The Specification and Implementation of ‘Commercial’ Security Requirements

Including Dynamic Segregation of Duties

Simon N. Foley,
Department of Computer Science,
University College,

Cork, Ireland.

(s.foley@cs.ucc.ie)

Abstract

A framework for the specification of security policies is pro-
posed. It can used to formally specify confidentiality and
integrity policies, the latter can be given in terms of Clark-
Wilson style access triples. The framework extends the
Clark-Wilson model in that it can be used to specify dy-
namic segregation of duty.

For application systems where security is critical, a mul-
tilevel security based approach is defined. Security policies
for less critical applications can be implemented using stan-
dard Unix based systems. Both implementation strategies
are based on the standard protection mechanisms that are
provided by the respective systems.

1 Introduction

Clark and Wilson [6] propose a model for (integrity) secu-
rity that can be used for systems where security is enforced
across both the operating system and the application sys-
tems. Their model is based on commercial data processing
practices and can be used as a basis for evaluating the secu-
rity of a complete application system. It’s operating-system
security requirements can be captured in terms of multilevel
security (MLS), and can therefore be implemented and eval-
uated using ‘existing technology’ [14, 18]. However, [15] ar-
gues that, whereas the Clark-Wilson model considers static
segregation of duty, it does not consider the formalization
of dynamic segregation of duty.

In this paper, we describe a framework in which security
policies, including dynamic segregation of duty, can be ex-
pressed. By expressing dynamic segregation of duty in terms
of relabeling policies [11], it becomes possible to use the re-
sults in [14, 18] for implementation and evaluation of these
policies. Our framework also provides a basis for policy re-
finement and composition [10]. These can be used in the
development of complex policies which may include combi-
nations of integrity and confidentiality requirements spread
across different applications.

MLS systems are typically used when security is critical;
a high degree of assurance is required that the security pol-
icy is upheld. For application systems that are less security
critical, [16] outlines how they can be supported by a stan-
dard Unix system according to the Clark-Wilson model. We

To appear in the Proceedings of the 4th ACM Conference
on Computer and Communications Security, April 1997,
Zurich, Switzerland.

also show here how the approach in [16] can be adapted to
support more general security policies.

This paper is organized as follows: Section 2 considers
how Clark-Wilson access triples may be expressed in terms
of reflexive relations. This provides us with a basic frame-
work for constructing complex policies which express both
integrity and confidentiality policies [10]. Section 3 intro-
duces a structure for specifying these policies, and considers
their implementation in Unix and MLS systems. Section 3
may be regarded as a new application of the policy construc-
tion methods proposed in [10] to [14, 16, 18].

Section 4 considers how relabeling [11] can be adapted
for our policy framework and also how these policies can, in
turn, be supported by Unix and MLS systems. Using our
framework, a dynamic segregation of duty policy and a Chi-
nese Wall policy are formally specified, both of which can
be enforced by Unix or MLS systems. Section 5 describes
a technique that can reduce the number of security classi-
fications and user-ids that are necessary for MLS and Unix
system implementations.

The Z notation [19] is used to provide a consistent syn-
tax for structuring and presenting the mathematics in this
paper. In using Z, it has been possible to syntax- and type-
check the definitions using the fUzZ tool. Appendix A.1
gives a brief overview of the Z notation.

2 The Clark-Wilson Model of Security

The Clark-Wilson (CW) model is defined in terms of en-
forcement rules and certification rules. Enforcement rules
specify security requirements that should be supported by
the protection mechanisms in the underlying operating sys-
tem. The certification rules specify security requirements
that the application system should uphold. There are nine
rules in total, but we will consider only that rule concerned
with supporting access control.

The model components include: the Users of the sys-
tem; Constrained Data Items (CDIs) representing data ob-
jects with integrity, and Transform Procedures (TPs) that
operate on CDIs and represent the well-formed transactions
that provide the functionality of the application system.

2.1 Clark-Wilson Enforcement Rule E2

The main access-control requirement underlying the CW-
model is that users may only access CDIs via TPs. And
then only if that access is specified in an E2rule relation.
For our purposes, an E2rule relation is a set of access-triples

configured for a particular application system. An access-
triple, given as (u, t, ¢), is interpreted to mean that the user
u may use the TP ¢ to access the CDI ¢. The set of all
possible access triple relations is defined to be A7[C], where
(generic) C represents the identifiers used for users, TPs and

CDIs.

AT[C] ==
{T:P(Cx CxC)|(Vu,u',t,e,c': C o
(u t,e) e T A (', t,cYET)= (u,t,c)YeT) }

We make an assumption that if a user » may invoke TP ¢,
then that user may access (using t) any CDI that is acces-
sible by TP t. This specification for access triple relations
deviates slightly from the usual definition [6]. We use it be-
cause it leads to a simpler exposition of the results in this
paper, but it in no way restricts it’s application. By making
additional instantiations, or copies, of TPs one can encode
the access triples proposed in [6] as components of A7 .

Example 1 Under the Unix system, a user smith may mod-
ify the file of login passwords (passwd) only via a trusted
function which we call chpass. This could be specified by
the access triple relation:

PassTrips == {(smith, chpass, passwd)}

Similarly, in an inventory management system, the clerk
smith may post only (incoming) invoices to the invoice file
(CDI ¢nvs) using the TP posti. The clerk jones may file
only (incoming) consignment notes to the consignments file
using TP postc.

ClerkTrips == {(smith, posti,invs), (jones, postc, cons)}

This is an example of static segregation of duty. A

2.2 Access Triples and Reflexive Relations

An access triple (u,t, ¢) may be viewed in terms of a non-
transitive ordering: u may access t and ¢ may access ¢, but
u may not (directly) access c¢. In this section we describe
how relations from A7 may be expressed as reflexive (bi-
nary) ordering relations. There are a number of advantages
to taking this approach. In particular, reflexive relations
become convenient abstractions of existing security policies
[10]. We can then compose and refine these policies and also
systematically construct complex policies that express both
confidentiality and integrity requirements. Appendix A.2
defines the operators used in the construction of reflexive
relations; the reader is referred to [10] for more details.
Reflexive relations are used to specify information flow
policies. These policies define the different classes of infor-
mation that can exist in a system and whether or not infor-
mation may flow between these classes. In [10] we suggest
that, in addition to considering the usual sensitivity lev-
els such as secret and topsecret, we should also consider
unique classes to represent significant system components,
such as users, objects, programs and database components.
If we do this, classes can be used to represent TPs and CDIs.
This approach is also suggested in [5]. The set of all reflex-
ive relations between classes of (generic) type C is defined

by R[C], where
R[C]=={R: C « C |id(dom R Uran R) C R}

If R € R[C] and a — b € R, then we say that a is less
than, or equal to, b in R. If the notation A ~» B defines

a reflexive relation where all elements of A are less than all
elements of B, then a simple multilevel-style policy can be
specified as

MLS == {unclass,secret} ~» {secret,topsecret}

The alphabet of a reflexive relation defines the components
of that relation. For example, we have

aMLS = {unclass,secret, topsecret}

The set R[C] forms a lattice under a partial ordering
C, and lowest upper bound operator M. Intuitively, R C @
means that @ is no less restrictive than R, that is, any flow
that is not allowed by R will also not be allowed by Q.
We view an R C @ relation as a refinement relation in the
sense of [13]: the policy defined by @ is, in a security sense,
an acceptable replacement for the policy R. Therefore, a
system that is secure by policy @ is also secure by policy R.
Since R @ is a lowest upper bound on R and @, then it is,
in a security sense, an acceptable replacement for R and Q.

Example 2 A reflexive relation specification for the simple
password policy is:

PassReln == L {smith, chpass,passwd }
Mnot({smith} ~ {passwd})

where | A gives the least restrictive policy with alphabet 4.
PassReln specifies that any flow is permitted, except from
smith to passwd. This implies that smith may not (directly)
modify passwd. Note that information is permitted to flow
from passwd to smith. A

r[C]
usr, tp,edi : (C x C x C)— C
unzip : A7[C] — R[C]

usr(u,t,c) = u A tp(u,t,c) =t A edi(u,t,c)=c
unzip T = |J{ t: T o L{usr(t),tp(¢), cdi(t)} }
Mnot((usr(T)\ tp(T)) ~ (cdi(T)\ tp(T)))

Given an access-triple relation T', unzip(T) returns its equiv-
alent reflexive relation. The policy not((usr(T) \ tp(T)) ~
(edi(T) \ tp(T))) specifies that information may not di-
rectly flow from (a class representing) a user to a CDI;
however, for generality, the flow may be permitted if the
user or CDI also corresponds to a TP. The policy U{ t:
T o L{usr(t),tp(t),cdi(t)} } specifies that for each triple ¢,
information may flow between all the triple’s components.
The policy unzip(T) is the least restrictive policy that en-
forces the flow restrictions of both these component policies.
In this policy we permit direct flows from CDIs to users,
however users must use TPs when modifying CDIs. If re-
quired, it is a straightforward process to compose this policy
with a further policy specifying that information may not
flow directly from CDIs to users.

Example 3 From Examples 1 and 2, we have PassReln =
unzip(PassTrips). The more restrictive policy (PassReln
not({passwd} ~+ {smith})) additionally specifies that infor-
mation may not flow from passwd to smith. The policy
(unzip(ClerkTrips) 1 MLS) is an example of a combined in-
tegrity (ClerkTrips) and confidentiality (MLS) policy. A

3 Developing Security Policies

Let ID represent the set of all possible users, TPs and CDIs.
A security policy is defined in terms of a particular set of

these entities ENTS.

_Ents
ENTS,USR,TP,CDI : PID

(USR, TP, CDI) partition ENTS

Given Ents, then a set of classes of generic type C is defined
which is used to represent the different classes of information
expected in the system. This may include classes represent-
ing users, CDIs, sensitivity levels, and so forth. A security
policy is specified in terms of

_ Policy[C]
Ents
B:ID+C
R:R[C]

dom g3 = ENTS
ran8 C o R

R gives the reflexive flow relation and (3 associates each en-
tity from ENT with some class from the alphabet of R.

Example 4 For the password policy, entities (identified us-
ing an ¢talic font) smith, chpass and passwd are represented
by smth, chps and pswd, (elements of basic type CLASS,
identified using a typewriter font), respectively.

_PassPolicy
Policy[CLASS]

USR = {smith} A TP = {chpass} A CDI = {passwd}
R = unzip{(smth, chps, psud)}
8 = {smith — smth, chpass — chps, passwd — pswd}

3.1 Multilevel Implementation

Shockley [18] and Lee [14] describe how MLS systems such
as [1, 3] can be configured to support the CW-model, and in
particular, how the access-triple relation can be encoded in
terms of a lattice policy together with bindings for objects
and partially trusted subjects. In this section we character-
ize these MLS policies and show how they can be computed
from a Policy specification. The reader is referred to [14, 18]
for specific implementation details of how to apply the poli-
cies described in this section.

Given basic type CLASS representing the set of security
classes, then we specify a multilevel policy based on the
powerset lattice of P CLASS as

_MLSPolicy
Policy, [P CLASS x P CLASS]

(A,B)€aRi = ACB
((AaB)a(CaD))ERI@Ag C/\BgD

This specification, while somewhat stylized, is interpreted as
follows. Variables are decorated by the subscript 1 to signify
components of an implementation policy specification. R;
is a lattice of pairs (of sets of classes). These pairs can be
viewed as defining intervals on the powerset lattice based on
P a R1. This powerset lattice corresponds to the implemen-
tation lattice policy that forms part of an MLS system.
Each user u is bound to a pair 81(u) = (4, B) from o R;.
The user is considered cleared to classes between A and B
in the powerset lattice P o R1. Each TP ¢ runs as a partially
trusted subject, with 3;(¢) specifying the interval of trust for

its alter-minimum and view-maximum (amin, vmaz) bind-
ings. A CDI ¢ is viewed as a single-level object in which
B1(c) = (4, B) implies A = B. This could be, for example,
a single-level file. The CDI is a multilevel object if 4 C B.
In this case it might correspond, for example, to a multilevel
database table with table classification constraints ,Gl(c).

To minimize the size of the implementation powerset lat-
tice, a smaller sublattice L; of the powerset lattice can be
used. It is constructed by taking the partial order (subset)
defined in terms of (implementation) classes first(oR1) U
seconanRl[), and adding additional classes until a lattice is
formed [7]. Instead of reproducing the algorithm in [7], we
specify

_MLSPolicyImp
MLSPolicy
Ly : R[P CLASS]

[LC{AB:PaR|ACB)
Li D { A, B : first(aR1) U second(oR:) | AC B }

Informally, an MLS system is secure according to such a
policy containing entities z, y, if information flows from z to
y then first(B1(z)) C second(B1(y)) holds. This corresponds
to the usual Simple Security Condition and Star Property,
as given in [3].

Example 5 The Password policy can be specified as an
MLSPolicy based on the implementation lattice L; and 8
bindings given in Figure 1. Note that we use s to abbreviate
smth, and so forth. Using these bindings with the implemen-

x ,31(117) {S,C,p}
smith | [{s,¢<,p}, 15, <, pJ] T
chpass | [{¢,p},{s,c,p}]
pass [{C,P},{C,P}] {C,p}

Figure 1: MLS Implementation of PassPolicy
tation strategy in [14], it follows that sm:th may not modify
passwd, except via chpass. A

It is tedious to manually construct such lattice based
Clark-Wilson policies. In [10] we give a function ® that maps
an arbitrary reflexive relation into a lattice plus intervals on
that lattice. We use this function, defined in Appendix A.2,
to transform a (reflexive) specification Policy onto its lattice
implementation MLSPolicy.

_MLSPolicy®
Policy[CLASS]
MLSPolicy

0FEnts; = 6 Ents
Br=p5(2. R)
Ri=®R

It follows, from the order-preserving property of ® [10], that

MLSPolicy® +
Va,y: ENTS o
first(B1(2)) C second(B1(y)) © (8(z),B(y)) € R

For example, applying the transformation to specification
PassPolicy gives an implementation which is equivalent to
that defined in Figure 1. Similarly, we can compute an MLS
implementation for ClerkTrips, but for reasons of space we
cannot include the details here.

3.2 Unix Implementation

A Unix system can be configured to support the CW-model
[16, 20] by implementing the access-triple relation as an en-
coding of user-groups, and with TPs as set-user-id (SUID)
programs. In this section we specify these Unix policies and
show how they can be computed from a Policy specification.
The reader is referred to [16] for more specific implementa-
tion details.

Since standard Unix cannot enforce information flow con-
trols, we interpret an information flow policy {a} ~+ {b} as
meaning that user ¢ may have access to files owned by user
b. The essence of our approach is that user-id b will have
a group-id gb with a being a member of gb. Let UID and
GID represent the set of all possible user-ids and group-ids,
respectively. A Unix user-group policy is specified as

_ UnizPolicy
Policy, [UID]
grpr : UID GID
mbr, : UID «— GID

ran mbr; = ran grp:
dom mbr; = dom grp; =ranB
mbry = Ry § grm

For our purposes, the injective function grp; associates a
unique GID with each UID and relation mbr; specifies group
membership (as implemented by file /usr/group). Note that
grp1 and mbr; are simply an alternative representation for
R,.
Each user u has an associated UID given by Gi(u). A
CDI ¢ is implemented as a file, owned by $1(¢) and with
group-id grp1(Bi(c)). Its access permission bits should be
set to only RW for owner and group. TP ¢t is an executable
program, stored in a file, with UID 8:1(¢), GID grp:(B1(t)),
and has permission bits set to execute by user and group
only, and has its sulD bit set. CDI and TP UIDs typically
correspond to phantom user-ids—that is they are not login-
user-ids and have no associated human user.

Example 6 The password policy can be specified in terms
of UnizPolicy with UIDs smth, chps, and pswd, and corre-
sponding GIDs gsmth, gchps, and gpswd, respectively. Files
chpass and passwd have the self-explanatory protection pro-
files:

user group other

chpass| rus | rx- | -—- |
chps gchps

passwd| rw- | ru- | --- |
pswd gpswd

The mbrs; relation is configured as follows. Smith is permit-
ted to access (execute) the TP chpass (smth € grp:(gchps)),
which in turn may access file passwd (chps € grp:(gpswd)).
But Smith may not directly access the password file (smth ¢
grp1(gpswd)). A

Given a policy specified in terms of Policy,[UID], then
allocating grp: and calculating mbr, according to UnizPolicy
gives its Unix implementation. Since mbry = R; § grpi, it
follows that the Unix implementation preserves the access
constraints of the policy, that is,

UnizPolicy -
Va,y: ENTS o
(B1(2), grp1(B1(y))) € mbr1 & (Ba(2), B1(y)) € B

For example, PassPolicyy A UnizPolicy specifies a Unix im-
plementation policy that is similar to that in Example 6.

Note that individual TP’s are SUID programs and need
to be checked for vulnerabilities to SUID attack [12]. How-
ever, they are not owned by root, and a compromise may be
considered less critical than compromise of SUID root pro-
grams. This checking should form part of the certification
performed on TPs during the CW-model evaluation of the
application.

4 Dynamic Security Policies

The CW-model, while considering static segregation of duty
like that described in ClerkPolicy, does not consider the for-
malization of dynamic segregation of duty [15]. For example,
we cannot use a standard access-triple relation to express the
requirement that: a clerk may either process an invoice, or
verify a consignment, but not both. In this section we show
how our Policy framework can be extended to support such
a requirement.

Relabel policies [11] are lattice-based MLS policies that
are augmented by a collection of relabel functions. These
functions define how subject and object security class labels
may change and can be used to encode dynamic aspects of
MLS requirements.

Since reflexive flow policies are simply abstractions of
lattice based policies, we argue that relabel functions can
be specified in terms of reflexive relations and these in turn
can be mapped to an implementation lattice. Let FID define
the set of identifiers that represent relabel functions. A basic
relabel policy is then specified in terms of RFuns:

_RFuns[C]
R:R[C]
F.:FID - C+ C—+C

Vf:ranF e
dom f U|J(dom(ran f)) U | J(ran(ran f)) C o R

R gives the flow policy and F is a set of relabel functions,
where given fid € dom F, then F(fid) defines the relabel
function identified as fid. Given classes a € dom(F(fid))
and b € dom(F(fid)(a)), then a user at class a may re-
quest to relabel an entity at class b by class F(fid)(a)(d).
For example, a simple relabeling function that reclassifies
an entity’s multilevel classification to that of the requester
is(As:aMLS e (Aa:aMLS e s)). We say a relabel policy

is a Policy with relabel functions.
RPolicy[C] = Policy[C] A RFuns[C]

Example 7 Clerk smith may post either invoices or con-
signment notes, but not both.

_ StmpleDynamic
RPolicy[CLASS]
opt : {posti,post} -+ FID

USR = {smith} A TP = {post} A CDI = {invs, cons}
R = unzip{(smth, post, post), (smth, posti, invs),
(smth,postc,cons)}
8 = {smith — smth, post — post,
invs — invs, cons — cons}
F=(\f:ranopte
(As:{smth} e (At : {post} e opt™f)))

Function opt is used to allocate unique FIDs for the two re-
label functions defined in F. The relabel function identified
as opt(posti), relabels class post by class posti, while the

function F(opt(postc)) relabels class post by class postec.
Only the user smth may use these functions. Note that
from the access-triples: smith can potentially access all CDI
classes. But there is only one TP, identified by post, and
initially it may not access any CDI. Only by using the rela-
bel functions in F can smith change the label for TP post
and subsequently gain access to a CDI. A

The previous example shows that relabel functions can be
used to encode dynamic segregation of duties. The definition
of relabeling [11] can be adapted to the policy framework
proposed here as follows:

InitRPolicy[C] = RPolicy[C]

Initially, a relabel policy may have any legal configuration.
Transition Relabel is atomic and specifies the effect that a
relabel function has on a relabel policy.

_ Relabel[C]
ARPolicy[C]

req? : ID
target? : C
f?: FID
req? € USR A f? € dom F
B req? € dom(F f?)
target? € dom(F f? (8 req?))
0Ents = 0 Ents' A O RFuns = O RFuns’
B'=B&{z:ID|p z= target?
o (z— (F f? (B req?) target?)) }

A relabel request is made by a user req? to relabel all entities
that are bound to class target? using the relabel function
fid?. It changes only the 8 component of the relabel policy.
Note that the granularity of the policy is important here; if
the policy specifier wishes to apply the function to just one
specific entity (rather than all entities of a particular class),
then he must identify that entity by a special class. The
motivation for taking this particular approach will become
apparent in Section 5.

Example 8 The dynamic segregation of duty policy can
be generalized to any number of clerks. Clerks may post
either incoming consignment notes, incoming invoices, or
payments, to their respective data stores (files).

Let NAME represent the set of all possible names for
clerks. The free type, TKIND, defines the different types of
transactions in the system, ID represents the entities in the
system, and CL defines the classes for these entities.

TKIND ::= invoice | cnote | payment | none
ID = clerk{{ NAMEY) | post | file (TKIND))

CL u= clerk{(NAME x TKINDY)
| post{TKINDY | £file{ TKIND}))

Entity clerk(n) is the entity with name n; post is the post
TP entity, and file(k) is the CDI file containing kind & trans-
actions. Given the construction clerk(n), we can extract
the name of the original clerk using the destructor function
(inverse) clerk™, that is clerk™(clerk(n)) = n, and simi-
larly for the other constructors in types ID and CL. Class
clerk(n, k) represents the clerk with name n who has posted
kind k transactions (initially none). This class is used to ef-
fectively encode a history of what the clerk has done. Class
post(k) represents a TP posting kind k transactions, and
file(k) represents CDI file(k). The policy is specified as:

_Segregation
RPolicy[CLASS)
opt : TKIND ~ FID

USR = clerk(NAME) A TP = {post}
CDI = file(TKIND)
B={n:NAME e (clerk(n) — clerk(n,none)) }
U {(post — post(none))} U file™ 5 file
R = unzip{ n: NAME; k : TKIND »
(clerk(n,k),post(k),file(k)) }
F = (Afid : opt(TKIND) e
(Areq : clerk(NAME x TKIND) o
(X target : post(TKIND) e post(opt™(fid)))
57
(A target : clerk((NAME x {none})) o
clerk(first(clerk™(target)), opt™(fid)))))

Access-triples of the form (clerk(n, k),post(k),file(k)) re-
flect the fact that a clerk (who has posted kind k transac-
tions) may use a TP with class post(k) to access a k trans-
action file. Initially, each clerk is bound to clerk(n,none),
and must use the relabel functions to opt for posting a
particular type of transaction. This is done in two stages.
First, the clerk must request to change his own label from
clerk(n,none) to clerk(n, k), where k indicates transaction
kind. Relabeling (F opt(k) clerk(n,none) clerk(n,none))
achieves this. Then, if necessary, the clerk requests to change
the post TP binding to post(k), so that he may access the
CDI file(k). Note that once opted for posting a particular
kind of transaction, the relabel functions will not permit a
subsequent request by the clerk to post the other kinds of
transactions. A

There are alternative ways to specify dynamic segrega-
tion of duty. In the previous example, we could declare
multiple copies of the post TP, one for each transaction kind
(entity post(k) with class post(k)). Under this scheme it is
not necessary for clerks to request relabeling of the post TP.

Policy Segregation works by relabeling classification la-
bels. Its MLS interpretation corresponds to a modifica-
tion of user clearances. However, its Unix interpretation
would appear, at least initially, to correspond to changing
the User’s UID, which may not be practical or desirable.
Section 5 will consider how Segregation can be implemented
without having to change entity bindings. Another approach
is to re-specify Segregation such that it defines a separate
copy of the post TP for each clerk, that is, a post(n) TP
for each clerk(n). Initially, each TP post(n) has classifica-
tion post(n,none), and clerk(n) requests a relabel (to this
TP) to post(n,k) for kind k transactions. Access triples
are of the form (clerk(n),post(n,k),file(k)). Under this
scheme a clerk’s classification does not change. This strat-
egy is illustrated in the next example.

Example 9 The Chinese Wall policy [4] can be regarded as
a confidentiality dual of a dynamic segregation of duty pol-
icy: a stock market analyst may not advise an organization
if he has insider knowledge of another competing organiza-
tion. This policy can be implemented in terms of a MLS
lattice-based relabel policy [11], and using Unix user-groups
[8]. We encode it here in terms of a more abstract RPolicy
specification.

Let types NAME and ORG represent the set of all mar-
ket analysts and organizations, respectively. Conflict of
interest is defined in terms of relation (_ 3 _), where for
a,b € ORG, a1 b means that a is in competition with 5.

The Chinese Wall policy was originally defined in terms
of analysts (USR) and organization datasets (CDI). A pol-

icy could be constructed such that each organization o has
one CDI dataset(0), bound to a class dset(o). Each analyst
analyst(n)is initially bound to a class anl(n,d), indicating
that he not yet accessed any datasets. The relabel functions
ensure that an analyst’s binding may be changed only if it
does not result in a conflict of interest. This is the essence
of the approaches in [9, 11, 17].

However, a potential problem arises when implementing
this policy directly in Unix. The Unix interpretation implies
that an analyst cannot gain access to datasets owned by
competing organizations; it does not constrain the propaga-
tion of organization data. An analyst can copy organization
data into a public area. This could be done inadvertently,
deliberately or by a Trojan Horse. In [8] this attack is lim-
ited by requiring that analysts access datasets only via TPs.
The informal approach in [8] can be formalized in terms of
a more general Relabel policy specification as follows.

ID = dataset{ORG)) | analyst(NAMEY) | advise (NAME})

CL ::=dset{ORG)) | anl{NAME))
| advs(NAME x F ORG)

Each analyst(n)uses his own copy of the TP advise(n)to ac-
cess datasets. These could be actual copies of the TP or TP
wrappers (as described in [16]). A TP’s class advs(n, O) in-
dicates the organizations that analyst(n)is advising. Thus,
a request to access the dataset of an organization o involves
a relabeling (using function opt(o)) of just the requester’s

advise TP.

_ Chinese Wall
RPolicy[CL]
1: ORG < ORG
opt : ORG ~ FID

USR = analyst(NAME) A TP = advise(NAME)
CDI = dataset|ORG)
R = unzip{ 0 : ORG; O : F ORG; n: NAME
¢ (anl(n),advs(n, O U{o0}),dset(0)) }
Mnot(dset(ORG) ~» anl(NAME))

B = analyst™ 5 anl U dataset™ j dset
U{n: NAME e advise(n) — advs(n,d) }

F=(\fid: opt(ORG) e
(Areg: anl(NAME) o
(A tp : advs({anl™(req)} x F ORG)
| (VY a: second(advs™(tp)) ¢ = (a t opt™(fid)))
¢ advs(anl™(reg),

second(advs™(tp)) U {opt™~(fid)}))))

This is an example of a combined confidentiality and in-
tegrity (including dynamic segregation of duty) policy. This
policy can be enforced by MLS systems and, unlike [9, 11,
17], by standard Unix systems. As a general observation,
it has been our experience that the specification of policies,
such as Chinese Wall, in terms of reflexive flow relations,
are easier to develop (and comprehend) than lattice-based
constructions such as [11, 17]. A

4.1 Multilevel Implementation

It is straightforward to generalize the MLS implementation
described in Section 3.1 to relabel policies. The same trans-
formation MLSPolicy® is used to transform a Policy spec-
ification into a MLSPolicy implementation, and thus the
orderings of the reflexive policy are preserved in its lattice

implementation. The relabel functions can be transformed
by the & mapping according to

_MLSRFun®
RFuns[CLASS]
RFuns; [P CLASS x P CLASS]
Ri=%R
Fi=(\f:domF e
(8, R)~
s(Ar :dom(F f)e
(8, R)~
s(At:dom(F f r)e®, R (F f rt)))

F1 defines the relabel functions from F in terms of the classes
in MLSPolicy. An MLS implementation of a relabel policy
is simply a relabel policy applied to the transformed lattice.

MLSRPolicy = RPolicy,[P CLASS x P CLASS]
MLSRelabel = Relabeli[P CLASS x P CLASS]

Finally, the MLS implementation of the initial relabel policy
can be constructed using the transformation:

InitMLSRPolicy® = MLSPolicy® AN MLSRFun®

Thus, the initial MLS policy for Segregation can be com-
puted using InitMLSRPolicy®. An MLS implementation
of the MLSRelabel transformation should be implemented
as a relabel macro [11]. This operation implements relabel
functions in terms of the security primitives provided by an
underlying security kernel.

4.2 Unix Implementation

A Unix policy is Policy augmented with grp; and mbry.

UnizRPol = UnizPol A RFuns;[UID]
UnizRelabel = Relabel[UID] A A UnizRPol

With relabeling, only 8; changes, and since R; = Rj, it fol-
lows from UnizRPol that grp: and mbr; are also unchanged.
The initial Unix configuration for RPolicy,[UID] is gotten
by constructing grp: and mbry according to UnizRPol. Thus,
the initial Unix configuration for Segregation (Example 8)
is computed as (Segregationy A UnizRPol). A Unix imple-
mentation of the UnizRelabel transformation modifies the
ownership of entities, and thus should be (carefully) imple-
mented as a SUID root program.

5 Shadowed Relabel Policies

A potential problem with our approach to constructing secu-
rity policies is that it can lead to a large number of security
classes. For example, in the Unix implementation, each se-
curity class must be configured as a (phantom) UID, with
corresponding GID and entries in /etc/group.

This section proposes a solution whereby an implemen-
tation policy is computed for only those classes referenced
in the initial bindings for users, TPs and CDIs. When a
relabel request is made for a class not in this initial configu-
ration, the relations in the implemented policy are modified
in a manner that produces the same effect, instead of per-
forming the relabeling.

Given R:R[C] and g: C + C, then R g is the policy
abstraction R@(ran g), except that each class a € (dom g)
is used in R} g to represent class g(a) € a(R@(ran g)).

F[C]

1:R[C]x(C +~ C)— R[C]

VR:R[C]; g: C+ Ce
Rlg=g35R59”

It follows from this definition that R} g preserves the order-
ings of R, in the sense that:
FYR:R[C];g:C + Coe [L1]
Ya,b:domg e
(a,b) € R1g < (g(a), 9(b)) € RQ(ran g)

A number of other results follow immediately from this def-
inition.

FYR:R[C];g:C + Coe [L2]
a(Rlg) = (aR)Ndom ¢

FYR:R[C]; g,h: C + C |domh C domg e [L3]
a(Bi(g@h)) =a(Rlyg)

FYR:R[C]; g,h: C + C |domh C domg e [L4]

Ri(g®h)=(R1g)Q(domg \ dom?)
U((9@h)s R5R7)U(R5R5(90h)7)

This last law holds due to the disjunctivity of the 5 and ™~ op-
erators [19], and given the fact that (Rlg)@(dom g\domh) =
R1(dom h <1 g). These laws form the basis of our shadowing
of relabel policies. Consider a request to relabel all entities
bound to class a to another class 5. Rather than performing
the relabeling, we could instead modify the flow relation R
to R1((idaR)@® {a — b}), and note that class @ in this new
policy is a shadow, or an alternate representation, of class b.
In this case: Law L1 implies that the original orderings are
preserved; Law L3 implies that entity classifications need
not be changed, and Law L4 indicates that the calculation
of the new policy is based on the previous value for R plus
a re-calculation of orderings for flows involving b.

This scheme is generalized as follows. Given a reflex-
ive relation R; we maintain a (smaller) shadow relation
shadow,, and a representation function rep; such that rep;(a)
gives the class in o R, that is currently represented by class
¢ in ashadow;. Formally,

_ShadowPol[C]
RPolicy:[C]
shadow; : R[C]
rep1 : C + C

dom rep; = ran 5
ran rep;r C a R
shadow; = Ry 1 repr

Note that rep; is defined for only those classes referenced in
B1, and thus ashadow; C aR;. Informally, one may think
of shadow, as that part of R; that is currently ‘swapped-in’.
Initially, the shadow of a policy R; is just those classes that
are referenced in the initial binding of a relabel policy, that
is R @(ranﬂl). This can be specified in terms of rep; as:

_InitialShadow[C]
ShadowPol[C]

rep; = id(ran ()

A theorem that follows immediately from Law L1 is that:
for any legal configuration of a shadow policy, then the flow
restrictions between entities, specified in R;, are preserved

by the shadow of R;. That is,

ShadowPol[C] +
Vz,y: ENTS, o
(B1(z),B1(y)) € shadow
& (repr(Ba(2)), repr(B1(v))) € Ba

A relabel request is implemented as a modification of shadow,
and rep;.

_ RelabelShadow|[C]
A ShadowPol[C]

req? : ID

target? : C

f?: FID

req? € USR1 A f? € dom F;

rep1 (81 reg?) € dom(Fy f7)
target? € dom(Fy f? (rep1(B1 req?)))

rept = rep1 @ { a: C | repr a = target? o

(a— F1 f? (rep1(B1 req?)) target?) }
shadow, = Ry | rep;

ORPolicy; = ORPolicy,

A valid request to relabel all entities bound to class target?
as (F1 f? (rep1(B1 req?)) target?) is implemented by updat-
ing repi so that class target? represents the new class, and
then re-evaluating shadow; for this new representation. In
contrast to specification Relabel, the entity binding 3; here
remains fixed. Note that since the definition of rep; is given
in terms of a function override on rep; for the target class,
then Law L4 implies that the calculation, shadow, = R |
repy, can be implemented in terms of the original shadow
and a re-calculation of orderings involving just target?. Proof
that RelabelShadow is a valid implementation of Relabel is
given in Appendix B.

5.1 Multilevel Implementation

The MLS implementation of shadow policies is similar to
the MLS implementation of the original relabel policies. We
have

MLSShadowPol = ShadowPol[P CLASS x P CLASS]
MLSRelabelS = RelabelShadow[P CLASS x P CLASS]
InitMLSShadowPol® = InitMLSRPolicy®

A InitialShadow[P CLASS x P CLASS]

While we use InitMLSRPolicy® to compute the initial pol-
icy, the actual MLS implementation lattice constructed for
the initial configuration of the policy should be built from
the initial shadow policy shadow; = Ry 1(id81), rather than
from reflexive relation R;. Thus we define the implementa-
tion lattice as

_MLSShadowPollmp
MLSShadowPol
Ly : R[P CLASS]

L1 D { A, B : first(ashadow) U second (o shadow)
|AC B

5.2 Unix Implementation

Following the Unix implementation approach in Section 3.2
we augment ShadowPol by grpi and mbry, but configured
for shadow, rather than for R;.

_ UnizShadowPol
ShadowPol[UID]
UnizPolicy

dom grp; = ran
mbry = shadow: § grpy

Since mbr; is defined in terms of shadow:, then an update
to shadow; should result in a corresponding update to mbry.

UnizRelabelShadow =
RelabelShadow[UID] A A UnizShadowPol

And the initial configuration for grp: and mbry can be de-
termined as InitialShadow, that is

InitUnizShadowPol =
UnizShadowPol A InitialShadow[UID]

6 Conclusion

The proposed policy framework can be used to express a
wide variety of confidentiality and integrity requirements
and these can, in turn, be implemented as MLS or Unix
based policies. The MLS approach may be used for security
critical systems, while the Unix approach may be taken for
less critical applications. Our policy framework is a further
example of the usefulness of the tiered verification approach,
which is based on relabeling, as proposed in [11].

The paper makes a number of contributions; in particu-
lar, it represents a generalization and unification of results
from [6, 10, 11, 14, 16, 18]. The paper illustrates how rela-
beling policies [11] can be expressed in terms of reflexive flow
policies [10], providing a systematic way of developing and
implementing security requirements. We show how these
policies can be used to specify Clark-Wilson access require-
ments including dynamic segregation of duty, the implemen-
tation of which, extends the original results in [14, 16, 18].
Shadowing is used to reduce the size of an implementation
lattice, or the number of Unix UIDs allocated. In the lat-
ter case it provides a technique for ‘relabeling’ users, but
without having to re-allocate UlDs.

The Chinese-Wall policy in Example 9 can be imple-
mented in Unix. Our results on shadowing imply that such
relabel policies can also be captured in terms of re-configuring
the underlying security policy. It turns out that this alterna-
tive implementation corresponds to our original Unix encod-
ing of the Chinese-Wall policy [8] which was implemented by
re-configuring the /etc/group/ as accesses are requested.

We believe that our policies can be implemented in terms
of other security mechanisms, such as type-enforcement [2,
20]. Segregation of duty is specified as a relabel policy and
therefore we should be able use the analysis techniques pro-
posed in [11] to determine if dynamic segregation of duty
can result in covert channels. This is ongoing work which
we hope to report on in the future.

Acknowledgments

This work was supported by Forbairt under Basic Research
Grant SC/96/611. The author would like to thank his col-
league John Morrison and the anonymous referees for their
comments on an earlier version of this paper.

(1]

10]

(11]

(12]

(13]

(14]

15]

(16]

(17]

18]

(19]

(20]

References

D. Bell. Secure computersystems: A network interpretation.
In Proceedings of the Aerospace Computer Security Appli-
cations Conference, pages 32-39. IEEE Computer Society
Press, 1986.

W. Bobert and R. Kain. A practical alternative to hierar-
chical integrity properties. In Proceedings of the National
Computer Security Conference, pages 18-27, 1985.

M. Branstad et al. Trusted Mach design issues. In Proceed-
ings Third Aerospace Computer Security Conference, 1987.
D. Brewer and M. Nash. The Chinese Wall security policy.
In Proceedings of the 1989 IEEE Symposium on Security
and Privacy, pages 206-214. IEEE Computer Society Press,
May 1989.

C. Bryce. Lattice-based enforcement of access control poli-
cies. Technical Report 1011, GMD, Institute SET-RS, Sankt
Augustin, Germany, Aug. 1996.

D. D. Clark and D. R. Wilson. A comparison of commercial
and military computer security models. In Proceedings 1987
IEEE Symposium on Security and Privacy, pages 184-194.
IEEE Computer Society Press, Apr. 1987.

Denning, D.E. On the derivation of lattice structured infor-
mation flow policies. Technical Report CSD TR180, Purdue
University, 1976.

S. Foley. Building Chinese Walls in standard Unix. In Sup-
plement to the Proceedings of the 1996 IEEE Symposium on
Security and Privacy (Five-Minute Abstracts). Full length
version submitted for publication.

S. Foley. Aggregation and separation as noninterference
properties. Journal of Computer Security, 1(2):159-188,
1992.

S. Foley. Reasoning about confidentiality requirements. In
Proceedings of the Computer Security Foundations Work-
shop, pages 150-160, Franconia, NH, June 1994. IEEE Com-
puter Society.

S. Foley, L. Gong, and X. Qian. A security model of dy-
namic labeling providing a tiered approach to verification.
In Proceedings of the Symposium on Security and Privacy,
pages 142-153, Oakland, CA, May 1996. IEEE Computer
Society Press.

S. Garfinkel and G. Spafford. Practical Uniz & Internet
Security. O'Reilly & Associates, 1996.

J. Jacob. The varieties of refinement. In J. M. Morris
and R. C. Shaw, editors, Proceedings of the 4th Refinement
Workshop, pages 441-455. Springer-Verlag, 1991.

T. Lee. Using mandatory integrity to enforce ‘commerical’
security. In Proceedings of the Symposium on Security and
Privacy, pages 140-146, 1988.

M. Nash and K. Poland. Some conundrums concerning sepa-
ration of duty. In Proceedings of the Symposium on Security
and Privacy, pages 201-207, Oakland, CA, May 1990. IEEE
Computer Society Press.

W. Polk. Approximating Clark-Wilson access triples with
basic UNIX controls. In Uniz Security Symposium IV, pages
145-154, 1993.

R. Sandhu. Lattice based access control models. IEEE Com-
puter, 26(11):9-19, Nov. 1993.

W. Shockley. Implementing the Clark Wilson integrity pol-
icy using current technology. In Proceedings of the National
Computer Security Conference, pages 29-36, 1988.

J. M. Spivey. The Z Notation: A Reference Manual. Se-
ries in Computer Science. Prentice Hall International, sec-
ond edition, 1992.

D. Thomsen and J. Haigh. A comparison of type enforce-
ment and Unix setuid implementation of well-formed trans-
actions. In Computer Security Applications Conference,
pages 304-312. IEEE Computer Society Press, 1990.

A Notation

A.1 The Z Notation

A set may be defined in Z using set specification in com-
prehension. This is of the form { D | P ¢ E }, where D
represents declarations, P is a predicate and £ an expres-
sion. The components of { D | P ¢ E } are the values taken
by expression E when the variables introduced by D take
all possible values that make the predicate P true. When
there is only one variable in the declaration and the expres-
sion consists of just that variable, then the expression may
be dropped if desired.

In Z, relations and functions are represented as sets of
pairs. A (binary) relation R, declared as having type 4 «
B, is a component of P(A4 x B). For a € A and b € B, then
the pair (a,b) is written as a — b, and ¢ — b € R means
that a is related to b under relation R. Functions are treated
as special forms of relations. A lambda abstraction, written
as (Az : X | P(z) o E(z)) specifies a partial function that
maps values z : X (where P(z) holds) to E(z).

The Schema notation is used to structure specifications
in Z. A schema such as Ents defines a collection of vari-
ables (limited to the scope of the schema), and specifies
how they are related. Schemas may be defined in terms of
other schemas. For example, the inclusion of Ents within
schema Policy is equivalent to the syntactic inclusion of the
variables and predicates of Ents within Policy. Schemas
may be composed using logical operators. For example,
UnizPol A RFuns;[UID] is a schema with variables and
predicates from both UnizPol and RFuns;.

The decorated schema Policy; is Policy with all variables
decorated by the subscript 1. The schema ARPolicy is a
syntatic sugar for RPolicy A RPolicy'. Tt is typically used
for specifying state transitions, with undecorated variables
representing ‘before values’ and decorated (primed) vari-
ables representing ‘after values’. 6 Ents gives a schema type
with variables from Ents. Put simply, predicate 8 Ents =
0Ents; in schema MLSPolicy® is equivalent to specifying
USR = USR,, TP = TP, and so forth.

first(a,b)
second(a,b)

P A

Component a of ordered pair (a,b)
Component b of ordered pair (a, b)
The power set of A

FA The set of finite sets from P A

U K Distributive union over the sets in K

A< B Relations between 4 and B

A—> B Total functions from 4 to B

A+ B Partial functions in 4 — B

A~ B Partial injective functions in A +~ B

dom R,ran B Domain and Range of relation R

id 4 Identity relation over values from A

R3S Relational composition

R(A) Image of set A through relation R.

R~ The inverse of relation R

Ro G The relational override of R by G

AR Relation R with its domain restricted
to values from A

id 4 Identity relation over A

A.2 Constructing Reflexive Relations

The policy construction operators used in this paper are

defined as:

F[X]
1:(PX)— R[X]
~:((PX)x (P X)) — R[X]
@,_T_:(R[X]x PX)— R[X]
MN:(R[X]x R[X]) = R[X]
not : R[X] — R[X]

1l4=4x4

A~ B=id(AUB)U (A x B)

R@A = {a,b:(ANoaR)|(a,b) € R}

Rt A={a,b:(AUaR)|{a,b} CaR = (a,b) € R}
RNQ=(R1a@)n(Q1ak)

not R = (T(aR))U((L(axR))\ R)

A reflexive relation is mapped to a lattice by function ®,.

:.X

'[L]:R[X]HX—H(IP’XXIPX)

& :R[X]— R[P X x P X]

®, Ra=({b:X|dom({a} < R) C dom({b} < R)},
{b: X (b,a) € BY)

® R={a,b:aRe(®, R a,® Rb)}

The mapping is order-preserving, in that for any R : R[X]:

FVa,b:aRe
(a,b) € R & first(®, R a) C second(®, R b)

B Correctness of Shadow Policies

We prove that the shadow policy implementation is a refine-
ment, in the sense of [19], of the relabel policy specification.

B.1 Data Refinement

The relabel policy implemented by a shadow policy can be
specified according to the following abstraction (retrieve)
function Abs.

_ Abs[C]
RPolicy[C]
ShadowPol[C]

0FEnts = 0 Ents;
ORFuns = ORFuns;
B =p13rem

The policy components are the same except that we retrieve
B (which changes with relabeling) from $; (remains static)
and rep; (changes with relabeling).

Initial States Theorem. Since ShadowPol is defined in terms
of Relabel, then it follows that we can retrieve from an initial
shadow policy, using Abs, its abstract relabel policy. That
is,

InitialShadow'[C] A Abs[C] & InitRPolicy[C]

B.2 Operation Refinement

The Relabel transition updates 5 by relabeling all entities
bound to target? by a new class specified by the relabel func-
tion. It is the only component of the policy that changes,

and therefore, if the relabeling is applicable given reg? and
target?, then the transition is applicable. Thus we can com-
pute the precondition of Relabel to be

_ PreRelabel[C]
RPolicy[C]
req? : ID
target? : C
f?: FID
req? € USR A f? € dom F
B req? € dom(F f?)
target? € dom(F f? (8 req?))

The RelabelShadow does not modify G1, but updates rep;
and shadow:. No other variables are modified, and since we
have shadow; = Ry ! rep;, which is equivalent to shadow; =
Rilrep], then the invariant holds on ShadowPol’. Thus it fol-
lows that we can compute the precondition of RelabelShadow
to be

_ PreRelabelShadow[C]
ShadowPol[C]
req? : ID
target? : C
f?: FID

req? € USR1 A f? € dom F;
rep1 (81 reg?) € dom(Fy f7)
target? € dom(Fy f? (rep1(B1 req?)))

Applicability Theorem. It must be safe to apply a shadow
relabel request whenever it would be safe to apply the same
request to its corresponding abstract relabel policy. The
retrieve function defines 8 = ;1 § rep; and thus we have

B(reg?) = rep1(B1(reg?)). Thus it follows that
PreRelabel[C] A Abs[C] + PreRelabelShadow[C]

Correctness Theorem. RelabelShadow must update a shadow
policy correctly. Compare the definition of rep; in schema
RelabelShadow with 8' in RelabelPolicy. They perform the
same function in sense that we have 8' = 3] 5 rep;. Thus we
have

PreRelabel[C] A Abs[C]
A RelabelShadow[C] A Abs'[C] + Relabel[C]

10

