
The Speci�cation and Implementation of `Commercial' Security RequirementsIncluding Dynamic Segregation of DutiesSimon N. Foley,Department of Computer Science,University College,Cork, Ireland.(s.foley@cs.ucc.ie)AbstractA framework for the speci�cation of security policies is pro-posed. It can used to formally specify con�dentiality andintegrity policies, the latter can be given in terms of Clark-Wilson style access triples. The framework extends theClark-Wilson model in that it can be used to specify dy-namic segregation of duty.For application systems where security is critical, a mul-tilevel security based approach is de�ned. Security policiesfor less critical applications can be implemented using stan-dard Unix based systems. Both implementation strategiesare based on the standard protection mechanisms that areprovided by the respective systems.1 IntroductionClark and Wilson [6] propose a model for (integrity) secu-rity that can be used for systems where security is enforcedacross both the operating system and the application sys-tems. Their model is based on commercial data processingpractices and can be used as a basis for evaluating the secu-rity of a complete application system. It's operating-systemsecurity requirements can be captured in terms of multilevelsecurity (MLS), and can therefore be implemented and eval-uated using `existing technology' [14, 18]. However, [15] ar-gues that, whereas the Clark-Wilson model considers staticsegregation of duty, it does not consider the formalizationof dynamic segregation of duty.In this paper, we describe a framework in which securitypolicies, including dynamic segregation of duty, can be ex-pressed. By expressing dynamic segregation of duty in termsof relabeling policies [11], it becomes possible to use the re-sults in [14, 18] for implementation and evaluation of thesepolicies. Our framework also provides a basis for policy re-�nement and composition [10]. These can be used in thedevelopment of complex policies which may include combi-nations of integrity and con�dentiality requirements spreadacross di�erent applications.MLS systems are typically used when security is critical;a high degree of assurance is required that the security pol-icy is upheld. For application systems that are less securitycritical, [16] outlines how they can be supported by a stan-dard Unix system according to the Clark-Wilson model. WeTo appear in the Proceedings of the 4th ACM Conferenceon Computer and Communications Security, April 1997,Zurich, Switzerland.

also show here how the approach in [16] can be adapted tosupport more general security policies.This paper is organized as follows: Section 2 considershow Clark-Wilson access triples may be expressed in termsof re
exive relations. This provides us with a basic frame-work for constructing complex policies which express bothintegrity and con�dentiality policies [10]. Section 3 intro-duces a structure for specifying these policies, and considerstheir implementation in Unix and MLS systems. Section 3may be regarded as a new application of the policy construc-tion methods proposed in [10] to [14, 16, 18].Section 4 considers how relabeling [11] can be adaptedfor our policy framework and also how these policies can, inturn, be supported by Unix and MLS systems. Using ourframework, a dynamic segregation of duty policy and a Chi-nese Wall policy are formally speci�ed, both of which canbe enforced by Unix or MLS systems. Section 5 describesa technique that can reduce the number of security classi-�cations and user-ids that are necessary for MLS and Unixsystem implementations.The Z notation [19] is used to provide a consistent syn-tax for structuring and presenting the mathematics in thispaper. In using Z, it has been possible to syntax- and type-check the de�nitions using the f uzz tool. Appendix A.1gives a brief overview of the Z notation.2 The Clark-Wilson Model of SecurityThe Clark-Wilson (CW) model is de�ned in terms of en-forcement rules and certi�cation rules. Enforcement rulesspecify security requirements that should be supported bythe protection mechanisms in the underlying operating sys-tem. The certi�cation rules specify security requirementsthat the application system should uphold. There are ninerules in total, but we will consider only that rule concernedwith supporting access control.The model components include: the Users of the sys-tem; Constrained Data Items (CDIs) representing data ob-jects with integrity, and Transform Procedures (TPs) thatoperate on CDIs and represent the well-formed transactionsthat provide the functionality of the application system.2.1 Clark-Wilson Enforcement Rule E2The main access-control requirement underlying the CW-model is that users may only access CDIs via TPs. Andthen only if that access is speci�ed in an E2rule relation.For our purposes, an E2rule relation is a set of access-triples1

con�gured for a particular application system. An access-triple, given as (u; t ;c), is interpreted to mean that the useru may use the TP t to access the CDI c. The set of allpossible access triple relations is de�ned to be AT [C], where(generic) C represents the identi�ers used for users, TPs andCDIs.AT [C] ==fT : �(C � C � C) j (8 u;u 0; t ; c;c0 : C �((u; t ;c) 2 T ^ (u 0; t ;c0) 2 T)) (u; t ; c0) 2 T) gWe make an assumption that if a user u may invoke TP t ,then that user may access (using t) any CDI that is acces-sible by TP t . This speci�cation for access triple relationsdeviates slightly from the usual de�nition [6]. We use it be-cause it leads to a simpler exposition of the results in thispaper, but it in no way restricts it's application. By makingadditional instantiations, or copies, of TPs one can encodethe access triples proposed in [6] as components of AT .Example 1 Under the Unix system, a user smith maymod-ify the �le of login passwords (passwd) only via a trustedfunction which we call chpass. This could be speci�ed bythe access triple relation:PassTrips == f(smith;chpass;passwd)gSimilarly, in an inventory management system, the clerksmith may post only (incoming) invoices to the invoice �le(CDI invs) using the TP posti . The clerk jones may �leonly (incoming) consignment notes to the consignments �leusing TP postc.ClerkTrips == f(smith;posti ; invs); (jones;postc;cons)gThis is an example of static segregation of duty. 42.2 Access Triples and Re
exive RelationsAn access triple (u; t ; c) may be viewed in terms of a non-transitive ordering: u may access t and t may access c, butu may not (directly) access c. In this section we describehow relations from AT may be expressed as re
exive (bi-nary) ordering relations. There are a number of advantagesto taking this approach. In particular, re
exive relationsbecome convenient abstractions of existing security policies[10]. We can then compose and re�ne these policies and alsosystematically construct complex policies that express bothcon�dentiality and integrity requirements. Appendix A.2de�nes the operators used in the construction of re
exiverelations; the reader is referred to [10] for more details.Re
exive relations are used to specify information
owpolicies. These policies de�ne the di�erent classes of infor-mation that can exist in a system and whether or not infor-mation may
ow between these classes. In [10] we suggestthat, in addition to considering the usual sensitivity lev-els such as secret and topsecret, we should also considerunique classes to represent signi�cant system components,such as users, objects, programs and database components.If we do this, classes can be used to represent TPs and CDIs.This approach is also suggested in [5]. The set of all re
ex-ive relations between classes of (generic) type C is de�nedby R[C], whereR[C] == fR : C $ C j id(domR [ranR) � RgIf R 2 R[C] and a 7! b 2 R, then we say that a is lessthan, or equal to, b in R. If the notation A ; B de�nes

a re
exive relation where all elements of A are less than allelements of B , then a simple multilevel-style policy can bespeci�ed asMLS == funclass;secretg; fsecret;topsecretgThe alphabet of a re
exive relation de�nes the componentsof that relation. For example, we have�MLS = funclass;secret;topsecretgThe set R[C] forms a lattice under a partial orderingv, and lowest upper bound operator u. Intuitively, R v Qmeans that Q is no less restrictive than R, that is, any
owthat is not allowed by R will also not be allowed by Q.We view an R v Q relation as a re�nement relation in thesense of [13]: the policy de�ned by Q is, in a security sense,an acceptable replacement for the policy R. Therefore, asystem that is secure by policy Q is also secure by policy R.Since RuQ is a lowest upper bound on R and Q, then it is,in a security sense, an acceptable replacement for R and Q.Example 2 A re
exive relation speci�cation for the simplepassword policy is:PassReln == ?fsmith;chpass;passwdgu not(fsmithg; fpasswdg)where ?A gives the least restrictive policy with alphabet A.PassReln speci�es that any
ow is permitted, except fromsmith to passwd . This implies that smith may not (directly)modify passwd . Note that information is permitted to
owfrom passwd to smith. 4[C]usr ; tp;cdi : (C � C � C)! Cunzip : AT [C]! R[C]usr(u; t ;c) = u ^ tp(u; t ;c) = t ^ cdi(u; t ;c) = cunzip T = Sf t : T � ?fusr(t); tp(t);cdi(t)g gu not((usr�T � n tp�T �); (cdi�T � n tp�T �))Given an access-triple relationT , unzip(T) returns its equiv-alent re
exive relation. The policy not((usr�T � n tp�T �);(cdi�T � n tp�T �)) speci�es that information may not di-rectly
ow from (a class representing) a user to a CDI;however, for generality, the
ow may be permitted if theuser or CDI also corresponds to a TP. The policy Sf t :T � ?fusr(t); tp(t);cdi(t)g g speci�es that for each triple t ,information may
ow between all the triple's components.The policy unzip(T) is the least restrictive policy that en-forces the
ow restrictions of both these component policies.In this policy we permit direct
ows from CDIs to users,however users must use TPs when modifying CDIs. If re-quired, it is a straightforward process to compose this policywith a further policy specifying that information may not
ow directly from CDIs to users.Example 3 From Examples 1 and 2, we have PassReln =unzip(PassTrips). The more restrictive policy (PassReln unot(fpasswdg; fsmithg)) additionally speci�es that infor-mation may not
ow from passwd to smith. The policy(unzip(ClerkTrips)uMLS) is an example of a combined in-tegrity (ClerkTrips) and con�dentiality (MLS) policy. 43 Developing Security PoliciesLet ID represent the set of all possible users, TPs and CDIs.A security policy is de�ned in terms of a particular set ofthese entities ENTS .2

EntsENTS ;USR;TP ;CDI : � IDhUSR;TP ;CDI i partition ENTSGiven Ents, then a set of classes of generic type C is de�nedwhich is used to represent the di�erent classes of informationexpected in the system. This may include classes represent-ing users, CDIs, sensitivity levels, and so forth. A securitypolicy is speci�ed in terms ofPolicy[C]Ents� : ID � CR : R[C]dom� = ENTSran � � �RR gives the re
exive
ow relation and � associates each en-tity from ENT with some class from the alphabet of R.Example 4 For the password policy, entities (identi�ed us-ing an italic font) smith, chpass and passwd are representedby smth, chps and pswd, (elements of basic type CLASS ,identi�ed using a typewriter font), respectively.PassPolicyPolicy[CLASS]USR = fsmithg ^ TP = fchpassg ^ CDI = fpasswdgR = unzipf(smth;chps;pswd)g� = fsmith 7! smth; chpass 7! chps;passwd 7! pswdg 43.1 Multilevel ImplementationShockley [18] and Lee [14] describe how MLS systems suchas [1, 3] can be con�gured to support the CW-model, and inparticular, how the access-triple relation can be encoded interms of a lattice policy together with bindings for objectsand partially trusted subjects. In this section we character-ize these MLS policies and show how they can be computedfrom a Policy speci�cation. The reader is referred to [14, 18]for speci�c implementation details of how to apply the poli-cies described in this section.Given basic type CLASS representing the set of securityclasses, then we specify a multilevel policy based on thepowerset lattice of �CLASS asMLSPolicyPolicy1[�CLASS ��CLASS](A;B) 2 �R1) A � B((A;B); (C ;D)) 2 R1 , A � C ^ B � DThis speci�cation, while somewhat stylized, is interpreted asfollows. Variables are decorated by the subscript 1 to signifycomponents of an implementation policy speci�cation. R1is a lattice of pairs (of sets of classes). These pairs can beviewed as de�ning intervals on the powerset lattice based on��R1. This powerset lattice corresponds to the implemen-tation lattice policy that forms part of an MLS system.Each user u is bound to a pair �1(u) = (A;B) from �R1.The user is considered cleared to classes between A and Bin the powerset lattice ��R1. Each TP t runs as a partiallytrusted subject, with �1(t) specifying the interval of trust for

its alter-minimum and view-maximum (amin; vmax) bind-ings. A CDI c is viewed as a single-level object in which�1(c) = (A;B) implies A = B . This could be, for example,a single-level �le. The CDI is a multilevel object if A � B .In this case it might correspond, for example, to a multileveldatabase table with table classi�cation constraints �1(c).To minimize the size of the implementation powerset lat-tice, a smaller sublattice L1 of the powerset lattice can beused. It is constructed by taking the partial order (subset)de�ned in terms of (implementation) classes �rst��R1� [second��R1�, and adding additional classes until a lattice isformed [7]. Instead of reproducing the algorithm in [7], wespecifyMLSPolicyImpMLSPolicyL1 : R[�CLASS]L1 � f A;B : ��R j A � B gL1 � f A;B : �rst��R1� [second��R1� j A � B gInformally, an MLS system is secure according to such apolicy containing entities x ;y, if information
ows from x toy then �rst(�1(x)) � second(�1(y)) holds. This correspondsto the usual Simple Security Condition and Star Property,as given in [3].Example 5 The Password policy can be speci�ed as anMLSPolicy based on the implementation lattice L1 and �1bindings given in Figure 1. Note that we use s to abbreviatesmth, and so forth. Using these bindings with the implemen-x �1(x)smith [fs;c;pg; fs;c;pg]chpass [fc;pg; fs;c;pg]pass [fc;pg; fc;pg] 6fc;pgfs;c;pgFigure 1: MLS Implementation of PassPolicytation strategy in [14], it follows that smith may not modifypasswd , except via chpass. 4It is tedious to manually construct such lattice basedClark-Wilson policies. In [10] we give a function � that mapsan arbitrary re
exive relation into a lattice plus intervals onthat lattice. We use this function, de�ned in Appendix A.2,to transform a (re
exive) speci�cation Policy onto its latticeimplementation MLSPolicy.MLSPolicy�Policy[CLASS]MLSPolicy�Ents1 = �Ents�1 = � � (�� R)R1 = � RIt follows, from the order-preserving property of � [10], thatMLSPolicy� `8 x ; y : ENTS ��rst(�1(x))� second(�1(y)), (�(x);�(y)) 2 RFor example, applying the transformation to speci�cationPassPolicy gives an implementation which is equivalent tothat de�ned in Figure 1. Similarly, we can compute an MLSimplementation for ClerkTrips, but for reasons of space wecannot include the details here.3

3.2 Unix ImplementationA Unix system can be con�gured to support the CW-model[16, 20] by implementing the access-triple relation as an en-coding of user-groups, and with TPs as set-user-id (suid)programs. In this section we specify these Unix policies andshow how they can be computed from a Policy speci�cation.The reader is referred to [16] for more speci�c implementa-tion details.Since standard Unix cannot enforce information
ow con-trols, we interpret an information
ow policy fag; fbg asmeaning that user a may have access to �les owned by userb. The essence of our approach is that user-id b will havea group-id gb with a being a member of gb. Let UID andGID represent the set of all possible user-ids and group-ids,respectively. A Unix user-group policy is speci�ed asUnixPolicyPolicy1[UID]grp1 : UID � GIDmbr1 : UID $ GIDran mbr1 = ran grp1dom mbr1 = dom grp1 = ran �1mbr1 = R1 � grp1For our purposes, the injective function grp1 associates aunique GID with each UID and relation mbr1 speci�es groupmembership (as implemented by �le /usr/group). Note thatgrp1 and mbr1 are simply an alternative representation forR1.Each user u has an associated UID given by �1(u). ACDI c is implemented as a �le, owned by �1(c) and withgroup-id grp1(�1(c)). Its access permission bits should beset to only RW for owner and group. TP t is an executableprogram, stored in a �le, with UID �1(t), GID grp1(�1(t)),and has permission bits set to execute by user and grouponly, and has its suid bit set. CDI and TP UIDs typicallycorrespond to phantom user-ids|that is they are not login-user-ids and have no associated human user.Example 6 The password policy can be speci�ed in termsof UnixPolicy with UIDs smth, chps, and pswd, and corre-sponding GIDs gsmth, gchps, and gpswd, respectively. Fileschpass and passwd have the self-explanatory protection pro-�les: user group otherchpass rws rx- ---chps gchpspasswd rw- rw- ---pswd gpswdThe mbrs1 relation is con�gured as follows. Smith is permit-ted to access (execute) the TP chpass (smth 2 grp1(gchps)),which in turn may access �le passwd (chps 2 grp1(gpswd)).But Smith may not directly access the password �le (smth 62grp1(gpswd)). 4Given a policy speci�ed in terms of Policy1[UID], thenallocating grp1 and calculatingmbr1 according to UnixPolicygives its Unix implementation. Since mbr1 = R1 � grp1, itfollows that the Unix implementation preserves the accessconstraints of the policy, that is,UnixPolicy `8 x ; y : ENTS �(�1(x);grp1(�1(y))) 2 mbr1 , (�1(x); �1(y)) 2 R1For example, PassPolicy1 ^ UnixPolicy speci�es a Unix im-plementation policy that is similar to that in Example 6.

Note that individual TP's are suid programs and needto be checked for vulnerabilities to suid attack [12]. How-ever, they are not owned by root, and a compromise may beconsidered less critical than compromise of suid root pro-grams. This checking should form part of the certi�cationperformed on TPs during the CW-model evaluation of theapplication.4 Dynamic Security PoliciesThe CW-model, while considering static segregation of dutylike that described in ClerkPolicy, does not consider the for-malization of dynamic segregation of duty [15]. For example,we cannot use a standard access-triple relation to express therequirement that: a clerk may either process an invoice, orverify a consignment, but not both. In this section we showhow our Policy framework can be extended to support sucha requirement.Relabel policies [11] are lattice-based MLS policies thatare augmented by a collection of relabel functions. Thesefunctions de�ne how subject and object security class labelsmay change and can be used to encode dynamic aspects ofMLS requirements.Since re
exive
ow policies are simply abstractions oflattice based policies, we argue that relabel functions canbe speci�ed in terms of re
exive relations and these in turncan be mapped to an implementation lattice. Let FID de�nethe set of identi�ers that represent relabel functions. A basicrelabel policy is then speci�ed in terms of RFuns:RFuns[C]R : R[C]F : FID � C � C � C8 f : ranF �dom f [S(dom�ran f �) [S(ran�ran f �) � �RR gives the
ow policy and F is a set of relabel functions,where given �d 2 domF , then F (�d) de�nes the relabelfunction identi�ed as �d . Given classes a 2 dom(F (�d))and b 2 dom(F (�d)(a)), then a user at class a may re-quest to relabel an entity at class b by class F (�d)(a)(b).For example, a simple relabeling function that reclassi�esan entity's multilevel classi�cation to that of the requesteris (� s : �MLS � (�a : �MLS � s)). We say a relabel policyis a Policy with relabel functions.RPolicy[C] b= Policy[C] ^ RFuns[C]Example 7 Clerk smith may post either invoices or con-signment notes, but not both.SimpleDynamicRPolicy[CLASS]opt : fposti;postg� FIDUSR = fsmithg ^ TP = fpostg ^ CDI = finvs;consgR = unzipf(smth;post; post); (smth;posti;invs);(smth;postc;cons)g� = fsmith 7! smth;post 7! post;invs 7! invs; cons 7! consgF = (� f : ran opt �(� s : fsmthg � (� t : fpostg � opt�f)))Function opt is used to allocate unique FIDs for the two re-label functions de�ned in F . The relabel function identi�edas opt(posti), relabels class post by class posti, while the4

function F (opt(postc)) relabels class post by class postc.Only the user smth may use these functions. Note thatfrom the access-triples: smith can potentially access all CDIclasses. But there is only one TP, identi�ed by post , andinitially it may not access any CDI. Only by using the rela-bel functions in F can smith change the label for TP postand subsequently gain access to a CDI. 4The previous example shows that relabel functions can beused to encode dynamic segregation of duties. The de�nitionof relabeling [11] can be adapted to the policy frameworkproposed here as follows:InitRPolicy[C] b= RPolicy[C]Initially, a relabel policy may have any legal con�guration.Transition Relabel is atomic and speci�es the e�ect that arelabel function has on a relabel policy.Relabel [C]�RPolicy[C]req? : IDtarget? : Cf ? : FIDreq? 2 USR ^ f ? 2 dom F� req? 2 dom(F f ?)target? 2 dom(F f ? (� req?))�Ents = �Ents 0 ^ �RFuns = �RFuns 0�0 = � � f x : ID j � x = target?� (x 7! (F f ? (� req?) target?)) gA relabel request is made by a user req? to relabel all entitiesthat are bound to class target? using the relabel function�d?. It changes only the � component of the relabel policy.Note that the granularity of the policy is important here; ifthe policy speci�er wishes to apply the function to just onespeci�c entity (rather than all entities of a particular class),then he must identify that entity by a special class. Themotivation for taking this particular approach will becomeapparent in Section 5.Example 8 The dynamic segregation of duty policy canbe generalized to any number of clerks. Clerks may posteither incoming consignment notes, incoming invoices, orpayments, to their respective data stores (�les).Let NAME represent the set of all possible names forclerks. The free type, TKIND, de�nes the di�erent types oftransactions in the system, ID represents the entities in thesystem, and CL de�nes the classes for these entities.TKIND ::= invoice j cnote j payment j noneID ::= clerk�NAME� j post j �le�TKIND�CL ::= clerk�NAME � TKIND�j post�TKIND� j file�TKIND�Entity clerk(n) is the entity with name n; post is the postTP entity, and �le(k) is the CDI �le containing kind k trans-actions. Given the construction clerk(n), we can extractthe name of the original clerk using the destructor function(inverse) clerk�, that is clerk�(clerk(n)) = n, and simi-larly for the other constructors in types ID and CL. Classclerk(n; k) represents the clerk with name n who has postedkind k transactions (initially none). This class is used to ef-fectively encode a history of what the clerk has done. Classpost(k) represents a TP posting kind k transactions, andfile(k) represents CDI �le(k). The policy is speci�ed as:

SegregationRPolicy[CLASS]opt : TKIND � FIDUSR = clerk�NAME� ^ TP = fpostgCDI = �le�TKIND�� = f n : NAME � (clerk(n) 7! clerk(n;none)) g[f(post 7! post(none))g [�le� � fileR = unzipf n : NAME ; k : TKIND �(clerk(n; k);post(k);file(k)) gF = (� �d : opt�TKIND� �(� req : clerk�NAME �TKIND� �(� target : post�TKIND� � post(opt�(�d)))�(� target : clerk�(NAME � fnoneg)� �clerk(�rst(clerk�(target));opt�(�d)))))Access-triples of the form (clerk(n; k);post(k);file(k)) re-
ect the fact that a clerk (who has posted kind k transac-tions) may use a TP with class post(k) to access a k trans-action �le. Initially, each clerk is bound to clerk(n;none),and must use the relabel functions to opt for posting aparticular type of transaction. This is done in two stages.First, the clerk must request to change his own label fromclerk(n;none) to clerk(n;k), where k indicates transactionkind. Relabeling (F opt(k) clerk(n;none) clerk(n;none))achieves this. Then, if necessary, the clerk requests to changethe post TP binding to post(k), so that he may access theCDI file(k). Note that once opted for posting a particularkind of transaction, the relabel functions will not permit asubsequent request by the clerk to post the other kinds oftransactions. 4There are alternative ways to specify dynamic segrega-tion of duty. In the previous example, we could declaremultiple copies of the post TP, one for each transaction kind(entity post(k) with class post(k)). Under this scheme it isnot necessary for clerks to request relabeling of the post TP.Policy Segregation works by relabeling classi�cation la-bels. Its MLS interpretation corresponds to a modi�ca-tion of user clearances. However, its Unix interpretationwould appear, at least initially, to correspond to changingthe User's UID, which may not be practical or desirable.Section 5 will consider how Segregation can be implementedwithout having to change entity bindings. Another approachis to re-specify Segregation such that it de�nes a separatecopy of the post TP for each clerk, that is, a post(n) TPfor each clerk(n). Initially, each TP post(n) has classi�ca-tion post(n;none), and clerk(n) requests a relabel (to thisTP) to post(n; k) for kind k transactions. Access triplesare of the form (clerk(n);post(n; k);file(k)). Under thisscheme a clerk's classi�cation does not change. This strat-egy is illustrated in the next example.Example 9 The Chinese Wall policy [4] can be regarded asa con�dentiality dual of a dynamic segregation of duty pol-icy: a stock market analyst may not advise an organizationif he has insider knowledge of another competing organiza-tion. This policy can be implemented in terms of a MLSlattice-based relabel policy [11], and using Unix user-groups[8]. We encode it here in terms of a more abstract RPolicyspeci�cation.Let types NAME and ORG represent the set of all mar-ket analysts and organizations, respectively. Con
ict ofinterest is de�ned in terms of relation (z), where fora; b 2 ORG, a z b means that a is in competition with b.The Chinese Wall policy was originally de�ned in termsof analysts (USR) and organization datasets (CDI). A pol-5

icy could be constructed such that each organization o hasone CDI dataset(o), bound to a class dset(o). Each analystanalyst(n) is initially bound to a class anl(n;�), indicatingthat he not yet accessed any datasets. The relabel functionsensure that an analyst's binding may be changed only if itdoes not result in a con
ict of interest. This is the essenceof the approaches in [9, 11, 17].However, a potential problem arises when implementingthis policy directly in Unix. The Unix interpretation impliesthat an analyst cannot gain access to datasets owned bycompeting organizations; it does not constrain the propaga-tion of organization data. An analyst can copy organizationdata into a public area. This could be done inadvertently,deliberately or by a Trojan Horse. In [8] this attack is lim-ited by requiring that analysts access datasets only via TPs.The informal approach in [8] can be formalized in terms ofa more general Relabel policy speci�cation as follows.ID ::= dataset�ORG� j analyst�NAME� j advise�NAME�CL ::= dset�ORG� j anl�NAME�j advs�NAME � �ORG�Each analyst(n) uses his own copy of the TP advise(n) to ac-cess datasets. These could be actual copies of the TP or TPwrappers (as described in [16]). A TP's class advs(n;O) in-dicates the organizations that analyst(n) is advising. Thus,a request to access the dataset of an organization o involvesa relabeling (using function opt(o)) of just the requester'sadvise TP.ChineseWallRPolicy[CL]z : ORG $ ORGopt : ORG � FIDUSR = analyst�NAME� ^ TP = advise�NAME�CDI = dataset�ORG�R = unzipf o : ORG; O : �ORG; n : NAME� (anl(n);advs(n;O [fog);dset(o)) gu not(dset�ORG�; anl�NAME�)� = analyst� � anl[dataset� � dset[f n : NAME � advise(n) 7! advs(n;�) gF = (� �d : opt�ORG� �(� req : anl�NAME� �(� tp : advs�fanl�(req)g � �ORG�j (8 a : second(advs�(tp)) � : (a z opt�(�d)))� advs(anl�(req);second(advs�(tp)) [fopt�(�d)g))))This is an example of a combined con�dentiality and in-tegrity (including dynamic segregation of duty) policy. Thispolicy can be enforced by MLS systems and, unlike [9, 11,17], by standard Unix systems. As a general observation,it has been our experience that the speci�cation of policies,such as ChineseWall , in terms of re
exive
ow relations,are easier to develop (and comprehend) than lattice-basedconstructions such as [11, 17]. 44.1 Multilevel ImplementationIt is straightforward to generalize the MLS implementationdescribed in Section 3.1 to relabel policies. The same trans-formation MLSPolicy� is used to transform a Policy spec-i�cation into a MLSPolicy implementation, and thus theorderings of the re
exive policy are preserved in its lattice

implementation. The relabel functions can be transformedby the � mapping according toMLSRFun�RFuns[CLASS]RFuns1[�CLASS � �CLASS]R1 = � RF1 = (� f : domF �(�� R)��(� r : dom(F f) �(�� R)��(� t : dom(F f r) � �� R (F f r t))))F1 de�nes the relabel functions fromF in terms of the classesin MLSPolicy. An MLS implementation of a relabel policyis simply a relabel policy applied to the transformed lattice.MLSRPolicy b= RPolicy1[�CLASS ��CLASS]MLSRelabel b= Relabel1[�CLASS ��CLASS]Finally, the MLS implementation of the initial relabel policycan be constructed using the transformation:InitMLSRPolicy� b= MLSPolicy� ^MLSRFun�Thus, the initial MLS policy for Segregation can be com-puted using InitMLSRPolicy�. An MLS implementationof the MLSRelabel transformation should be implementedas a relabel macro [11]. This operation implements relabelfunctions in terms of the security primitives provided by anunderlying security kernel.4.2 Unix ImplementationA Unix policy is Policy augmented with grp1 and mbr1.UnixRPol b= UnixPol ^ RFuns1[UID]UnixRelabel b= Relabel1[UID] ^ �UnixRPolWith relabeling, only �1 changes, and since R1 = R01, it fol-lows from UnixRPol that grp1 and mbr1 are also unchanged.The initial Unix con�guration for RPolicy1[UID] is gottenby constructing grp1 and mbr1 according to UnixRPol . Thus,the initial Unix con�guration for Segregation (Example 8)is computed as (Segregation1 ^ UnixRPol). A Unix imple-mentation of the UnixRelabel transformation modi�es theownership of entities, and thus should be (carefully) imple-mented as a suid root program.5 Shadowed Relabel PoliciesA potential problem with our approach to constructing secu-rity policies is that it can lead to a large number of securityclasses. For example, in the Unix implementation, each se-curity class must be con�gured as a (phantom) UID, withcorresponding GID and entries in /etc/group.This section proposes a solution whereby an implemen-tation policy is computed for only those classes referencedin the initial bindings for users, TPs and CDIs. When arelabel request is made for a class not in this initial con�gu-ration, the relations in the implemented policy are modi�edin a manner that produces the same e�ect, instead of per-forming the relabeling.Given R : R[C] and g : C � C , then R o g is the policyabstraction R@(ran g), except that each class a 2 (domg)is used in R o g to represent class g(a) 2 �(R@(ran g)).6

[C]o : R[C]� (C � C)! R[C]8R : R[C]; g : C � C �R o g = g � R � g�It follows from this de�nition that R o g preserves the order-ings of R, in the sense that:` 8R : R[C]; g : C � C � [L1]8 a; b : domg �(a;b) 2 R o g , (g(a);g(b)) 2 R@(ran g)A number of other results follow immediately from this def-inition.` 8R : R[C]; g : C � C � [L2]�(R o g) = (�R) \ dom g` 8R : R[C]; g;h : C � C j domh � dom g � [L3]�(R o (g � h)) = �(R o g)` 8R : R[C]; g;h : C � C j domh � dom g � [L4]R o (g � h) = (R o g)@(dom g n domh)[((g � h) �R � h�) [(h �R � (g � h)�)This last law holds due to the disjunctivity of the � and � op-erators [19], and given the fact that (Rog)@(dom gndomh) =R o (domh� g). These laws form the basis of our shadowingof relabel policies. Consider a request to relabel all entitiesbound to class a to another class b. Rather than performingthe relabeling, we could instead modify the
ow relation Rto R o ((id�R)�fa 7! bg), and note that class a in this newpolicy is a shadow, or an alternate representation, of class b.In this case: Law L1 implies that the original orderings arepreserved; Law L3 implies that entity classi�cations neednot be changed, and Law L4 indicates that the calculationof the new policy is based on the previous value for R plusa re-calculation of orderings for
ows involving b.This scheme is generalized as follows. Given a re
ex-ive relation R1 we maintain a (smaller) shadow relationshadow1, and a representation function rep1 such that rep1(a)gives the class in �R1 that is currently represented by classa in �shadow1. Formally,ShadowPol [C]RPolicy1[C]shadow1 : R[C]rep1 : C � Cdom rep1 = ran �1ran rep1 � �R1shadow1 = R1 o rep1Note that rep1 is de�ned for only those classes referenced in�1, and thus �shadow1 � �R1. Informally, one may thinkof shadow1 as that part of R1 that is currently `swapped-in'.Initially, the shadow of a policy R1 is just those classes thatare referenced in the initial binding of a relabel policy, thatis R1@(ran �1). This can be speci�ed in terms of rep1 as:InitialShadow [C]ShadowPol [C]rep1 = id(ran �1)

A theorem that follows immediately from Law L1 is that:for any legal con�guration of a shadow policy, then the
owrestrictions between entities, speci�ed in R1, are preservedby the shadow of R1. That is,ShadowPol [C] `8 x ;y : ENTS1 �(�1(x); �1(y)) 2 shadow1, (rep1(�1(x)); rep1(�1(y))) 2 R1A relabel request is implemented as a modi�cation of shadow1and rep1.RelabelShadow [C]�ShadowPol [C]req? : IDtarget? : Cf ? : FIDreq? 2 USR1 ^ f ? 2 domF1rep1(�1 req?) 2 dom(F1 f ?)target? 2 dom(F1 f ? (rep1(�1 req?)))rep01 = rep1 � f a : C j rep1 a = target? �(a 7! F1 f ? (rep1(�1 req?)) target?) gshadow 01 = R1 o rep01�RPolicy1 = �RPolicy 01A valid request to relabel all entities bound to class target?as (F1 f ? (rep1(�1 req?)) target?) is implemented by updat-ing rep1 so that class target? represents the new class, andthen re-evaluating shadow1 for this new representation. Incontrast to speci�cation Relabel , the entity binding �1 hereremains �xed. Note that since the de�nition of rep01 is givenin terms of a function override on rep1 for the target class,then Law L4 implies that the calculation, shadow 01 = R1 orep01, can be implemented in terms of the original shadow1and a re-calculation of orderings involving just target?. Proofthat RelabelShadow is a valid implementation of Relabel isgiven in Appendix B.5.1 Multilevel ImplementationThe MLS implementation of shadow policies is similar tothe MLS implementation of the original relabel policies. WehaveMLSShadowPol b= ShadowPol [�CLASS ��CLASS]MLSRelabelS b= RelabelShadow [�CLASS � �CLASS]InitMLSShadowPol� b= InitMLSRPolicy�^ InitialShadow [�CLASS � �CLASS]While we use InitMLSRPolicy� to compute the initial pol-icy, the actual MLS implementation lattice constructed forthe initial con�guration of the policy should be built fromthe initial shadow policy shadow1 = R1 o (id�1), rather thanfrom re
exive relation R1. Thus we de�ne the implementa-tion lattice asMLSShadowPolImpMLSShadowPolL1 : R[�CLASS]L1 � f A;B : �rst��shadow1� [second��shadow1�j A � B g7

5.2 Unix ImplementationFollowing the Unix implementation approach in Section 3.2we augment ShadowPol by grp1 and mbr1, but con�guredfor shadow1, rather than for R1.UnixShadowPolShadowPol [UID]UnixPolicydom grp1 = ran �1mbr1 = shadow1 � grp1Since mbr1 is de�ned in terms of shadow1, then an updateto shadow1 should result in a corresponding update to mbr1.UnixRelabelShadow b=RelabelShadow [UID] ^ �UnixShadowPolAnd the initial con�guration for grp1 and mbr1 can be de-termined as InitialShadow , that isInitUnixShadowPol b=UnixShadowPol ^ InitialShadow [UID]6 ConclusionThe proposed policy framework can be used to express awide variety of con�dentiality and integrity requirementsand these can, in turn, be implemented as MLS or Unixbased policies. The MLS approach may be used for securitycritical systems, while the Unix approach may be taken forless critical applications. Our policy framework is a furtherexample of the usefulness of the tiered veri�cation approach,which is based on relabeling, as proposed in [11].The paper makes a number of contributions; in particu-lar, it represents a generalization and uni�cation of resultsfrom [6, 10, 11, 14, 16, 18]. The paper illustrates how rela-beling policies [11] can be expressed in terms of re
exive
owpolicies [10], providing a systematic way of developing andimplementing security requirements. We show how thesepolicies can be used to specify Clark-Wilson access require-ments including dynamic segregation of duty, the implemen-tation of which, extends the original results in [14, 16, 18].Shadowing is used to reduce the size of an implementationlattice, or the number of Unix UIDs allocated. In the lat-ter case it provides a technique for `relabeling' users, butwithout having to re-allocate UIDs.The Chinese-Wall policy in Example 9 can be imple-mented in Unix. Our results on shadowing imply that suchrelabel policies can also be captured in terms of re-con�guringthe underlying security policy. It turns out that this alterna-tive implementation corresponds to our original Unix encod-ing of the Chinese-Wall policy [8] which was implemented byre-con�guring the /etc/group/ as accesses are requested.We believe that our policies can be implemented in termsof other security mechanisms, such as type-enforcement [2,20]. Segregation of duty is speci�ed as a relabel policy andtherefore we should be able use the analysis techniques pro-posed in [11] to determine if dynamic segregation of dutycan result in covert channels. This is ongoing work whichwe hope to report on in the future.AcknowledgmentsThis work was supported by Forbairt under Basic ResearchGrant SC/96/611. The author would like to thank his col-league John Morrison and the anonymous referees for theircomments on an earlier version of this paper.

References[1] D. Bell. Secure computer systems: A network interpretation.In Proceedings of the Aerospace Computer Security Appli-cations Conference, pages 32{39. IEEE Computer SocietyPress, 1986.[2] W. Bobert and R. Kain. A practical alternative to hierar-chical integrity properties. In Proceedings of the NationalComputer Security Conference, pages 18{27, 1985.[3] M. Branstad et al. Trusted Mach design issues. In Proceed-ings Third Aerospace Computer Security Conference, 1987.[4] D. Brewer and M. Nash. The Chinese Wall security policy.In Proceedings of the 1989 IEEE Symposium on Securityand Privacy, pages 206{214. IEEE Computer Society Press,May 1989.[5] C. Bryce. Lattice-based enforcement of access control poli-cies. Technical Report 1011, GMD, Institute SET-RS, SanktAugustin, Germany, Aug. 1996.[6] D. D. Clark and D. R. Wilson. A comparison of commercialand military computer security models. In Proceedings 1987IEEE Symposium on Security and Privacy, pages 184{194.IEEE Computer Society Press, Apr. 1987.[7] Denning, D.E. On the derivation of lattice structured infor-mation
ow policies. Technical Report CSD TR180, PurdueUniversity, 1976.[8] S. Foley. Building Chinese Walls in standard Unix. In Sup-plement to the Proceedings of the 1996 IEEE SymposiumonSecurity and Privacy (Five-Minute Abstracts). Full lengthversion submitted for publication.[9] S. Foley. Aggregation and separation as noninterferenceproperties. Journal of Computer Security, 1(2):159{188,1992.[10] S. Foley. Reasoning about con�dentiality requirements. InProceedings of the Computer Security Foundations Work-shop, pages 150{160, Franconia, NH, June 1994. IEEE Com-puter Society.[11] S. Foley, L. Gong, and X. Qian. A security model of dy-namic labeling providing a tiered approach to veri�cation.In Proceedings of the Symposium on Security and Privacy,pages 142{153, Oakland, CA, May 1996. IEEE ComputerSociety Press.[12] S. Gar�nkel and G. Spa�ord. Practical Unix & InternetSecurity. O'Reilly & Associates, 1996.[13] J. Jacob. The varieties of re�nement. In J. M. Morrisand R. C. Shaw, editors, Proceedings of the 4th Re�nementWorkshop, pages 441{455. Springer-Verlag, 1991.[14] T. Lee. Using mandatory integrity to enforce `commerical'security. In Proceedings of the Symposium on Security andPrivacy, pages 140{146, 1988.[15] M. Nash and K. Poland. Some conundrums concerning sepa-ration of duty. In Proceedings of the Symposium on Securityand Privacy, pages 201{207, Oakland, CA, May 1990. IEEEComputer Society Press.[16] W. Polk. Approximating Clark-Wilson access triples withbasic UNIX controls. In Unix Security Symposium IV, pages145{154, 1993.[17] R. Sandhu. Lattice based access controlmodels. IEEE Com-puter, 26(11):9{19, Nov. 1993.[18] W. Shockley. Implementing the Clark Wilson integrity pol-icy using current technology. In Proceedings of the NationalComputer Security Conference, pages 29{36, 1988.[19] J. M. Spivey. The Z Notation: A Reference Manual. Se-ries in Computer Science. Prentice Hall International, sec-ond edition, 1992.[20] D. Thomsen and J. Haigh. A comparison of type enforce-ment and Unix setuid implementation of well-formed trans-actions. In Computer Security Applications Conference,pages 304{312. IEEE Computer Society Press, 1990.8

A NotationA.1 The Z NotationA set may be de�ned in Z using set speci�cation in com-prehension. This is of the form f D j P � E g, where Drepresents declarations, P is a predicate and E an expres-sion. The components of f D j P � E g are the values takenby expression E when the variables introduced by D takeall possible values that make the predicate P true. Whenthere is only one variable in the declaration and the expres-sion consists of just that variable, then the expression maybe dropped if desired.In Z, relations and functions are represented as sets ofpairs. A (binary) relation R, declared as having type A $B , is a component of �(A�B). For a 2 A and b 2 B , thenthe pair (a;b) is written as a 7! b, and a 7! b 2 R meansthat a is related to b under relation R. Functions are treatedas special forms of relations. A lambda abstraction, writtenas (� x : X j P(x) � E(x)) speci�es a partial function thatmaps values x : X (where P(x) holds) to E(x).The Schema notation is used to structure speci�cationsin Z. A schema such as Ents de�nes a collection of vari-ables (limited to the scope of the schema), and speci�eshow they are related. Schemas may be de�ned in terms ofother schemas. For example, the inclusion of Ents withinschema Policy is equivalent to the syntactic inclusion of thevariables and predicates of Ents within Policy. Schemasmay be composed using logical operators. For example,UnixPol ^ RFuns1[UID] is a schema with variables andpredicates from both UnixPol and RFuns1.The decorated schema Policy1 is Policy with all variablesdecorated by the subscript 1. The schema �RPolicy is asyntatic sugar for RPolicy ^ RPolicy 0. It is typically usedfor specifying state transitions, with undecorated variablesrepresenting `before values' and decorated (primed) vari-ables representing `after values'. �Ents gives a schema typewith variables from Ents. Put simply, predicate �Ents =�Ents1 in schema MLSPolicy� is equivalent to specifyingUSR = USR1, TP = TP1, and so forth.�rst(a;b) Component a of ordered pair (a;b)second(a;b) Component b of ordered pair (a; b)�A The power set of A�A The set of �nite sets from �ASK Distributive union over the sets in KA$ B Relations between A and BA! B Total functions from A to BA� B Partial functions in A! BA� B Partial injective functions in A� Bdom R; ran R Domain and Range of relation Rid A Identity relation over values from AR � S Relational compositionR�A� Image of set A through relation R.R� The inverse of relation RR �G The relational override of R by GA�R Relation R with its domain restrictedto values from Aid A Identity relation over A

A.2 Constructing Re
exive RelationsThe policy construction operators used in this paper arede�ned as:[X]? : (�X)! R[X]; : ((�X)� (�X))! R[X]@ ; " : (R[X]� �X)! R[X]u : (R[X]�R[X])! R[X]not : R[X]! R[X]?A= A�AA; B = id(A [B) [(A�B)R@A = fa; b : (A \ �R) j (a;b) 2 RgR " A = fa;b : (A [�R) j fa; bg � �R) (a; b) 2 RgR uQ = (R " �Q) \ (Q " �R)not R = (>(�R))[((?(�R)) n R)A re
exive relation is mapped to a lattice by function ��.[X]�� : R[X]! X � (�X ��X)� : R[X]! R[�X � �X]�� R a = (fb : X j dom(fag�R) � dom(fbg�R)g;fb : X j (b;a) 2 Rg)� R = fa; b : �R � (�� R a;�� R b)gThe mapping is order-preserving, in that for any R : R[X]:` 8 a; b : �R �(a; b) 2 R , �rst(�� R a) � second(�� R b)B Correctness of Shadow PoliciesWe prove that the shadow policy implementation is a re�ne-ment, in the sense of [19], of the relabel policy speci�cation.B.1 Data Re�nementThe relabel policy implemented by a shadow policy can bespeci�ed according to the following abstraction (retrieve)function Abs.Abs[C]RPolicy[C]ShadowPol [C]�Ents = �Ents1�RFuns = �RFuns1� = �1 � rep1The policy components are the same except that we retrieve� (which changes with relabeling) from �1 (remains static)and rep1 (changes with relabeling).Initial States Theorem. Since ShadowPol is de�ned in termsof Relabel , then it follows that we can retrieve from an initialshadow policy, using Abs, its abstract relabel policy. Thatis,InitialShadow 0[C] ^ Abs[C] ` InitRPolicy[C]B.2 Operation Re�nementThe Relabel transition updates � by relabeling all entitiesbound to target? by a new class speci�ed by the relabel func-tion. It is the only component of the policy that changes,9

and therefore, if the relabeling is applicable given req? andtarget?, then the transition is applicable. Thus we can com-pute the precondition of Relabel to bePreRelabel [C]RPolicy[C]req? : IDtarget? : Cf ? : FIDreq? 2 USR ^ f ? 2 domF� req? 2 dom(F f ?)target? 2 dom(F f ? (� req?))The RelabelShadow does not modify �1, but updates rep1and shadow1. No other variables are modi�ed, and since wehave shadow 01 = R1 o rep01, which is equivalent to shadow 01 =R01orep01, then the invariant holds on ShadowPol 0. Thus it fol-lows that we can compute the precondition of RelabelShadowto bePreRelabelShadow [C]ShadowPol [C]req? : IDtarget? : Cf ? : FIDreq? 2 USR1 ^ f ? 2 domF1rep1(�1 req?) 2 dom(F1 f ?)target? 2 dom(F1 f ? (rep1(�1 req?)))Applicability Theorem. It must be safe to apply a shadowrelabel request whenever it would be safe to apply the samerequest to its corresponding abstract relabel policy. Theretrieve function de�nes � = �1 � rep1 and thus we have�(req?) = rep1(�1(req?)). Thus it follows thatPreRelabel [C] ^ Abs[C] ` PreRelabelShadow [C]Correctness Theorem. RelabelShadow must update a shadowpolicy correctly. Compare the de�nition of rep01 in schemaRelabelShadow with �0 in RelabelPolicy. They perform thesame function in sense that we have �0 = �01 � rep01. Thus wehavePreRelabel [C] ^ Abs[C]^ RelabelShadow [C] ^ Abs 0[C] ` Relabel [C]
10

