
Security in WebCom: Addressing Naming Issues for a Web
Services Architecture

Thomas B. Quillinan
t.quillinan@cs.ucc.ie

Simon N. Foley
s.foley@cs.ucc.ie

Department of Computer Science
University College Cork

Cork, Ireland

ABSTRACT
Supporting security in distributed systems is becoming more im-
portant with the ongoing work in grids, distributed middlewares
and web services. Decentralised security architectures allow the
stakeholders in these distributed computations, the providers of both
compute resources and the applications executing on them, to have
a say in how a computation progresses. One of the most impor-
tant issues in creating authorisation policies is how the components
of these distributed applications are named. Providing a consistent
and flexible naming architecture allows more fine-grained and us-
able security policies to be created and enforced.

This paper introduces the naming architecture for the WebCom
system. This architecture supports the addressing of all required
information, with as much precision as is needed to create sophis-
ticated authorisation policies.

Keywords
Naming; Trust Management; Distributed Systems; Web Services
Security

1. INTRODUCTION
Providing a secure environment in which to execute distributed

computations is an important area of ongoing research, especially
when considering the emerging technologies such as the Grid [11,
12], cluster computing and middlewares such as COM/.NET [17],
EJB [24] and CORBA [13], and especially within the realm of web
services. In particular, managing authorisation decisions in these
distributed environments is an important aspect of the overall se-
curity of these systems. Security architectures developed for dis-
tributed environments must consider the nature of the computations
executing on available resources. Concerns potentially include the
required authorisation guarantees needed for the data being oper-
ated on; the origin of the computation; it’s future destinations, and
so forth.

In practice, distributed systems require enforcement of security
on a variety of architectures. Ideally, we need a security archi-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM Workshop on Secure Web Services, October 29, 2004, Fairfax VA,
USA.
Copyright 2004 ACM X-XXXXX-XXX-X ...$5.00.

tecture that deals transparently with the distributed nature of the
computation, instead of hindering it. Decentralised security archi-
tectures, such as Trust Management [2, 3, 7], provide an approach
towards addressing this concern. Security policies are maintained
by the stakeholders in the computations, the users who launch the
computations and the computational resources that execute the jobs.
Each of the stakeholders define what type of computations they per-
mit.

Traditionally, security authorisation based on Trust Management
in distributed systems is achieved through the embedding of rele-
vant security calls within the distributed application [2]. A Trust
Management interpretation for distributed computation might op-
erate as follows: when a critical piece of code is reached, a check
is first made by the resource scheduling the computation to ensure
the computation is being scheduled to a suitable environment. The
resource that is to execute the computations should also check to
ensure that the job conforms to the security requirements of it’s lo-
cal policy. For example, a resource might require that no access
is permitted by the computation to the local file system. However,
making such checks requires that the security code be closely cou-
pled with the functional code of the application. Ideally, such se-
curity code should be separated from the application code. This
promotes the separation of security and functional concerns within
the application.

Previous work has examined the use of Trust Management in
providing a security architecture within the WebCom metacomput-
ing environment [8]. WebCom provides support for heterogeneous
applications, potentially made up of such web service/middleware
technologies as EJB, COM (.NET) and Grid middlewares, such as
Globus. WebCom uses the Condensed Graphs [18] computational
model to control the sequencing of applications. In WebCom, se-
curity checks are separated from functional code. This provides
the ability to separate the functional and security design of dis-
tributed computations. However, the preliminary implementation
in [9] provided only a shallow embedding of trust management
within the distributed computation.

In this paper we propose an architecture that allows greater con-
trol over the application components within the WebCom architec-
ture. The security architecture proposed is independent of the un-
derlying application code, providing the separation of security and
functional concerns. We argue that to have more complete con-
trol over a computational component, you must be able to name
all aspects of it. To address this, we propose a naming architec-
ture for the WebCom system. This provides a means to capture the
needed detail to address fine-grained security policies. These Web-
Com names facilitate control over the individual fragments of dis-
tributed applications. Depending on the security policies defined by

the compute resources, the computation may be restricted based on,
for example, the application, the functional type of computational
fragments, the input data, the result data and the historical path
of execution. The naming architecture allows a systematic way to
name, and therefore control, authorisation for COM, CORBA and
EJB middlewares. This in turn provides the basis to create compre-
hensive security policies for web service-based applications.

In [15], the authors identify the problems with different infras-
tructures, requirements and semantics of different web services tech-
nologies. We believe that these problems can be reduced to a nam-
ing problem: How does each user of the web service refer to the
attributes of that particular service? Having this ability to name
each service available helps the user to create more useful policies
about, for example, what service to use depending on their require-
ments at that time.

The contribution of this paper is a naming architecture that can
be used to specify complex policies to control the execution of ap-
plications. The architecture has been used to create policies for
other components of the WebCom system, such as the fault toler-
ance and load balancing managers. The names can be used to hold
as much, or as little contextual information as necessary to make
policy decisions.

The remainder of this paper is organised as follows: Section 2
provides some background on the Condensed Graph model of com-
putation and Trust Management systems. These graphs provide the
framework for specifying distributed applications that can form the
basis of web services. Extending these graphs to provide a naming
architecture for distributed computations is examined in Section 3.
We then describe, in Section 4, how these names are used within
the WebCom system. Finally, we discuss the results and draw some
conclusions in Section 5.

2. BACKGROUND
In this section we introduce the Condensed Graphs model of

computation. Section 4 will describe an architecture that uses this
model. We will also provide some background information about
Trust Management and how it relates to distributed computation.

2.1 Condensed Graphs
The heart of the WebCom system is the Condensed Graphs com-

putational model that it employs [18]. Applications are coded as
hierarchical graphs that provide a simple notation in which lazy,
eager and imperative computation can be naturally expressed [18].
An advantage of developing distributed applications using Con-
densed Graphs is that their implementation (graph) can be coded
independently of the underlying system and/or network architec-
ture.

There are two types of distributable operation: nodes that repre-
sent atomic tasks and condensed nodes that represent subtasks en-
capsulated as subgraphs. Atomic operations are value-transforming
actions and can be defined at any level of granularity, ranging from
low-level machine instructions to mobile-code programs such as
applets, middleware/web service components (such as COM/.NET,
EJB, Globus), or COTS components. Atomic operations need not
address synchronisation or concurrency concerns: such details are
implicitly specified in the Condensed Graph and managed by We-
bCom.

Condensed Graphs can be used to solve a range of different prob-
lem domains, from highly parallel computational tasks [19] to dis-
tributed workflow applications [8]. Specifying an application as a
Condensed graph allows the implicit parallelism of that application
to be exploited transparently. Results generated by the execution of
each node flow along the arcs to the next node in the graph.

EXAMPLE 1. The Condensed graph shown in Figure 1 defines
a very simple purchase ordering application. This application is
specified as a Workflow; each node is implemented as a functional
component.

E

order

verify

invoice

print X

Figure 1: A simple purchase processing application, specified
as a Condensed Graph.

The application operates as follows: When a product is required,
it is ordered by an authorised staff member, using the order node.
When the invoice for payment arrives, it is inputted by the finance
department, through the execution of the invoice component.
These results (the order and invoice documents) flow along the
graph to the verify node. The order and invoice are verified by
a manager, who authorises the payment for the product. A cheque
is then printed through the execution of the print node.

Any node in this graph could itself be a Condensed Graph. Fur-
thermore this graph, called PurchaseOrder, could itself be part
of another Condensed Graph. Recursive graphs are also possible.
The PurchaseOrder graph could include an instance of itself with
the graph definition.

It should be noted that this is an extremely simple example of
a Condensed Graph application. More complex examples can be
found in [20] and [16]. 4

In the original Secure WebCom [8], authorisation decisions were
made based only on the operational function of a condensed node,
such as order or verify. This design provides a shallow em-
bedding of Trust Management into WebCom. The policies that can
be defined are limited by the amount of information available to the
security infrastructure, in effect the trust decisions that can be made
are coarse grained. For example, the policy could dictate that the
verify node may be executed by a specific manager; however, it
is not possible to define a policy based on the size of that order. It
may be important to have the ability to define a policy stating that,
for example, the verify operation could be executed by a specific
manager when the order value is over a defined limit. Providing the
ability to specify these security conditions requires a new security
architecture within Condensed Graphs.

2.2 Trust Management
Unlike identity based authorisation systems, such as those using

X.509 [5] certificates, where authorisation is based on linking a
detailed identity to a public key, Trust Management addresses the
need to associate abilities to public keys.

Trust Management systems have a number of advantages com-
pared to the traditional systems created using X.509. Policies and
certificates are created and maintained separately from the appli-
cation in a very natural way. The attributes used within the poli-
cies/certificates are application defined, and they are represented
in a free-form fashion, allowing the application designer to decide
what characteristics are required. Changing the format of the at-
tributes does not require changes to the trust management system
used. By removing the traditional lookup of an identity’s authority,
and instead representing that authority within the certificate, appli-
cations no longer need to consider the security of where this author-
ity is stored. An additional benefit of utilising a trust management

system within applications is that designers and implementers of
these applications are required to consider trust management appli-
cations explicitly. This in itself encourages good practices when
considering the overall security of such applications. Trust man-
agement policies are easy to distribute across networks, helping to
avoid reliance on centralised configuration of distributed applica-
tions.

Both KeyNote [1, 2] and SPKI/SDSI [7] are expressive and flex-
ible trust management schemes that provide simple credential no-
tations for expressing both security policies and delegation. A stan-
dard Application Programming interface (API) is used by applica-
tion to make queries about whether security critical requests (to the
application) have authorisation or not. The formulation and man-
agement of security policies and credentials are separate from the
application, making it straight forward to support trust management
policies across different applications.

3. NAMING IN CONDENSED GRAPHS
We argue that the key to acquiring fine-grained control of con-

densed graph applications is how the elements of these applications
are named. If you have the ability to name an object, then you have
the ability to write authorisation statements regarding it. Naming
distributed objects is not a new topic. Work such as [21] provide
solutions towards naming of distributed objects, however we are
more interested in naming evolving computations rather than static
objects. Achieving this fine-grained control requires a complete
and consistent naming architecture for Condensed Graphs. A com-

order

2: Function
1: Input

3: Output

4: Graph

5: Execution Domain

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
������� order

Figure 2: Components of a Condensed Graph name.

plete name for a Condensed Graph must take into consideration the
aspects of each node in the graph. Nodes have functions, inputs
and outputs. Inputs can either be values or other nodes. Outputs
can be values, when the node performs some computation. For cer-
tain nodes the destination of the node’s result is important. Each
node is defined in a graph, and so this attribute must also be rep-
resented. Finally the location of the node, where it is, or will be,
executed, also forms part of the characteristics of the computation.

SDSI [22] introduced of linked local Namespaces. In SDSI all
principals (keys) are equal. Each key has it’s own name-space, as
in PGP [25]. When one principal refers to an object in their own
name space, they define that object’s name themselves. For exam-
ple, if Alice has a computer, she calls it “Computer”. Bob may also
have a computer, and he too may refer to it as “Computer”. As
Alice and Bob are separate principals this is perfectly acceptable.
However, how does Bob refer to Alice’s Computer? Suppose Bob
knows Alice simply as “Alice”; Local naming provides the ability
to use names from other namespaces. Bob, therefore refers to Al-
ice’s Computer as “Alice’s Computer”. More precisely: the object
Alice refers to as “Computer”.

Applying this principle to Condensed Graphs, we can define,
for example, the input to a node as “Node’s Input”, from the per-
spective the graph. Abstracting this name further we get “Graph’s
Node’s Input”. This name can be abstracted to hold as much con-
textual information to enable the definition of a unique name for
each portion of a graph. For Example: “Country’s University’s

Faculty’s Alice’s Computer’s Graph’s Node’s Input” coming from
“Country’s University’s Faculty’s Bob’s Computer’s Graph’s Node’s
Output”. Using this approach, we can name every portion of the
graph in as much detail as is required to uniquely identify it.

The components of a name are the input, function, output, parent
graph and the execution domain. Combining all these basic ele-
ments of a node into a complete name, we create a definitive means
to refer to that instance of a node in a graph currently executing on
a particular resource. Thus, from Alice’s perspective, a version of
the order node from Figure 1 executing on her computer can be
specified as shown in Figure 3.

{Input, Function, Output, Graph, Domain}:
{(Computer’s PurchaseOrder’s Order’s Input), (Computer’s Purchase-
Order’s Order), (Computer’s PurchaseOrder’s Order’s Output), (Com-
puter’s PurchaseOrder), (Computer)}

Figure 3: The Name of the order node from Alice’s perspec-
tive

From Bob’s perspective, the components of the name must spec-
ify the principal Alice, in whose namespace these name-components
exist. Local naming provides the ability to store the required detail
to uniquely identify each portion of the nodes in as much detail as
is necessary.

We represent WebCom names as S-Expressions [23]. S-Expressions
are lisp-like data structures for representing complex data. They are
either byte-strings (octet-strings) or lists of other S-Expressions.
They were designed to be a compact, human-readable efficient and
transportable mechanism for storing data. Using S-Expressions to
represent WebCom names, we can create authorisation statements
to control computations in as fine-grained a manner as is required.

Figure 4 provides the format of a WebCom name. All parts of the
name are optional, a name can be represented by a combination of
any of these fields or by a simple S-Expression. There can be one
or more input and/or output fields when the inputs and/or
outputs fields, respectively, are present.

webcomname ::=

(WebComName
[(domain webcomname)]
[(graph webcomname)]
[(function webcomname)]
[(inputs

(input webcomname)
{(input webcomname)}

)]
[(outputs

(output webcomname)
{(output webcomname)}

)]
)

webcomname ::=

(WebComName S-Expression)

Figure 4: The format of a generic WebCom Name.

EXAMPLE 2. Figure 5 shows an example of a WebCom name
for the node order from the Condensed Graph shown in Figure 1.
In this example all possible fields are present. The node referred to
is the instance present in University’s Faculty’s Alice’s Computer.

(WebComName
(domain (ref: University (ref: Faculty (ref: Alice Computer))))
(graph (ref: University (ref: Faculty (ref: Alice

(ref: Computer PurchaseOrder)))))
(function (ref: University (ref: Faculty (ref: Alice

(ref: Computer (ref: PurchaseOrder Order))))))
(inputs

(input (ref: University (ref: Faculty (ref: Alice
(ref: Computer (ref: PurchaseOrder E))))))

)
(outputs

(output (ref: University (ref: Faculty (ref: Alice
(ref: Computer (ref: PurchaseOrder Verify))))))

)
)

Figure 5: An S-Expression version of the name for the order node.

Alternatively, a representation of this node could include less
information, or could be a simple S-Expression, for example:

(WebComName (ref: Alice Order))

This represents a node that Alice refers to as “Order”. In Bob’s
namespace, this would be referred to as “Alice’s Order” 1. 4

While these names provide the contextual detail required to en-
able authorisation policies to be created before the computation
takes place, it is immediately obvious that the size of these names
will cause them to become unusable in computations of a non-
trivial nature. A consistent system is required to provide a canoni-
cal form for these names, yet still containing enough detail to allow
informed authorisation decisions to be made. We address this con-
cern using “reduction rules”.

3.1 Reduction Rules
The contextual detail provided by WebCom names come at the

cost of possible redundant information being stored in the name.
For example, in Figure 5, the graph name (PurchaseOrder) is
mentioned four times. This cost can be lessened through the use of
reduction rules. A reduction rule is a heuristic by which an abstract
name can be translated into a more compact, but equivalent form.
These rules must ensure consistent names are produced. A basic
formalisation of reduction rules into a simple notation provides the
representation:

Reduce(OriginalWebComName) → (ReducedWebComName)

EXAMPLE 3. The Function Reduce(Name) in Equation 3 con-
verts a complete WebCom name into one relying on the Function to
represent the node.

Reduce((Domain)(Graph)(Function)(Inputs)(Outputs))
→ (Function)

This reduction rule converts a full WebCom name into one that
provides the detail used to refer to nodes in the original Secure We-
bCom system. Applications can define their own reduction rules,
based on the amount of detail that is required for the security pol-
icy. For example, in our Purchase Ordering system, we would like
to keep the information regarding the inputs and outputs to allow
policies to be defined such as: If the input to order is greater than
$100, then the verify node must be scheduled to the CFO. 4

1Note, the ref: keyword is used in S-Expressions as the formali-
sation of the “’s” relationship.

WebCom names can be used to express precise details about
nodes in Condensed Graphs. However, this detail is often not re-
quired when making authorisation decisions. Reduction rules com-
press the information in a consistent way. For example, the com-
mon information in each part of the order node’s name from Fig-
ure 5 could be removed. Figure 6 the name from Figure 5 after such
a transformation has been applied.

(webcomname
(domain (ref: University

(ref: Faculty
(ref: Alice Computer))))

(graph PurchaseOrder)
(function Order)
(inputs (input E))
(outputs (output Verify))

)

Figure 6: The reduced name of the order node, after removal
of redundant information.

The scheme outlined above provides a basis for considering the
component parts of the node names. Outputs from one node form
the inputs to another node. We can replace the input references with
the name of the node that provides the input. Similarly outputs can
be replaced with the names of the destination nodes of the outputs.
This allows more precision within the naming architecture. How-
ever this also creates a loop, each node has the name of every other
node in the graph as part of it’s own name.

Again, reduction rules are used address this issue. We define a
rule to limit the information stored in each nodes name. For ex-
ample, such a rule could take the inputs and outputs of every node
and replace them with a representation of the relevant node name
containing just the Function of that node, as shown in Figure 6.

Applications can use part or all of a fixed set of reduction rules
to provide the details required for proper authorisation decisions
to be made within those applications. Different rules may be used
for different applications, depending on the computational detail
required for specific policies. In this paper, we consider only sim-
ple reduction rules. Developing more complex rules is a topic of
ongoing research.

These policies need not be limited to the security arena. Work
is ongoing towards providing support, using the naming architec-
ture, for the load balancing[20], fault-tolerance[16], messaging and
logging architectures in WebCom. For example, in a debugging sit-
uation, it may well be desirable to have as much detail as possible
concerning the results returned by each node, on what resource the

nodes executed in order to track where, and under what circum-
stances, a computation has failed.

3.2 Policy Examples
We have integrated both the KeyNote [2] and SPKI/SDSI [7]

Trust Management systems into WebCom. This provides authori-
sation support for Condensed Graphs. While local names have been
implemented in SPKI / SDSI [6], adding support for the naming ar-
chitecture of Condensed Graphs into KeyNote is simply a matter
of specifying them as part of the conditions field. However, for
the sake of clarity, in this paper we use the SPKI versions of the
credentials2.

EXAMPLE 4. A SPKI credential that captures the required por-
tions of the WebCom name to authorise the verify node is shown
in Figure 7.

(cert
(issuer (ref: University

(ref: Faculty Alice)))
(subject (ref: University

(ref: Faculty Bob)))
(propagate)
((tag

(webcomname
(domain (ref: Alice Computer))
(graph PurchaseOrder)
(function verify)
(inputs
(input order)
(input invoice)
)
(outputs
(output print)
)

))
(not-before "2004-06-01_00:00:00")
(not-after "2004-08-15_23:59:59")

)

Figure 7: A SPKI credential, written by University’s Faculty’s
Alice, delegating the authority to execute the verify node to
University’s Faculty’s Bob.

The credential in Figure 7 specifies the required details neces-
sary in this case to identify an instance of the verify node from
the PurchaseOrder graph, with inputs of order and invoice,
with the output going to the node print, running in the domain
“Alice’s Computer”. Further detail, such as the particular Web-
Com environment, or the particular inputs to the graph could be
codified.

If a graph contains multiple verify nodes, a more generic
credential, created using the reduction rule from Equation 3, and
shown in Figure 8, would suffice. This limited form of encoding
provides an equivalent form to how the original Secure WebCom
authorisation architecture operated.

The credential in Figure 8 allows University’s Faculty’s Charles
to execute any verify node in any graph. University’s Faculty’s
Charles could further delegate parts of this authorisation. For ex-
ample, he could choose to limit the delegatee to executing a specific
node (using the input and output keywords) or specific graphs. This
allows the creation of sophisticated yet consistent security policies,
giving the principals the power to define what parts of their autho-
risation that they wish to delegate.

2Both SPKI and KeyNote plan to use XML-based credential for-

(cert
(issuer (ref: University

(ref: Faculty Alice)))
(subject (ref: University

(ref: Faculty Charles)))
(propogate)
(tag (webcomname (function verify)))
(not-before "2004-06-01_00:00:00")
(not-after "2004-08-15_23:59:59")

)

Figure 8: A SPKI credential, written by University’s Faculty’s
Alice, delegating the right to execute all verify nodes in the
PurchaseOrders graph to University’s Faculty’s Charles.

(cert
(issuer (ref: University

(ref: Faculty Charles)))
(subject (ref: University

(ref: Faculty Dave)))
(tag

(webcomname
(function verify)
(graph PurchaseOrder)
))

(not-before "2004-06-01_00:00:00")
(not-after "2004-08-15_23:59:59")

)

Figure 9: A SPKI credential, written by University’s Faculty’s
Charles, delegating the authority to execute the verify node
to University’s Faculty’s Dave, adding additional restrictions.

Figure 9 shows such a credential, written by University’s Fac-
ulty’s Charles for University’s Faculty’s Dave, specifying that the
verify node must be in the PurchaseOrder graph, and also
preventing Dave delegating this authorisation further. 4

Other issues must also be considered when developing a com-
plete naming infrastructure for Condensed Graphs. As computa-
tions evolve and partial results are integrated into the graph, these
results have to be represented in the names. In our architecture, re-
duction rules are applied to integrate these results into the names.
This has the advantage that a security check can be made based on
the path that the computation has taken to this point. This helps to
provide support for the creation of policies such as Chinese Wall
policies [4].

EXAMPLE 5. Condensed Graph applications can also contain
middleware components. We can refer to these components us-
ing the same naming architecture. Casting these middleware com-
ponents as WebCom names ensures that naming the computation
remains consistent throughout, regardless of the underlying func-
tional implementation of the nodes in the graphs. Figure 10 shows
a DCOM object represented as a WebCom name.

4

It is apparent that more powerful policies can be created using
different reduction rules to increase or decrease the granularity of
the name as required. It is important, however, that these reductions
be consistent with the security policies of the resources involved in
the computation. The development of these policies is a topic of
ongoing research.

mats in the future.

(webcomname
(domain
(ref: http://www.cuc.ucc.ie/
(ref: DCOM
(ref: Word.Application)))

)
(function (ref: OBJREF
{000209FF-0000-0000-C000-000000000046}))

)

Figure 10: A DCOM object represented as a WebCom name.

4. SUPPORTING SECURITY IN WEBCOM
The architecture of WebCom [19], is shown in Figure 11. We-

bCom is made up of several modular components: Execution En-
gine Modules, Connection Manger Modules, Fault Tolerance Mod-
ules[16] Load Balancing Modules[20] and Security Manager Mod-
ules.

Connection Manager Module

Execution Engine Module

Load Balancer Module

Fault Tolerence Module

Security Manager Module

Scheduler

Figure 11: WebCom Architecture Diagram

The Scheduler initialises the required modules and handles com-
munication between them. Execution Engine Modules take func-
tional components and executes them; Connection Manager Mod-
ules handle communication between WebCom environments; Load
Balancing and Fault Tolerance Modules handle faults and balances
the load over the clients of the server; Security Manager Modules
check each executable component and ensure adherence to the lo-
cal system security policy. Each WebCom environment can have as
many of each type of module as required; each is consulted where
appropriate. For example a WebCom environment might have two
Execution Engine Modules, one handling Condensed Graph Appli-
cations and the other acting as a gateway to a Globus grid. When a
Globus job is uncovered, it is targeted to the Globus Engine Mod-
ule. In a distributed system, such as the Grid or a metacomputer,
there are many WebCom environments interoperating.

Condensed Graphs are stored and transported as XML docu-
ments. The WebCom names are embedded within these graph def-
initions. The graph definition of the Purchase Order graph from
Figure 1 is shown in Figure 12.

The original implementation of the Secure WebCom system [8]
provided support for authorisation using the KeyNote Trust Man-
agement system. The structure of the authorisation architecture
provides a means to make trust mediations based on the function
of the nodes in Condensed Graphs. Clients provided credentials to
their WebCom parent. These credentials were used by the WebCom
server to decide where to schedule each node in the graph.

This architecture provides a means to control the computation at
the node level. This involved a shallow embedding of the Trust

Management system into Secure WebCom, authorisation checks
could only be made based on a limited sense of how the computa-
tion was proceeding. This architecture did not allow trust decisions
based on a more fine-grained concept of these nodes.

Nodes can potentially take input data, execute some function on
this data and return results. Providing a means to capture more
specific information about the computation would allow more fine-
grained security policies to be developed. These policies could
allow, for example, a policy specifying that certain machines can
execute a node depending on the value of the inputs. Support for
such policies is implemented within the Security Manager Module
in WebCom.

4.1 Security Manager Module
We will now examine how the Security Manager Module func-

tions in more detail.
When the scheduler uncovers a node for remote execution, it re-

quests a suitable client from its pool of connected clients. In or-
der that such a client is found, the security manager module(s) and
load balancer module(s) must first negotiate to locate a client that is
both authorised to execute the particular node and is sufficiently un-
loaded to perform the execution. This negotiation attempts to dis-
cover the least loaded client that is authorised to execute the work,
according to both the load-balancing and security policies. If no
suitable client is found, the node is placed back in the scheduling
queue until such a client is available.

Reduction
Rules

node
Trust

Management
System

System
Policy

Trusted Environment

Untrusted Environment

Module

Name(node), Credentials

TM Security Manager

PKI

Figure 13: Trust Management based Security Manager Module

Integrating the naming architecture into the WebCom architec-
ture is achieved through the creation of a security manager module
to support it. Such a module is shown in Figure 13. This security
manager takes a node, extracts it’s WebCom name and reduces it
according to the reduction rules of the particular application. This
name forms part of the query to a trust management system, along
with the system policy and the appropriate client’s credentials. If
the trust management system finds a trusted path from the system
policy to the client’s key, it notifies the security manager. The se-
curity manager in turn notifies the scheduler that a suitable client
has been found. When a result is returned from a client, before it
is integrated into the execution, a security check is performed to
ensure the system policy has been upheld.

EXAMPLE 6. In the purchase ordering application from Exam-
ple 1, the system policy could dictate that an ordinary employee can
only order goods to the value of $100. If the order node is exe-
cuted and the result indicates that this policy has been breached,
the system will reject the result. In WebCom, the node would be
rescheduled for execution, just as if it had failed for functional rea-
sons. 4

Through the provision of these security mediations, both before
and after the execution of nodes in the graph, we gain the abil-
ity to create subtle security policies that constrain the flow of the

computation to ensure it complies with the local security policies
of the resources. WebCom supports messaging between modules,
both inside the same environment and with other WebComs across
the network. Each module defines messages that they support. Us-
ing this mechanism, security managers can communicate. They
can use this to provide speculative authorisation checks. For exam-
ple, this permits checking beforehand whether a web service would
allow itself to be used in the current computation, without first
scheduling that component to that resource. The messaging system
also provides a rudimentary method of exchanging credentials be-
tween WebCom environments. If a security manager doesn’t have
all of the credentials that are necessary to complete an authorisation
check, then it can request credentials from its peers.

5. DISCUSSION AND CONCLUSIONS
We have developed several different applications using the We-

bCom system. For example, providing integration with middle-
wares such as COM, CORBA and EJB has allowed creation of web
service applications in Condensed Graphs using components from
these systems. The WebCom architecture is used to provide inte-
gration between web services, providing the “glue” connecting one
service to the next. This integration extends to the security archi-
tectures of these systems [10].

In this paper we have proposed a consistent framework for nam-
ing computations with as much precision as is required to make
informed authorisation policies. Naming computational compo-
nents in a consistent and, when required, unique fashion allows a
deep embedding of authorisation control into the distributed com-
putation. These names provide a basis for developing fine-grained
security policies, with the ability to control how and where compu-
tations are executed.

The issues of naming in the WebCom architecture applies equally
to web services. Developers who wish to integrate many services
into an application must use the name defined by the providers of
that service. Identifying particular services in security polices be-
comes complex and tedious. Using a consistent naming infrastruc-
ture allows more understandable policies to be generated.

Using these names to integrate web services from different providers
allows the creation of sophisticated security policies. However,
these policies need not be security related, WebCom provides the
architectural support for policies related to fault tolerance, load bal-
ancing, etc. For example, depending on the results from one web
service, another service could be checked to verify that result.

The advantages of the naming architecture in WebCom can be
applied more generally. These names could be used in more con-
ventional authorisation architectures. However, we believe that the
nature of the Condensed Graph model provide unique advantages
to WebCom. Application components, specified as nodes in a Con-
densed Graph do not require security code to be embedded with the
functional code. These security checks are implemented externally,
providing a natural separation of security and functional concerns.
This also has the advantage that security policies can be modified
to suit the local environment, without requiring functional code to
be recompiled. Research is ongoing towards using the naming ar-
chitecture to support more complex policies in the future. This
work primarily involves the development of more advanced reduc-
tion rules for use within WebCom.

Acknowledgements
The support of the Informatics Research Initiative of Enterprise Ire-
land is gratefully acknowledged. The authors wish to thank the
members of the Centre for Unified Computing in UCC, especially
Philip Healy and John Morrison, without whose support this work

would not have been possible. Finally, we are grateful to Eoin Hug-
gard for his work developing JKeyNote [14].

6. REFERENCES
[1] M. Blaze. Using the KeyNote trust management system.

http://www.crypto.com/trustmgt, December
1999.

[2] M. Blaze et al. The keynote trust-management system
version 2. Sept. 1999. Internet Request For Comments 2704.

[3] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized trust
management. In Proceedings of the Symposium on Security
and Privacy. IEEE Computer Society Press, 1996.

[4] D. Brewer and M. Nash. The Chinese Wall security policy. In
Proceedings of the 1989 IEEE Symposium on Security and
Privacy, pages 206–214. IEEE Computer Society Press, May
1989.

[5] CCITT Draft Recomendation. The Directory Authentication
Framework, Version 7, Nov. 1987.

[6] C. Ellison. Spki requirements. Referral for Comment (RFC)
2692, Internet Engineering Task Force, September 1999.

[7] C. Ellison et al. SPKI certificate theory. Sept. 1999. Internet
Request for Comments: 2693.

[8] S. N. Foley, T. B. Quillinan, and J. P. Morrison. Secure
component distribution using webcom. In Proceeding of the
17th International Conference on Information Security
(IFIP/SEC 2002), Cairo, Egypt, May 2002.

[9] S. N. Foley, T. B. Quillinan, J. P. Morrison, D. A. Power, and
J. J. Kennedy. Exploiting keynote in webcom: Architecture
neutral glue for trust management. In Proceedings of the
Nordic Workshop on Secure IT Systems Encouraging
Co-operation, Reykjavik University, Reykjavik, Iceland, Oct.
2000.

[10] S. N. Foley, T. B. Quillinan, M. O’Connor, B. P. Mulcahy,
and J. P. Morrison. A framework for heterogeneous
middleware security. In Proceedings of the 13th
International Heterogeneous Computing Workshop, Santa
Fe, New Mexico, USA., April 2004. IPDPS.

[11] I. Foster et al. A security architecture for computational
grids. In 5th ACM Conference on Computer and
Communications Security, 1998.

[12] I. Foster and C. Kesselman. Globus: A metacomputing
infrastructure toolkit. The International Journal of
Supercomputer Applications and High Performance
Computing, 11(2):115–128, Summer 1997.

[13] T. O. M. Group. Common object request broker architecture
(corba/iiop). Technical report, The Object Management
Group, December 2002.
http://www.omg.org/technology/documents/formal/corba iiop.htm.

[14] E. Huggard. JKeyNote. Fourth year project, University
College Cork, Ireland, April 2003.

[15] L. Kagal, T. Finin, and A. Joshi. A policy based approach to
security for the semantic web. In Proceedings of the 2nd
International Semantic Web Conference (ISWC2003),
Sundial Resort, Sanibel Island, Florida, USA, 2003.
Springer-Verlag.

[16] J. J. Kennedy. Design and Implementation N-Tier
Metacomputer with Decentralised Fault Tolerence. PhD
thesis, University College Cork, Ireland, 2004.

[17] Microsoft Corporation. Microsoft Platform SDK. The
Component Object Model. Microsoft Developer Network.,
0.9 edition, October 1995. http://www.msdn.microsoft.com.

[18] J. Morrison. Condensed Graphs: Unifying
Availability-Driven, Coercion-Driven and Control-Driven
Computing. PhD thesis, Eindhoven, 1996.

[19] J. P. Morrison, B. Clayton, D. A. Power, and A. Patil.
Webcom-g: Grid enabled metacomputing. Neural, Scientific
and Parallel Computations Journal., 2004. To Appear.

[20] D. A. Power. A Framework for: Heterogeneous
Metacomputing, Load Balancing and Programming in
WebCom. PhD thesis, University College Cork, Ireland,
2004.

[21] S. Radia. Naming policies in the spring system. In
Proceedings of the 1st International Workshop on Services in
Distributed and Networked Environments. Sun
Microsystems, Inc., IEEE, 1994.

[22] R. Rivest and B. Lampson. SDSI - a simple distributed
security infrastructure. In DIMACS Workshop on Trust
Management in Networks, 1996.

[23] R. L. Rivest. S-expressions. Technical report, Network
Working Group, May 1997. Internet Draft:
http://theory.lcs.mit.edu/ rivest/sexp.txt.

[24] Sun Microsystems. Enterprise JavaBeans(tm) Specification,
Version 2.1, June 2003.
http://java.sun.com/products/ejb/docs.html.

[25] P. Zimmermann. The Official PGP Users Guide. MIT Press,
1995.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE cg:graphdefs SYSTEM "http://cuc.ucc.ie/xml/cg.dtd">

<cg:graphdefs xmlns:cg="http://cuc.ucc.ie/xml/cg">
<cg:node name="E">
<cg:operandport strictness="strict"/>
<cg:operatorport operator="cg.engine.EnterOperator"/>
<cg:destinationport>

<cg:destination nodename="Order" portnumber="0"/>
<cg:destination nodename="Invoice" portnumber="0"/>

</cg:destinationport>
</cg:node>
<cg:graphdef name="PurchaseOrder">

<cg:node name="Order">
<secname:securename xmlns:secname="http://cuc.ucc.ie/xml/secname">

<secname:domain name="(domain (University (Faculty (Alice Computer))))"/>
<secname:graph name="(graph cg.nl.po.PurchaseOrder)"/>
<secname:destination name="(output cg.nl.po.VerifyOp)"/>
<secname:function name="(function cg.nl.po.OrderOp)"/>

</secname:securename>
<cg:operandport strictness="strict"/>
<cg:operatorport operator="cg.nl.po.Order"/>
<cg:destinationport>

<cg:destination nodename="Verify" portnumber="0"/>
</cg:destinationport>

</cg:node>
<cg:node name="Invoice">

<secname:securename xmlns:secname="http://cuc.ucc.ie/xml/secname">
<secname:domain name="(domain (University (Faculty (Alice Computer))))"/>
<secname:graph name="(graph cg.nl.po.PurchaseOrder)"/>
<secname:destination name="(output cg.nl.po.VerifyOp)"/>
<secname:function name="(function cg.nl.po.InvoiceOp)"/>

</secname:securename>
<cg:operandport strictness="strict"/>
<cg:operatorport operator="cg.nl.po.InvoiceOp"/>
<cg:destinationport>

<cg:destination nodename="Verify" portnumber="0"/>
</cg:destinationport>

</cg:node>
<cg:node name="Verify">

<secname:securename xmlns:secname="http://cuc.ucc.ie/xml/secname">
<secname:domain name="(domain (University (Faculty (Alice Computer))))"/>
<secname:graph name="(graph cg.nl.po.PurchaseOrder)"/>
<secname:input name="(input cg.nl.po.OrderOp)"/>
<secname:input name="(input cg.nl.po.InvoiceOp)"/>
<secname:destination name="(output cg.nl.po.PrintOp)"/>
<secname:function name="(function cg.nl.po.VerifyOp)"/>

</secname:securename>
<cg:operandport strictness="strict"/>
<cg:operatorport operator="cg.nl.po.VerifyOp"/>
<cg:destinationport>

<cg:destination nodename="Print" portnumber="0"/>
</cg:destinationport>

</cg:node>
<cg:node name="Print">

<secname:securename xmlns:secname="http://cuc.ucc.ie/xml/secname">
<secname:domain name="(domain (University (Faculty (Alice Computer))))"/>
<secname:graph name="(graph cg.nl.po.PurchaseOrder)"/>
<secname:input name="(input cg.nl.po.VerifyOp)"/>
<secname:function name="(function cg.nl.po.PrintOp)"/>

</secname:securename>
<cg:operandport strictness="strict"/>
<cg:operatorport operator="cg.nl.po.PrintOp"/>
<cg:destinationport/>

</cg:node>
<cg:node name="X">

<cg:operandport strictness="strict"/>
<cg:operatorport operator="cg.engine.ExitOperator"/>
<cg:destinationport/>

</cg:node>
</cg:graphdef>

</cg:graphdefs>

Figure 12: XML definition of the PurchaseOrderGraph

