliest known cyber attacks is on Maroochy Water Services in Australia
which led to sewage spilling over a large area causing disruption and environmental
damage.
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reprogrammed5. Our goal in this paper is to introduce a policy framework that
allows this reprogramming to be automated in predictable ways based on the
currently identified threats.

2.2 Policy Framework

Our policy framework is based on modal logic [1], borrowing the syntax of Prolog
to express rules and facts. Variables are denoted by symbols beginning with an
upper-case letter, constants and predicates with a lower-case letter. A single
underscore denotes a wildcard.

A policy is a collection of rules that defines whether it is permitted to engage
an operation in a context. Principals assert rules, whereby ϕ(p,· · ·) means that
principal P asserts logic statement ϕ, defined in terms of system attributes, holds.
A description of all of the predicates allowed in our framework is given in Table 1.
For example, in our water treatment plant, the operator is always allowed to
shutdown the plant. This could be expressed using the policy framework by the
following assertion:

permit(operator, shut_down).

Sometimes, however, an action is unsafe to do. We declare these as threats
to an action. For example, the operator can declare that it would be unsafe to
open the valve releasing water from the plant back into the system if the filters
show a high level of bacteria in their output.

threat(operator, open_valve, safety)

← says(plc, _, high_bacteria_in_filter).

Not all threats are as important all the time—we have a threat posture that
states what threats need to be dealt with should they arise. Some threats are
always critical, for example, an operator should always care about safety.

posture(operator, safety).

Othertimes an operator’s posture may be dependant on other events: for exam-
ple, an operator may only care about the threat of physical tampering with a
device if there are signs that the site has had a break-in recently.

posture(operator, tampering)

← threat(operator, _, break_in).

If there are threats to actions a principal cares about, then actions should
be taken to ensure appropriate countermeasures against the threats. These ac-
tions could involve doing nothing but acknowledging the threat: for example, an
operator might acknowledge that there has been a break-in.

mitigate(operator, _, break_in).

5 More accurately a physical key would have to be turned to put the PLC into pro-
gramming mode and allow any remote loading of logic into the PLC (e.g., in the
Triton attack [22]).
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Alternatively the operator might want to take some corrective action, for exam-
ple, in the case of high levels of bacteria in the filter, the operator may want to
flush the system and add additional chlorine to the tank:

mitigate(operator, open_valve, safety,

[flush_system, increase_chlorine]).

What happens then when a principal (such as the Operator) attempts to
perform an action in general. We check the default rule: an action is only per-
mitted if all threats currently present and in the principal’s threat posture have
been mitigated, alongside a basic access control check (responsible) to check
that the principal is allowed to perform that action:

responsible (P,A)

∀T s.t. posture (P, T )∧
threat (P,A, T ) :

∃ mitigate (P,A, T, o)

 o ∈ O

permit (P,A,O)

Predicate Description

posture (P, T ) P believes that they consider T to be a threat (that T is in their
threat posture).

threat (P,A, T ) P believes that the presence of threat T would make the action
objective A impossible without taking steps to mitigate the dan-
ger.

mitigate (P,A, T,O∗) P believes that the danger presented by threat T to action objec-
tive A is mitigated by completing the obligations O (that is, P
says if you do O then the threat T to the action A will go away).

says (P, P ′, F,O∗) P believes that P ′ (a second principal) asserts that a fact F is
true, if some additional obligations O are completed.

permit (P,A,O) P believes that the action objective A is safe to do if the obliga-
tions O are completed.

responsible (P,A) P is responsible for deciding if action objective A is allowed

test (E) The last result of the efficacy test E was successful.

Table 1. Predicates used to describe policies for CPSs. In both the mitigate and says,
the obligations parameter O (marked with a star) is optional, and can be omitted if there
are no additional actions that need to be performed.

A policy catalogue is created by collecting these statements and handing
them to a Policy Decision Point (PDP). The PDP is responsible for analyzing the
policy and deciding if actions are permitted and orchestrating any configuration
changes required, based on the evaluated threats. The policy author would not
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typically write rules for the permit predicate or the responsible predicate,
rather they are predefined on the PDP.

2.3 Policy Management

The policy catalog may change over time, as a consequence of threat reports,
and principals add and/or revoke policy assertions as new knowledge about
threats and controls emerges. An operator’s threat posture may also change.
Furthermore, it may be determined that a control has failed and, therefore, its
associated threat is no longer properly mitigated in the current policy. In these
cases the operator may wish to adapt the system configuration by deploying
alternative controls from the catalog in order to ensure mitigation of the risk
posture. Alternatively, the operator may decide to accept the threat in some
form by revising their threat posture or updating the knowledge in the catalog.

The configuration of the policy itself may also need to change in response
to threats. We stated earlier that the monitoring of registers in the PLC was
configurable. In risk and threat management frameworks [39,37,16] , the efficacy
of a control (in mitigating a threat) is monitored via procedure tests and the
failure of a procedure test indicates the presence of a potential threat. Procedure
tests may execute to a schedule, be triggered by system or external events, or be
continually running. For example, a failing test for water quality indicates that
the purification control is not effective, and that an alternate should be selected.

The term test(ids) is the outcome of an Intrusion Detection System (IDS)
test on the consistency between the replicated PLC registers. If this test fails then
there is a threat to the consistency of the system. Intrusion detection systems
can experience false positives (a well-known limitation of anomaly detection
systems). In reaction to this the operator may chose to add rules to automatically
update the polling frequency of the test (how frequently the result of test(ids)
is updated) when the threat is detected.

threat(operator, consistency, bad_register)

← ¬ test(ids).

mitigate(operator, consistency, bad_register,

[increase_ids_polling_frequency]).

By using obligations we can control settings outside of the logic of the
framework—including how frequently the framework is updated and checked.
This allows the framework to not only define security policies which establish
how to react to newly identified threats, but also monitoring policies that define
how to check for new threats that need a reaction. In general, a threat-centered
policy comprises of assertions:

threat(Principal, Action, Threat).

mitigate(Principal, Action, Threat, Controls)

← test(T).
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Failing procedure tests correspond to attack identification: the control is no
longer effective at mitigating the identified threat.

2.4 Dynamic Policies

The policy catalog provides a declarative definition of security. It defines what
an acceptable policy deployment is, but it does not define how to change (adapt)
a policy. In principle, as a result of an attack, the catalog can be searched for
an optimal replacement policy. However, in practice we may wish to provide an
operational definition of how the policy should change. In this case ECA [28]
style operational rules are used whereby procedure test failures match the event-
conditions and the triggered consequence is an action to update the policy for
the prescribed control. Typically, operational rules take the form:

mitigate(Principle, action, threat, Controls)

← ¬ test(something).

In this case we assume there is a mechanism outside of the policy that will
update the desired controls on the basis of decisions made and policy queries.
This could be supported through obligations or by a dynamic policy language
in which changes can be explicitly encoded in the rules [5].

Actions are the operational means to affect the system’s behavior based on
its policies. Threat-centered policies are often highly domain-specific, incorpo-
rating knowledge about CPS operation and the underlying controlled process.
Hence, many actions will impact this process; for example, by applying a specific
strategy. The policies themselves can also be changed as a result of actions, in
response to failed procedure test or updated risk postures (possibly based on
operator input). The deployment and updating of a policy may in turn result in
further actions to be carried out.

2.5 Example

With the policy framework outlined, we illustrate how it might be used in prac-
tice. An Engineer maintains a water treatment plant and uses the framework
to manage threats to the system. The plant has an IDS that works by monitor-
ing a register in a PLC, as well as a guard who walks past the plant daily to
check for signs of a break-in. The Engineer is concerned about the monitoring
failing (bad_register) and a break-in to the plant (break_in). The policy is
shown below, but can be summarized as: if the IDS is triggered, and there is no
current risk to the operations of the plant, then increase monitoring; the guard
can identify if there has been a break-in; and if there is a break-in, then call a
repairman for the fence to mitigate the threat and until the fence is repaired be
aware that there may be an extra threat of sabotage or tampering.

mitigate(engineer, valve_open, bad_register,

[increase_ids_polling_frequency])

← ¬ test(ids),
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¬ threat(engineer, operations, _).

threat(engineer, integrity, break_in)

← threat(guard, integrity, break_in).

threat(engineer, valve_open, bad_register)

← ¬ test(ids).

mitigate(engineer, integrity, break_in, [call_repairman, add(

threat(engineer, operations, sabotage))]).

posture(engineer, bad_register).

posture(engineer, break_in).

During operation of the treatment plant, the IDS identifies that the registers in
the PLC appear to be faulty, and the result of the test is updated. The system
monitors the changing threats and establishes that there is a new threat to the
consistency of the system and the safe operation of the valve. Since there is
no other threat to the operation of the plant the system adapts by increasing
the monitoring frequency of the IDS. If the IDS returns to a good state, then
the fault may have been a transient one. The treatment plant is allowed to
return to normal behavior once the security threat has gone. Alternatively, the
IDS returning to a good state could indicate that an attacker has breached the
security system and is starting to cover their tracks. In this case the operator
may choose to monitor additional sensors and actuators for signs of misbehavior
until the threat has passed.

Updating the security policy is not just limited to low-level technical controls
but can also combine facts taken from experts on site. The water treatment plant
has a guard who regularly patrols the site. The Guard reports that a hole has
been cut in the fence, and updates the policy with the additional threat; changing
the threat posture as the policy is monitored and analyzed. To mitigate this
threat the Engineer’s policy calls the repairman. The repair will take time but
will eventually be fixed. Until the repair is complete, the Engineer is wary that
the plant may have been tampered with, and that there may be a security risk.
The Engineer believes that there is a threat of sabotage to the plant. Now if there
is a bad register this may be another glitch or it could be a sign that the plant
is being tampered with, and the output of the plant poisoned. Since this could
lead to the town being supplied with dangerous water, the Engineer can modify
the policy to add an additional rule that mitigates these risks. If the IDS triggers
when the plant has already established that there is a threat of sabotage then
the secure thing to do may be to slow the flow of water through the plant, add
additional filtration and chlorination schemes and, if all else fails, then consider
shutting the plant as a last resort.

mitigate(engineer, valve_open, bad_register,

[additional_chlorination, slow_flow])
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← ¬ test(ids),

threat(engineer, operations, sabotage).

Our policy is reconfigured on the basis of the changing threat posture and the
catalog of threats. The framework allows us to describe CPS security policies
on the basis of identified threats and react to them accordingly—whether by
increasing refresh rates, shutting down plants and notifying towns, or any other
mitigations or security controls the policy designers and engineers might wish
to describe. We do not need to hard-code our security policies. We change them
dynamically as threats are identified.

2.6 Implementation

Our implementation of the threat-centred policies framework consists of the de-
cision protocol (a principal grants all actions they are responsible for if there is
an acceptable mitigation in place for all the threats they identify) and knowledge
base implemented in Prolog, alongside a server to enable remote querying and
database acting as an archivist. To help integrate the policy framework with a
real CPS, we also implemented a custom IDS—looking at Modbus6 communi-
cation messsages (using Scapy 7). We also implemented a bridge between our
database and Kepware—a commercial data historian used in industrial automa-
tion and Internet of Things (IoT) systems—so that policies can incorporate data
from existing analytics.

The implementation has been undertaken to enable us to explore and iterate
on how policies could be written and to test the framework’s expressivity. If
threat-centered policies are to defend CPSs, then we must be able to express
the threats to these systems. Due to our focus on exploring expressivity, the
current implementation has several limitations: whilst it can analyze policies,
decide whether actions are permitted, and list actions and policy changes that
should be made, it has no means to enforce them. If a policy could permit an
action through multiple policy rules, then we return the first we find rather than
making a decision about which is the most appropriate (or easiest to enact).
Future iterations of the implementation will address these limitations as we
develop it further.

3 Evaluation on a CPS Testbed

To further explore what dynamic threat-centered policies can offer we integrated
it with a CPS test bed to explore whether we express policies that can defend a
CPS, and how our framework would react when an attack occurs. We integrated
the prototype implementation into a national large-scale cyber-physical systems
testbed [19]. The testbed includes a number of scaled physical processes: a water
treatment plant, a factory and a building management system as well as PLCs,

6 Modbus is a standard PLC communication protocol.
7 https://scapy.net/
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Fig. 2. Network of the CPS testbed.

RTUs8, HMIs9, sensors and actuators as well as software platforms from a range
of vendors that can be deployed in different architectural configurations for secu-
rity analyses. As well as realistically modeling CPS architectures (and physical
processes), the testbed also has a range attack chains that can be run against it
when evaluating various security countermeasures.

For our evaluation, we utilize the attack chain from a national IoT demonstra-
tor that we have previously developed [35]. The demonstrator involves a factory
conveyor using commercial industrial IoT control systems, and which aims to
be a realistic simulation of a production Industrial Control System (ICS). The
deployed configuration includes an operational network consisting of the phys-
ical process (the factory conveyor), with PLCs, sensors, an RTU and an HMI.
The operational network is connected to a local supervisory network, providing
data aggregation and telemetry, which is itself connected to the cloud for data
analysis (Figure 2).

The attack proceeds as follows [35]:

1. The attacker compromises the Cloud-based data analytics platform via an
unpatched exploit and a network takeover attack on the connection between
the data aggregation and the data analysis.

2. The attacker compromises the supervision network via an engineer opening
a malicious PDF (in this case, the help manual opened in response to an
error displayed via the manipulated data analysis).

3. A command channel is set up through the connection between the aggrega-
tion and analysis software.

4. The attacker scans the Operational network looking for PLCs and recovers
the logic from them.

8 Remote Terminal Unit: the interface between sensors and a SCADA system.
9 Human Machine Interface: local controls for an engineer.
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5. The attacker exploits the RTU, blinding the control room from the unfolding
attack.

6. The HMI and safety systems are blinded by manipulating the PLC’s memory,
and the PLC logic is overwritten.

7. The process is run outside of safe operational parameters, and the safety cut
offs do not take effect. The process destroys itself.

Threat From Threat To Detected By

Possible attack start Continued operation IDS detects NMAP scan

Possible attack start Continued operation IDS detects ET200S enumeration

Possible attack start Continued operation IDS detects S7-1200 enumeration

Lack of analysis Continued operation Interrupted connection to
Thingworx

PLC logic exposed Continued operation IDS detects PLC logic dump

Running blind Continued operation IDS detects RTU is offline

Running blind PLC updates IDS detects RTU is offline

Malicious update Continued operation IDS detects an unauthorized PLC
logic update

Table 2. Threats presented in the attack on the demonstator.

To decide how our framework might help defend the demonstrator, we first
consider the possible threats to the system, and what they might threaten (Ta-
ble 2). Each of these threats is then coded up using the framework, Prolog and
through querying the IDS database and Kepware. For example, one route to
detecting the attack starting is letting the IDS search for signs of an S7 enumer-
ation (a common protocol for ICSs). To detect the scan we query the database
(within a time window) for signs of an S7-1200 enumeration. Similar queries are
built for NMAP scans (looking for SYN scans) and ET200S enumerations. If
we detect the signs of a scan or enumeration, then we establish the presence of
the threat. Whether we react to it or not is controlled by the threat posture,
though that is also dynamically configurable. For instance, we only start to look
for signs of a malicious update to a PLC if we are aware of an attack starting:

posture(op, malicious_write) ←threat(op, _, attack_start).

Rules were written for each of the threats we identified as part of the attack
and each threat presented at the appropriate point as the attack progressed.

When implementing the policy, if a check required more data or a specific
technique to establish a threat (for example the network monitoring above) then
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we implemented this as an external tool and allowed our policy to query (and
reconfigure) these tools dynamically. The expressivity of our policy language
comes from the ability to combine existing (as well as new) checks and tooling
around establishing threats. We don’t build any new checks and tools into our
framework, rather we give the ability to organize and combine the results from
existing tools into threat-centered policies. By identifying threats to a real sys-
tem, encoding them using our framework, and then being able to use the encoded
policy to detect when a real attack is underway suggests that our framework is
expressive enough to capture and encode threats to real CPS systems. In other
words, if one has a mechanism to establish when a threat is present, then one
can use the framework to write a rule to react appropriately.

4 Related Work

4.1 Threats to CPSs

The risks involved with connecting networked computer systems to the internet
are well established. When the computer systems form part of national infras-
tructure, however, the risks can be particularly dangerous. These systems and
infrastructures exist in a vulnerable state in many sectors: Radmand et al. noted
their prevalence in the oil and gas sector [34], and Giraldo et al. noted their preva-
lence in many others including smart grids, hospitals, manufacturing, transport
and aircraft sectors [21]. Pal et al. suggest that collaboration between threat in-
telligence and threat response is vital for resilient security mechanisms but that
these applying these principles to CPSs is often difficult.

As the attack on the water treatment plant in Florida [6] emphasizes, the
threats to these systems are not necessarily very sophisticated. In that plant
the attack consisted of a brief anomalous login with stolen credentials that was
noted but not acted on early in the morning, followed by another login at lunch
time that increased levels of lye in the water to dangerous levels. The change was
noted by an operator and remote access was disabled, but we shouldn’t only rely
on vigilant operators to prevent attacks. An anomalous login should have placed
the plant at a higher threat level when it first happened automatically. That
the attack happened in the days preceeding a major sports event should have
altered the plants risk posture. The plant did use pH level sensors that would
have eventually noticed the increased levels of lye, but the polling rate and
sensitivity of these sensors could have been adjusted automatically in response
to the increased threats as we have proposed.

In 1999 Furnell and Warren suggested that networked infrastructure could
be an attractive target for terrorists and hackers and that we need to take care
to avoid a scenario like the millennium bug—where we have to take rapid re-
medial action to avoid significant disruption from something that could and
should have been avoided [17]. A 2012 survey of 15 SCADA and critical infras-
tructure incidents showed, however, that infrastructure had been continuously
attacked, mostly through malware, malicious (ex-) employees and compromised
accounts [29].
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DiMase et al. analyzed threats to CPS resilience [10]. They noted several
persistent threats but did not look at the dynamic threats that came and went
periodically. Cherdantseva et al. surveyed several different mechanisms for as-
sessing risks in CPSs [8]. They noted several frameworks which could be used to
establish risks to a system and others which could be used to establish threats,
however they did not look at what to do when the threats have been established.
Our threat-centered policies go further by considering not just how to establish
threats but also how these threats change dynamically and what to do with that
knowledge.

Gao et al.’s work on Security Information and Event Management (SIEM)
based policy monitoring focuses on detecting various events and how they could
be chained into taking actions based on policy [18]. They give the example of how
if a recently fired employee (a threat) accesses the server room (a further threat),
then this ought to trigger an alert. The approach treats specific threats with
specific mitigations (send alert if fired employee accesses server) rather than the
threat-first approach we propose (a fired employee creates a threat of retribution,
an out-of-date login system gives a threat of mistaken authorization—mitigate
both by updating accounts and logging all accesses).

Knowles et al. note that industrial approaches to risk assessment could be
improved, and proposed a framework for performing assessments dynamically,
and producing a measure of confidence in security [24]. As the systems have
become more distributed new attacks have appeared. Petit and Shladover iden-
tified the potential for attacks on collaborative self-driving cars and that the
systems could be seriously disrupted if given incorrect information [33].

4.2 Policy Frameworks

To specify our policies and threats we build on ideas from access control lan-
guages. Da Silva et al. described a role-based access control scheme that adapted
to user’s misusing their permissions dynamically [36], and Cheng et al. described
an access control scheme that included a risk level as part of the policy [7]. By
parameterizing the policy with risk Cheng et al. could allow users greater access
if there were exceptional circumstances.

Our proposal for threat-centered dynamic policies is applicable to domains
other than CPS; but, in this paper, we focus on the CPS domain because it is
particularly suited to this threat-centered approach as these systems are harder
to maintain and more dangerous when attacked than other types of systems.

Threat-centered dynamic policies can be described as a self-adaptive system
based on threats. Other work in this area includes Pandey et al.’s work on
developing hybrid planning for self-adaptive systems that allows it to choose
between strategies for mitigating problems based on how urgently the problem
needs to be resolved [32]. Adapting a system at run time, especially in adversarial
environments, can lead to the system becoming inconsistent. To help detect if this
happens Barbosa et al. created a tool to verify self-adaptive systems based on a
probabilistic execution model [4], while [15] catalogs firewall rule configurations,
according to the threats that they mitigate, using a searchable ontology that is
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used to generate suitable firewall deployments. Other techniques such as IDSs
can also be used to help protect CPSs by looking for intrusion events [9]. The
threat-centered policies we propose are more general and can handle a greater
variety of threats than just intrusions.

4.3 Self-Adaptive Systems

Whilst this work focuses on threat-centered policies it also builds upon earlier
work developing self-adaptive systems for more general environments, as well as
the more general application of MAPE-loops. Elkhodary and Whittle surveyed
4 self-adaptive application security approaches and developed a framework for
evaluating them [11]. Tsuchida et al. used a MAPE-loop mechanism to alter an
embedded system’s behavior in response to its changing environment [38]. Whilst
not specifically targeted at managing threats and security Tsuchida et al.’s work
shows that MAPE loops can be applied effectively to reconfigure low-power
devices such as embedded systems and CPSs. Arcaini et al. described a formal
modeling techniques for verifying systems that use MAPE-K loops to ensure
that the loops could not interfere with each other and were correct [3].

In summary, existing work has focused on how to adapt to problems as they
appear. Our work takes a different approach: given a catalog of potential threats
and possible future problems in a changing, and adversarial environment, how
can we monitor, select and mitigate them automatically. By mitigating threats
automatically we can avoid threats escalating, and security becoming fatally
compromised. Additionally, further work is needed to empirically evaluate the
benefits of a dynamic threat centered policy framework. Whilst many dynamic
MAPE-based adaptive systems have been proposed for various domains; em-
pirically demonstrating that they provide a measurable improvements is often
overlooked [30]: the benefits of a threat centered policy must be proven beyond
all doubt to see adoption.

5 Discussion

5.1 Threat Assessment and Policies

When exploring threat-centered policies on the demonstrator we closely tied our
policy to a table of threats (Table 2). This helped tie the existing security risk
assessments about the system to the policy adaptation necessary to defend the
attacks as they unfold.

Most policy frameworks take a goal-oriented approach: an action is allowed if
an explicit set of conditions is met. Policy frameworks infrequently include a no-
tion of threats to a system [13,14,2], and it is unusual to express the policy wholly
in terms of them (other applications have limited to networks and autonomous
systems). This is somewhat surprising as when writing the policies it feels natural
to organize a system’s security policy around the threat assessment that inspired
it. For CPSs in particular, where operators are resistant to dynamic configura-
tion but comfortable with threat assessments, using threat-centered policies is



Threat-driven Dynamic Security Policies for Cyber-Physical Infrastructures 15

a helpful stepping stone: providing mechanisms for organizing existing security
controls around threats. After all we do threat modeling in terms of threats; by
describing our adaptation policies in terms of threats too, we help ensure the link
between them is clear, giving confidence to operators that the policy is correct
and appropriate.

5.2 The Cost of Dynamism

Threat driven dynamic security policies allow us to configure CPSs to react to
a changing threat landscape. The flexibility that is achieved through dynamic
policies is not without cost, however. By allowing these systems to reconfigure
themselves, even on the basis of a policy written by a specialist, there is a
potential increase in attack surface. For example, if an attacker could see the
policies that reconfigured a system then they may be able to see which checks
and tests they need to trigger to put the system into a state that is beneficial for
them. To illustrate this, consider again a PLC with an IDS that is dependent on
register polling. The polling speed is configurable, but higher polling rates take
resources from other functionality, effectively slowing the PLC’s functionality for
the benefit of better detecting another threat. If the attacker’s goal is to make
the PLC more expensive to run and they can exploit the policy to consistently
force the PLC into the increased polling state then they can attack the system.
Defending against these kinds of threats means still having humans in-the-loop to
make changes, and update the policy so that automatic re-configurations reflect
the current threat model.

In practice, it is no longer feasible to build static systems—and this will con-
tinue to be the case as we build more complex dynamic interconnected systems.
Dynamic policies are an essential step towards better security. While the com-
plexity of CPSs and the volume of deployed systems has gone up, we are still
using static, hard-coded and even manual solutions to defend them. There is a
growing awareness that existing systems are insufficiently secured. By carefully
describing and testing threat-centered policies, we enable a path to more re-
silient systems that can react to dynamic threats. In even larger scale (massive)
CPSs, such as smart city environments and automated transportation systems,
the environment itself is highly dynamic—with devices connecting to each other
as they traverse the CPS environment leading to dynamic service composition.
In such massive scale CPS environments, static security policies can neither be
feasibly constructed nor deployed as the environment is not under the control
of a single stakeholder. Threat centered policies need further evaluation in these
large scale environments to see if they can help bring dynamic adaptation be-
tween different systems and organizations.

6 Conclusion

Threat-centered dynamic policies let us describe policies from the perspective of
threats and help cyber-physical infrastructures reconfigure themselves dynami-
cally, on the basis of policy, to mitigate the attacks as they are identified. Existing
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techniques for securing CPSs do not scale and cannot react to the changing threat
landscape. Threat-centered dynamic policies give us a mechanism to reconfigure
the monitoring rules automatically to ensure, for example, that we make appro-
priate tradeoffs for security only when needed; and that we only require human
intervention if the policy fails, or if new threats are presented.

Dynamic threat-centered policies, are a stepping stone towards adaptive se-
curity in such environments in order to ensure that they remain resilient in the
face of unfolding threats and continue safe operation even when parts of the
infrastructure are compromised. Future work will explore how combinations of
different policy mitigations can be selected to mitigate all threats, and integrate
cost-functions with deploying them.
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