
The dark side of the code

Olgierd Pieczul1,2 and Simon N. Foley2

1 Ireland Lab, IBM Software Group, Dublin, Ireland.
olgierdp@ie.ibm.com

2 Department of Computer Science, University College Cork, Ireland.
s.foley@cs.ucc.ie

Abstract. The literature is rife with examples of attackers exploiting
unexpected system behaviours that arise from program bugs. This prob-
lem is particularly widespread in contemporary application programs,
owing to the complexity of their many interconnected parts. We con-
sider this problem, and consider how runtime verification could be used
to check an executing program against a model of expected behaviour
generated during unit testing.

“Beware of bugs in the above code; I have only proved it correct, not tried it.”

—Donald Knuth. Notes on the van Emde Boas construction of
priority deques: An instructive use of recursion, 1977

1 Introduction

Contemporary application systems are implemented using an assortment of high-
level programming languages, software frameworks and third party components.
While this may help lower development time and cost, the result is a complex
system of interoperating parts whose behaviour is difficult to fully and properly
comprehend. This difficulty of comprehension often manifests itself in the form
of program coding errors that are not directly related to security requirements
but can have a significant impact on the security of the system [16]. For exam-
ple, while an application may enforce the correct access controls, its programmer
may have mistakenly relied on the software development framework providing
particular code injection defenses; alternatively, the framework developer may
have mistakenly relied on its users implementing their own injection defenses,
or, simply, that nobody had anticipated and/or understood the injection vulner-
ability. In a study of developers by Oliveira et. al. [23], it was found that 53%
of its participants knew about a particular coding vulnerability, however they
did not correlate it with their own programming activity unless it was explicitly
highlighted. It is, therefore, not surprising that all of the OWASP Top 10 secu-
rity risks [26] relate to implementation flaws, with the majority in the form of
common coding mistakes. Two security vulnerabilities that received wide media
coverage in 2014, Heartbleed [2] and Shellshock [1] are further examples of such
mistakes.

Given the complexity of contemporary applications, and the manner of their
development, we argue that there will always be some aspect of their behaviour
(ranging from application level to low-level system calls) that a programmer may
not have fully considered or comprehended. We refer to this as the dark side of
the code; a security gap that can exist between the expected behaviour and the
actual behaviour of the code. Improper or incomplete comprehension means that
security controls may not have been considered for the security gap and, as a
consequence, the unexpected behaviour arising from the code may give rise to
a security vulnerability. One might argue that encapsulation and programming
by contract [21] could eliminate these security gaps; or, that one might attempt
to model all unexpected behaviours in the security gap in terms of a Dolev-Yao
style attacker [13, 30] and verify that the application code is in turn robust to
failure against this attacker. However, these approaches still require a full and
proper comprehension of system components and their interoperation (in terms
of formal specification) which, in itself, can have security gaps, regardless of the
challenge of scaling these techniques to contemporary application systems.

In this paper we explore the dark side of the code and show how security
gaps can emerge in applications. We argue that the security gap can be reduced
by using anomaly detection style techniques to monitor the expected behaviour,
against the actual behaviour, of individual applications and components. Our
preliminary experimental results suggest that this approach can be used to iden-
tify a variety of security vulnerabilities that arise from programming error.

2 Contemporary application development

Current software frameworks enable developers to focus on the high-level func-
tionality of the application by hiding low-level detail. System infrastructure de-
tail such as DBMS, local file systems and memory is encapsulated as object
storage; network connectivity is abstracted in terms of remote resource access,
and user interaction and presentation is supported via a range of standard in-
terfaces. In this paper we use a running example to explore the coding of a
contemporary application. Despite being simple, the example is sufficient to il-
lustrate some of the challenges in using these frameworks and to identify some
of the unexpected vulnerabilities in the security gap.

Consider a web application that provides an online facility for users to man-
age and organize website bookmarks that is synchronised across different user
devices. The application provides a web interface and REST API, supporting
website snapshot images and metadata, browsing, searching and tracking book-
mark use. The application can be built with little effort using contemporary
tools, frameworks and libraries. For example, Listing 1 provides the code im-
plementing bookmark creation request. The application is hosted on a web ap-
plication server that handles network connection along with HTTP request. We
assume that the application uses a web MVC framework to parse request pa-
rameters address and bookmark title and calls addBookmark. The framework
is also responsible for exception interception, error rendering and providing re-

sponses to the client. Inside the method addBookmark, a utility library ([4]) is

1 void addBookmark (String address , String title) throws

Exception {

2 Image small = WebUtils .snapshot (address , 160, 120) ;

3 Image large = WebUtils .snapshot (address , 1200, 800) ;

4 Bookmark b = new Bookmark (address , title , small ,

large);

5 DataStore .save (b);

6 }

Fig. 1. Web application - bookmark creation

used to render website snapshot images (lines 2–3) and a persistence framework
(such as Hibernate [3]) to save the bookmark in a relational database (line 5).

While the high-level application code is clear and easy to follow, the pro-
gram abstractions that are used mean that the typical programmer will not
overly concern themselves with the specifics of the low-level behaviour of the
underlying framework infrastructure. For example, at Line 5 the application
uses the persistence framework to save a bookmark. The developer expects that
the framework will make a connection to a database (or reuse an existing one),
formulate an SQL statement from the bookmark object fields and execute it.
Similarly, creation of website snapshot images (lines 2–3) is handled using a
single call to an external library. The documentation, such as javadoc provided
with the WebUtils.snapshot() source code in Listing 2, provides limited infor-
mation about the method behaviour. ¿From this, the developer can learn that
it accesses the website specified by the URL, renders it and returns an image of
specified dimensions. The programmer can expect that the library will verify the
correctness of the provided address (as an exception is thrown for an “incorrect
URL”), and that it will check for “communication problems” while the website
is being accessed.

Studying the source code of WebUtils.snapshot() method in Listing 2,
we can see that the library, used by the application, is also implemented at a
similarly high level of abstraction. All of the logic related to accessing the re-
mote website in order to create the snapshot is covered by lines 13–15 using
the Java Platform API URL and URLConnection classes. Looking at the first
lines of its documentation [24], the developer learns that a “Class URL repre-

sents a Uniform Resource Locator, a pointer to a ”resource” on the World Wide

Web”. The documentation informs its reader that in the case of a malformed
URL, the constructor will throw an exception, which they decide to forward
to the consumer to handle. Furthermore, the documentation [25] specifies that
URL.openConnection() method returns “a connection to the remote object re-

ferred to by the URL”. And that URLConnection.getInputStream() “returns

an input stream that reads from this open connection”. The documentation also

1 /**

2 * Create an image snapshot for a website

3 * @see #render(InputStream)

4 *

5 * @param website URL address of the website

6 * @param w image width

7 * @param h image height

8 * @return Image containing website snapshot

9 * @throws IOException communication problem

10 * @throws MalformedURLException incorrect URL

11 */

12 static public Image snapshot (String website , int w, int

h) throws IOException , MalformedURLException {

13 URL url = new URL(website);

14 URLConnection connection = url. openConnection ();

15 InputStream input = connection . getInputStream ();

16 Image image = render(input , w, h);

17 return image;

18 }

Fig. 2. Library method

states that a SocketTimeoutException is thrown “if the read timeout expires

before data is available for read”.

3 Securing what is understood

The convenience of using abstractions and their ability to handle security threats
relieves the developer from having to consider much of the low-level details.
For example, because object persistence frameworks do not require construction
of SQL queries, the programmer need not consider sanitizing user input with
respect to the SQL language. Similarly, letting the MVC framework provide
the Web presentation layer can reduce programmer concerns about application
output interfering with the output context, such as HTML, XML and JSON.
This does not excuse the programmer from considering security issues entirely,
rather the emphasis is on the security controls that are relevant to the application
code.

Regardless of the effectiveness of the programming abstractions, it is rea-
sonable to expect that the developer does understand some of the underlying
system operation in order to identify possible threats and to counter them with
adequate security controls. For example, although not directly referenced in the
application code, it may be anticipated that the application will communicate
over HTTP with the remote website in order to create a snapshot. Thus, the
application should be permitted to make HTTP connections that are, to some
degree, controlled by application users through the URLs they enter, and this
may be a security threat. In this case, the application could be used to access

systems—in the local network where it is hosted—that are not normally accessi-
ble from the Internet. A malicious user may, by adding a bookmark to the URL
in the local network, such as http://10.0.0.1/router/admin, attempt to ac-
cess systems that he should not have access to. In order to address this threat,
the developer can code a security control in the application that verifies that
the URL’s host does not point to a local IP address, before calling the library
to create a snapshot. For example, the addBookmark() method can begin with:

// [...]

InetAddress addr =

InetAddress .getByName (url.getHost ()));

if (addr .isSiteLocalAddress ())

throw new SecurityException ();

// [...]

4 The security gap

To a casual reader, the bookmark application (or even the WebUtils library)
code does not openly perform TCP/IP operations. The above threat was identi-
fied based on the programmer’s expectation of low-level application behaviour.
Correlating high level application behaviour (accessing URLs) with the threat
(user-controlled network traffic) is a human task and, as such, is prone to human
error. Failure to implement adequate security controls may not necessarily mean
that the developers are unaware of the threat or neglect security. As observed
previously, despite understanding a security vulnerability, a developer may un-
wittingly write code containing the vulnerability [23]. The cognitive effort that
is required to anticipate security problems is much greater if the details are
abstracted.

Consider again the bookmark application extended with the security control
to prevent local URL access. Despite appearances, an attacker can bypass this
check as follows. We first note that the HTTP protocol [12] allows a server to
redirect the client to another URL in order to fulfill the request through a defined
status code (such as 302) and a header.

– An attacker sets up a website that redirects to the local target machine and
adds a bookmark to that website.

– The attacker’s website (public) URL will be accepted as not local and action
WebUtils.snapshot() is called.

– The Java library will access the website and in url.openConnection() in
the implementation of snapshot effectively follow the URL, effectively con-
necting to a local address.

In order to prevent this attack it is necessary for the programmer to modify
the utility library to explicitly handle redirects and verify the IP address each
time, before accessing the URL. This approach, however, may suffer a TOCT-
TOU vulnerability. In this case, there is a time gap between the verification

of the IP address and the HTTP connection to the corresponding URL. Within
that time gap, the mapping between host name and IP address may be modified.
While past responses will typically be cached by the resolver, the attacker may
prevent the caching by creating a record with lowest possible Time To Live value
supported by Domain Name System [22], that is, 1 second. This is a variant of
a DNS Rebinding attack [17].

Perhaps, and rather than trying to implement the network-related security
controls in the application, a better strategy is to consider this a matter for sys-
tem network configuration. In this case, it should be the systems and network
administrators, not the developers, who need to handle the problem by imple-
menting adequate firewall rules. While transferring administrative burdens to
the consumer is a common practice [11], it also pushes the abstraction further
and may make the threat equally difficult to identify.

Regardless of how this network protection is implemented, the web applica-
tion still contains an even more serious and unexpected vulnerability. It allows
application clients to access custom files from the web server’s file system. The
root cause is the fact that RFC3986 [9] specifies that a Uniform Resource Iden-
tifier can be file:, in addition to http: and https:. In this case,

– an application client, may create a bookmark for the address URL such as
file:///etc/passwd and,

– the application generates an image representing file contents.

This behaviour may not have been anticipated by the application developer
who, upon reading the documentation, understood that WebUtils.snapshot()
should be called with a “website address” and which throws an exception if that
address is “incorrect”. Similarly, the library developer might have been misled
by the Java URL/URLConnection documentation and method names referring to
“connections” and “sockets” and did not expect that their code could be used to
access regular files. While, the URL class javadoc [24] includes a reference to file:
URL scheme, it appears only once, in one of the constructors’ documentation.
Other platforms include similar, often misleading, features. For example the
function file get contents in PHP, despite its name, allows accessing remote
resources if the URL is provided as a file name [27].

To avoid this vulnerability, the developer must implement specific code that
checks whether the URL specifies a website address. However, other URL-related
problems may emerge. For example, in another part of the application, it may
be required to verify whether a URL matches a list of accepted URLs. The Java
equals()method can be used (explicitly or implicitly via the List.contains()
method) as a standard way to test object equality. Using this method is conve-
nient when comparing URL objects, as it respects that a host name and pro-
tocol are case insensitive and some port numbers are optional. For example,
http://example.com/, http://example.com:80/ and HTTP://EXAMPLE.COM/

are equal URLs despite their different string representation. What may not be
anticipated by the programmer, is that when comparing two URL objects, the
method resolves their host names and considers them equal if they point to
the same IP address. In this case http://example.com/ is considered equal to

http://attacker.com/, provided that the attacker has targeted their host to
example.com’s IP address. This unexpected behaviour may lead to security vul-
nerabilities if URLs are for used for white/black listing, or to ensure the Same
Origin Policy [8]. While the behaviour of URL.equals() is documented and the
corresponding security issues are considered [10], a developer may not consider
checking that part of documentation to be necessary, especially if the code may
not explicitly invoke the method.

This example demonstrates how programming oversights, in what seemed to
be trivial, high-level application code, can result in series of security issues whose
identification and prevention requires an in-depth understanding of low-level
libraries and a number of network protocols. In today’s systems of interoperating
components, the security gap between the expected behaviour and the actual
behaviour is unavoidable. Pushing the responsibility to understand everything
onto developers is expecting them to be omniscient, is not realistic, and is in
effect, security theatre.

5 Verifying expectation

An application system program has a security gap when a developer’s misunder-
standing means that an attacker can exploit the difference between its expected
behaviour versus its actual behaviour and, for which security controls do not
exist. In this section we outline our ongoing investigation on how the gap can
be reduced by checking the runtime behaviour of the component against a pre-
defined model of its expected behaviour. Runtime verification [7] is the process
of observing system execution and validating that specified properties are up-
held, or that the execution is consistent with a testing oracle. For example, a
predicate stating that each acquire has a matching release in a (re-entrant)
Lock class [19]. However, based on our earlier observations, we argue that a
typical developer would still be unable to capture all properties about expected
behaviour; a security gap remains. The challenge is to construct a model of
expected behaviour that helps to reduce the security gap.

We use data mining techniques to infer patterns of expected behaviour from
execution traces that are generated during the testing phase of the development
lifecycle. Such system trace mining techniques have been used elsewhere to infer
acceptable behaviour/policies for anomaly detection [14,28] process mining [5,6],
security policy mining [15, 20] and fault detection [18]. Expected behaviour is
not exactly the same as the normal behaviour upon which anomaly detection
is typically based. Normal behaviour is system-specific, and relates to system
configuration, infrastructure, usage patterns and so forth. Typically, it is estab-
lished for a particular instance of the system based on monitoring its operation
under normal circumstances. The expected behaviour corresponds to the antic-
ipated behaviour of the system under all expected circumstances. It represents
all of the activity that the system is capable of performing. Some activity may
be expected, recognized as possible in the system in general, but not considered
normal in a particular system instance.

An approach for inferring behavioural models from system logs was pro-
posed in the seminal work of Forrest at al. [14]. System behaviour is modeled
in terms of a set of n-grams of system call operations present in the system
log. As the system executes, its operations are compared against this model of
‘normal’ and, if the sequence does not match known n-grams, it may be consid-
ered anomalous. This approach is limited to identifying short-range correlations
between operations in traces and can miss interesting behaviours by not consid-
ering transactional behaviour [29]. In our work we use use the richer behavioural
norms [28,29] which can identify repeating patterns of parameterized behaviour
from the system trace.

Intuitively, behavioural norms are sequences of parametrized actions. For
example, one of the norms that represent the actions that result from accessing
an http: URL is the following sequence of method invocations:

net.url(" get"," http ",$1 ,$2);

socket.connect($1 ,$3);

socket.resolve($1);

socket.connect($4 ,$3);

socket.read ();

...;

socket.close()

The norm represents a repeating pattern of behaviour discovered in a system
trace. It is not generated by static analysis of the code. Action parameter at-
tributes are identified as static values (such as "get") or free variables (such as
$1) that can be bound to some value when matching an instance of the norm
against runtime behaviour. In mining a system trace, our analysis algorithm [28]
has proven quite effective in identifying the action attributes that remain static
versus those that can change, and how they correlate, each time the norm is
matched. For example, the norm above is the outcome of a get on an http:

URL to some host $1, resulting in a socket connect and resolve on involving
the same host and subsequent connect on a resolved IP address $1.

We carried out a preliminary evaluation of the use of behavioural norms as a
means of identifying coding errors in the security gap. A set of conventional unit
tests were run against the WebUtils library, testing both positive and negative
cases. For example, the website image snapshot was tested with a number of
URLs and expected error conditions, such as incorrect URL, unresolvable host,
interrupted connection, and so forth. Note that none of the tests attempted to
open file: URLs, as such behaviour was not expected as possible. The Java
build process for the library was extended to capture a trace during test exe-
cution. This trace is a sequence of the low-level actions that result from testing
WebUtils, and contain not just those actions from the snapshot library, but also
all others, such URL methods, etc. This trace of all method invocations was
analyzed for behavioural norms and the resulting model of expected behaviour
was included in the library manifest. A Java aspect was used to provide run-
time verification using the Java security manager. Note that neither generating

the behavioural model nor its runtime verification requires any change to the
original library code and is applicable to any Java component.

The web application was redeployed with its new library and tested. While
the original positive and negative test cases were still effective (testing expected
behaviour, such as creating images from websites) we found that the unexpected
behaviour, such as creating images using local files, was no longer possible. In
this case, the behavioural norm model permitted snapshot transactions that
involved http: URLs, but identified a snapshot transaction using file: URLs
as anomalous. Note that the generated model does not prevent the application
from carrying out all file: URL operations, just those that occur within a
snapshot transaction. In practice, other parts of the bookmark web application
may be expected to access files, and general file accessing behaviour is part of
the expected behaviour of the application as a whole.

We are currently investigating how this approach can identify other coding
errors that lead to security vulnerabilities. In preliminary experiments, we have
observed that a number of typical programming errors, including Insecure Direct
Object Reference, TOCTTOU, access control flaws and broken authentication
manifest themselves through distinguishably different low-level behaviour and,
as such, could be detected using that technique.

6 Conclusion

Given the complexity of contemporary applications, we argue that there will
always be a security gap between the code’s actual behaviour and the behaviour
expected by the programmer. The cognitive overload on the programmer in-
creases with the level of the programming abstractions used and increases the
likelihood of errors that lead to security vulnerabilities. We propose taking a run-
time verification style approach to check an executing program against a model
of expected behaviour that is generated during unit testing. While our initial
experiments provide some evidence that this approach has potential, we note
that its effectiveness depends greatly on the completeness of the unit testing at
exercising expected behaviour.

Acknowledgement. This work was supported, in part, by Science Foundation
Ireland under grant SFI/12/RC/2289 and the Irish Centre for Cloud Comput-
ing and Commerce, an Irish national Technology Centre funded by Enterprise
Ireland and the Irish Industrial Development Authority.

References

1. Bash code injection vulnerability via specially crafted environment variables,
https://access.redhat.com/articles/1200223

2. The heartbleed bug, http://heartbleed.com/
3. Hibernate, http://hibernate.org
4. The Spring framework. https://spring.io

5. Accorsi, R., Stocker, T.: Automated privacy audits based on pruning of log data.
In: EDOCW. pp. 175–182 (2008)

6. Agrawal, R., Gunopulos, D., Leymann, F.: Mining process models from workflow
logs. In: Proceedings of the 6th International Conference on Extending Database
Technology: Advances in Database Technology. pp. 469–483. EDBT ’98, Springer-
Verlag (1998), http://dl.acm.org/citation.cfm?id=645338.650397

7. Barringer, H., Goldberg, A., Havelund, K., Sen, K.: Rule-based runtime verifica-
tion. In: Verification, Model Checking, and Abstract Interpretation. pp. 44–57.
Springer (2004)

8. Barth, A.: The Web Origin Concept. Request For Comments 6454, Internet Engi-
neering Task Force (Dec 2011), http://www.ietf.org/rfc/rfc6454.txt

9. Berners-Lee, T., Fielding, R., Masinter, L.: Uniform Resource Identifier (URI):
Generic Syntax. Request for Comments 3986, Internet Engineering Task Force
(Jan 2005), http://www.ietf.org/rfc/rfc3986.txt

10. Carnegie Mellon University: CERT Secure Coding Standards – VOID 2 MET21-
J. Do not invoke equals() or hashCode() on URLs, https://www.securecoding.
cert.org/confluence/x/5wHEAw

11. Davis, D.: Compliance defects in public-key cryptography. In: Proceedings of the
6th Conference on USENIX Security Symposium, Focusing on Applications of
Cryptography - Volume 6. pp. 17–17. SSYM’96, USENIX Association, Berkeley,
CA, USA (1996), http://dl.acm.org/citation.cfm?id=1267569.1267586

12. Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-
Lee, T.: Hypertext Transfer Protocol – HTTP/1.1. Request For Comments 2616,
Internet Engineering Task Force (Jun 1999), http://www.ietf.org/rfc/rfc2616.
txt

13. Foley, S.: A non-functional approach to system integrity. IEEE Journal on Selected
Areas in Communications 21(1) (Jan 2003)

14. Forrest, S., Hofmeyr, S., Somayaji, A., Longstaff, T.: A sense of self for unix pro-
cesses. In: IEEE Symposium on Security and Privacy. pp. 120–128 (1996)

15. Frank, M., Buhmann, J., Basin, D.: On the definition of role mining. In: Pro-
ceedings of the 15th ACM Symposium on Access Control Models and Tech-
nologies. pp. 35–44. SACMAT ’10, ACM, New York, NY, USA (2010), http:

//doi.acm.org/10.1145/1809842.1809851

16. Gollmann, D.: Software security – the dangers of abstraction. In: The Future of
Identity in the Information Society, IFIP Advances in Information and Com-
munication Technology, vol. 298, pp. 1–12. Springer Berlin Heidelberg (2009),
http://dx.doi.org/10.1007/978-3-642-03315-5_1

17. Jackson, C., Barth, A., Bortz, A., Shao, W., Boneh, D.: Protecting browsers
from DNS rebinding attacks. In: In Proceedings of ACM CCS 07 (2007), http:
///crypto.stanford.edu/dns/dns-rebinding.pdf

18. Jiang, G., Chen, H., Ungureanu, C., Yoshihira, K.: Multi-resolution abnormal trace
detection using varied-length n-grams and automata. In: Autonomic Computing,
2005. ICAC 2005. Proceedings. Second International Conference on. pp. 111–122
(June 2005)

19. Jin, D., Meredith, P.O., Lee, C., Roşu, G.: Javamop: Efficient parametric runtime
monitoring framework. In: Proceedings of the 34th International Conference on
Software Engineering. pp. 1427–1430. ICSE ’12, IEEE Press, Piscataway, NJ, USA
(2012), http://dl.acm.org/citation.cfm?id=2337223.2337436

20. Kuhlmann, M., Shohat, D., Schimpf, G.: Role mining - revealing business roles
for security administration using data mining technology. In: Proceedings of the

Eighth ACM Symposium on Access Control Models and Technologies. pp. 179–
186. SACMAT ’03, ACM, New York, NY, USA (2003), http://doi.acm.org/10.
1145/775412.775435

21. Meyer, B.: Applying “design by contract”. IEEE Computer 25(10), 40–51 (1992),
http://doi.ieeecomputersociety.org/10.1109/2.161279

22. Mockapetris, P.: Domain names - concepts and facilities. Request for Comments
1034, Internet Engineering Task Force (Nov 1987), http://www.ietf.org/rfc/
rfc1034.txt

23. Oliveira, D., Rosenthal, M., Morin, N., Yeh, K.C., Cappos, J., Zhuang, Y.: It’s
the psychology stupid: How heuristics explain software vulnerabilities and how
priming can illuminate developer’s blind spots. In: Proceedings of the 30th Annual
Computer Security Applications Conference. pp. 296–305. ACSAC ’14, ACM, New
York, NY, USA (2014), http://doi.acm.org/10.1145/2664243.2664254

24. Oracle: Java Platform API Specification – URL (2014), http://docs.oracle.com/
javase/7/docs/api/java/net/URL.html

25. Oracle: Java Platform API Specification – URLConnection (2014), http://docs.
oracle.com/javase/7/docs/api/java/net/URLConnection.html

26. OWASP Foundation: OWASP Top 10 2013, https://www.owasp.org/index.php/
Top_10_2013

27. The PHP Group: PHP Manual – file get contents, http://php.net/manual/en/
function.file-get-contents.php

28. Pieczul, O., Foley, S.: Discovering emergent norms in security logs. In: Communi-
cations and Network Security (CNS - SafeConfig), 2013 IEEE Conference on. pp.
438–445 (2013)

29. Pieczul, O., Foley, S.: Collaborating as normal: detecting systemic anomalies in
your partner. In: Security Protocols XXII. Lecture Notes in Computer Science,
vol. 8809. Springer Berlin Heidelberg (2014)

30. Ryan, P.: Mathematical models of computer security. In: Focardi, R., Gorrieri, R.
(eds.) Foundations of Security Analysis and Design, Lecture Notes in Computer
Science, vol. 2171, pp. 1–62. Springer (2001)

