The Dark Side of the Code
(Transcript of Discussion)

(Y 11,2

Simon N. Foley!®™) and Olgierd Pieczu

! Department of Computer Science, University College Cork, Cork, Ireland
s.foley@cs.ucc.ie
2 Ireland Lab, IBM Software Group, Dublin, Ireland
olgierdp@ie.ibm.com

Bruce Christianson: Right, I think it was Dijkstra! who said that if you don’t
formally specify a system it can never be insecure, it can only be surprising.
The obvious course of action is for the European Commission to make formal
specification illegal and then announce victory. But here to put the other side
of that particular argument are Olgierd and Simon.

Simon Foley: Thanks Bruce. This is a joint talk. I'm going to give a brief
introduction and some context, and then Olgierd will take over with more detail.

Following up on Bruce’s comment, I remember Bob Morris would sometimes
describe security as absence of surprise and we’ve been looking at the security
surprises that result from programmer error. For a programmer, an implemen-
tation fails if there’s a surprise in its execution where its actual behaviour is not
as required or expected. Thinking of this in terms of security, the implementa-
tion is not secure if there’s an attack whereby the system’s actual behaviour is
not, consistent with its required or expected behaviour. For example, a replay
attack in the actual behaviour of a security protocol is not what the programmer
expected.

No surprise means that the actual behaviour of the program matches its
expected behaviour. Of course this assumes that the programmer fully under-
stands the expected and actual behaviour. In practice, the programmer is likely
to take a flat view of the system, thinking only in terms of the APIs he uses, and
he may not think about what happens under the hood. For example, a proto-
col developer thinks in terms of messages and crypto operations, and might not
think too much about what happens in the low-level code behind the API. At
the extreme, this developer lives in a two-dimensional world that we can think
of as flatland.

Edwin Abbot, who was a Shakespearian scholar, wrote “Flatland: A Romance
of Many Dimensions” in 1884 as a saritical science-fiction exploration of life in a
two-dimensional world, how its citizens managed with just two-dimensions and
the difficulties that they had in comprehending other dimensions. For example,
there’s an account of the author, a flatlander, who gets visited by a Sphere
and can’t comprehend how the Sphere can cause things to disappear in the

! Or perhaps Bob Morris, see LNCS 6615, p 120. However, I searched the Internet and
found attributions to “apocryphal” and to “Brian Kernighan” as well as use without
any attribution at all.

© Springer International Publishing Switzerland 2015

B. Christianson et al. (Eds.): Security Protocols 2015, LNCS 9379, pp. 12-21, 2015.
DOI: 10.1007/978-3-319-26096-9 2



The Dark Side of the Code (Transcript of Discussion) 13

flatlander’s 2-D world and then re-appear at a different location. Often, when
we study security, take a flatland view.

Contemporary software development is not flat; what might seem like a sim-
ple API call in flatland, results in complex interactions within the underlying
system and its infrastructure. A programmer writes code at the abstract API
level (flatland), may understand some of the lower levels of the code, but does
not understand everything that happens behind the API. This is what we call
the dark side of the code: low-level program behaviour that is not known or
understood by the programmer and this can cause security surprises.

For example, a flatlander programmer didn’t understand that a database
management system was behind an API call and as a result an injection attack
occurs and percolates back up into some surprise in the programmer’s flatland.
This is like the two dimensional flatlander being surprised by the behaviour of
the three dimensional Sphere. Of course, programmers can still make mistakes
at their level. Surprises can also occur from programmer blindspots in things
they understand but overlook. We think that the usual software development
techniques can help us deal with the complexity of the system and ensure that
the actual behaviour of the system is consistent with expectation. However,
security vulnerabilities still persist. For example, even with abstraction we can
still have attacks.

Bruce Christianson: [Just go for it Sandy)]

Sandy Clark: Well, I would argue that it is only going to get worse, because
currently it is difficult to finish an undergrad degree and not get through the
your programme without specialising, and without specialising early, whereas
previous generations didn’t specialise, you learned the entire system.

Simon Foley: Yes, certainly. I'm not suggesting that abstraction, frameworks
and everything else are the solution. I think that they are often put forward as
some sort of solution, but they create as many problems as they solve. If we’re
to have secure systems where we don’t have surprises, and the actual behaviour
corresponds to the expected behaviour. It seems we need a developer who is
expected to understand everything and with the result that there’s no dark side
of the code. Taking that argument to its conclusion, what we seem to be looking
for are, omniscient coders, such as the beings from the Q continuum in Star
Trek, who understand all dimensions, not just the few dimensions of the ‘puny’
human race, or indeed the programmer race. The Q understand everything. Of
course its security theatre for us to think that programmers can be omniscient
and understand everything. There will always be a dark side of the code.

I hand you over to Olgierd who will to walk you through a concrete example
of this dark side in the code. He’ll show how it is really easy for programmers
not to appreciate what’s happening in the low level details. He’ll also talk a little
bit about how we’ve been using run-time verification techniques to look at this
problem.



14 S.N. Foley and O. Pieczul

Olgierd Pieczul: I will be talking about real developers that I am here to
represent. I will use an example, a bookmark sharing application. It is a web
application that can be used to create, browse and manage web bookmarks.

Among other things, it can be used to save snapshot image of a bookmark,
which then can be viewed by a user. In the past implementing such an applica-
tion required a lot of work. But today, with the many of tools and frameworks
available it is very easy to implement. For example, all the code required to
process bookmark creation can be contained just in a few lines. This code cre-
ates snapshot images of the website addresses provided as the parameters in
the request, and saves them along with a bookmark information using persis-
tence framework. In only four lines of code the application gets user provided
data, contacts and retrieves the website, generates snapshot images and returns
operation status.

But what exactly is the code doing? Is there anything that can potentially
have impact on security? At the fourth line we see something that may be related
to database operations. Perhaps there is potential security problem of SQL injec-
tion. Actually there is not, because the persistence framework protects against
that. The first two lines, where application calls a library to create snapshot
images of a bookmark, may cause security problems. The code makes network
connections to a user-provided location. Why is should that be a security risk? It
is expected that the application will connect to the public web server, to down-
load the website, and create an image, and report back to the user. But there is
also an expected threat, that instead of specifying a public website, a malicious
user will provide an address to an internal site. This will cause the application
to connect to that internal server (that may hold sensitive information), create
a snapshot images and present them back to the user.

So what’s in the code again? The listing presents very, very high level code,
and there is nothing in it that relates to internal/external addresses. The code
responsible for creating the image snapshot, provided by a third-party library, is
also at a very high level. It takes the website URL as a parameter, and it seems
to verify whether this URL is correct, as it throws an exception for a “malformed
URL”. According to Java documentation, the URL is a “resource to the World
Wide Web”. Further in the code, you can see that there is a “connection” that is
“opened” and an input stream being created from that connection. Also, there is
a possibility of “socket timeout” or some network related problem. Although this
gives some hints about the code operation, the snapshot library code remains
very high level. This is an example of security gap: the code does not openly
perform any of the TCP/IP operations and the threat is based on ezpectation
regarding low level application behaviour. That this is possible is not apparent
by simply inspecting the application code in isolation. It is a human task to
correlate the high-level application behaviour with this low level threat.

The most obvious solution is also low level. The application may try to verify
that the address of the bookmark is not a local address. But, as you can see in
the listing, this pushes the code to lower level of abstraction. Now, the developer



The Dark Side of the Code (Transcript of Discussion) 15

needs to consider concepts such as local address, and public address in, otherwise
high-level, code.

Alastair Beresford: Isn’t there also an alternative solution at a different level?

Olgierd Pieczul: There is, I will present some of them. In fact, this particular
solution is wrong. It is based on incorrect assumption that the address from the
URL is the address that application will create the snapshot from. It may not
be expected, that after the address is verified, and application connects to the
HTTP server, that server may perform an HTTP redirect to arbitrary location,
such as internal network server.

This problem can be fixed if the application, while verifying the address,
followed all HTTP redirects and verified the final location. When implementing
such protection, the developer may not expect that it can also be bypassed. A
DNS rebinding attack may be used to redirect the connection to internal location
after it is verified.

In order to identify all of those problems, the developer needs to go down
the low level. For what was at first a very simple, high-level application, the
developer now has to consider HT'TP protocol, redirects, DNS protocol and so
forth.

Often, the developer will just document the issue and expect the user or
administrator to provide external security controls, and in this case, control the
application’s network access. But that does not really solve the problem, it only
shifts responsibility from the developer to the administrator. As a result, the gap
widens even more and the administrator needs to expect that the application
that is installed with this default configuration can potentially endanger their
local network. It is very unlikely they would expect that.

Assuming this is the most likely solution, an administrator deploys a firewall,
or Java policy that prevents the access of specific local addresses. However, this
same code has yet another vulnerability. A malicious user may create a bookmark
to a URL with a file protocol, such as file:///etc/passwd. Although the URL
handling code seems to be focused on network-related operations, it is actually
capable of processing URLs with non-network schemes, such as files. In this case,
rather than opening a website, the application will open a local file, and create
an image, and render that image to the user. In order to avoid this vulnerability,
the developer needs to understand the low-level details of the URL handling in
Java, even though they never actually directly call it in their code.

This is what we call “the dark side of the code”. An application may be able to
perform operations that may not be expected by its developers. Expecting that
developers can fully comprehend the application to the lowest level, including
all its interoperating components, is unrealistic and, in our opinion, security
theatre.

So what we propose is that, rather than preventing any possible unexpected
behaviour by the application, we verify if the actual behaviour of the applica-
tion is consistent with what is expected. The developer knows what is expected,
because that’s how the application should work, and our goal is to verify the



16 S.N. Foley and O. Pieczul

actual behaviour against the expectation. Now, the question is, how we can cap-
ture and model this expected behaviour? We propose using a model of behav-
ioural norms, an abstraction of application execution traces. The norms represent
how the application behaves under normal circumstances. They can be discov-
ered automatically from the logs, and capture unknown patterns of interaction
between system components.

On this slide you can see some norms for HI'TP and HTTPS connections,
successful and failed. We performed an experiment, whereby by capturing all
permissions checks, the Java Security Manager, can be used to generate a trace
of application activity. We then used the WebUtils library unit tests to ‘exercise’
the library and capture a trace of expected behaviour. This trace was used to
generate a norms model of expected behavior and this, in turn, is used by the
runtime verification mechanism to check that current execution corresponds with
this model of expected behavior. In the case of a violation, the mechanism can
alert or stop the application code execution. In short, the result of running this
experiment was that bookmarks with HTTP URLs, and many other expected
scenarios execute correctly, while bookmarks with file URLs are prevented by
runtime verification.

To wrap up. In modern applications there is a gap between expected behav-
iour and the actual behaviour. This gap is unavoidable, and expecting developers
to fill the gap with their own knowledge and skill is an unrealistic expectation.
Rather than preventing all the known unexpected behaviour we propose to cap-
ture the expected behavior and verify the application against that behaviour.
The behaviour norms that we have developed can be used for that verification.
Thank you.

James Malcolm: How are you going to tell the difference between unusual
behaviour and bad behaviour? Lots of things are unusual but perfectly OK?

Olgierd Pieczul: There are two answers. One is test coverage: how much
the application is being tested. Another one is the abstraction of the expected
behaviour. The behavioural norms are not really exact traces of code, and provide
a level of abstraction and flexibility within themselves. But yes, it’s a good
question, this is the intrinsic problem of our research.

Simon Foley: To add to that, one thing to consider about the models of
expected behaviour that we are building is that they’re not just the Flatland view
of the program. That is, they are not just in terms of the API the programmer
uses but also includes events in the underlying infrastructure. For example, if
it was a web application then the model could include all of the HTTP traffic
generated during the unit tests, not just the traffic that is explicitly coded by the
application. Such a model may be sufficient to detect anomalies in HTTP traffic
as the application executes. Alternatively, the model of expected behavior may
be extended to include all local file system accesses. This more detailed model
can be used to detect the anomaly in the application Olgierd described. At some
point a judgement must be made about how much detail should be included in
this model. If we limit ourselves to direct API events, its likely we won’t find any



The Dark Side of the Code (Transcript of Discussion) 17

surprises. We want to include enough detail to be able to detect the interesting
surprises. As Olgierd mentioned previously, finding the right level of abstraction
is a challenge in anomaly detection in general.

Dong Changyu: Have we considered the possibility that attacks might arise
at the lookalike expected activity.

Olgierd Pieczul: Yes. Some attacks may not represent themselves through
different behaviour. This is mostly a matter of how the behavioural model is
built. It may consider only “action” attributes, but also other that provide more
context. It may also include execution parameters and context that may result
in much more precise model. This may, however, reduce the flexibility.

Dong Changyu: So, are the mimicry attacks possible?

Olgierd Pieczul: Yes, though they are more difficult here than in similar
solutions, as the model is much more precise.

Keith Irwin: Is the application you use in the presentation the only example?

Olgierd Pieczul: Yes, it is only a proof-of-concept application we developed
for this experiment.

Keith Irwin: I was going to say, because I would have trouble believing that
the connection to the internal server would look different from a connection to
the external server, from the app’s perspective.

Olgierd Pieczul: That was an expected threat, that was something we did
not try to protect against using norms.

Keith Irwin: Although you would expect you would sometimes run into HT TP
redirecting.

Olgierd Pieczul: Correct.

Mohammad Dashti: Ideally you would like to be able to execute these norms
and get rid of the problem, right? These norms are somehow restricting your
program to what you want it to actually do, and if you could execute them then
you could forget about the program.

Olgierd Pieczul: But they are not the actual programme, they are only an
abstraction.

Bruce Christianson: But the question is, what’s the difference between a
program and implementation, and an executable specification.

Olgierd Pieczul: It is not a specification but only an abstracted trace, covering
only some portion of application activity, such as permission checks. It is much
more abstract than the actual code.

Mohammad Dashti: Sure, but if I see this norm as a regular expression, for
instance, then it can be executed. I'm not suggesting that your norms could be
executed, but if in principle we want to have an executable norm?



18 S.N. Foley and O. Pieczul

Simon Foley: Yes, I think in principle you could say: I'll take a log from the
unit testing and from that I'll infer some state machine that’s in some sense
equivalent to the code that I have written to some degree of approximation.
Then I could take that state machine, and execute it. Yes, in principle, but in
practice that’s not we’re doing. We’re working to some level of abstraction of
the events under the hood: we’re not going all the way down to the lowest-level
of system operation. For our current experiments we're looking at the network
as the level of abstraction, the TCP/IP operations. We make sure that when
the program runs then we’re validating against those particular sequences of
network operations, everything else is abstracted away. The idea is that if there’s
a deviation from what’s expected (in the network events), then you’ll get a slight
re-ordering of these sequences, and then that’s what gets detected by runtime
verification.

Bruce Christianson: But to what extent are you just trying to enforce the
implementation to respect the abstraction at the specification then? And to what
extent are you actually trying to verify that the abstraction is correct? Or is that
a non-goal? Or are you finding them in parallel together?

Simon Foley: If we go back to the beginning of our talk when I argued that
that programmers are like Flatlanders, and they think only in terms of their own
APIs. If you consider the application that Olgierd talked about at the beginning,
then that’s their view of the system, their Flatland view of the world. They
have no idea of, or pay little attention to, the underlying sequences of network
interactions. When they think of expected behaviour, they think in terms of
the high program APIs. Thinking formally, we’d might argue that functional
requirements are specified at this high level, and we don’t need to think too
much about what’s happening down at these lower levels of abstraction, which
we’re not even trying to model in our specification. We write our high level
program as usual. During unit testing of expected behaviour, the application
runs and we log not just on the high-level APIs, but also on the low-level calls
under the hood, such as network events. The model of expected behaviour is
built from these events.

Bruce Christianson: So it’s actually your implementer who is working at the
higher level of abstraction, and your specification is at a lower level.

Simon Foley: Yes, what’s being generated is the stuff from the dark side.

Olgierd Pieczul: So just to clarify, all of those low-level norms correspond
with a single line of the application code: create a snapshot of a website. Various
norms capture different types of low level behaviour that developer may not
expect.

Max Spencer: So I propose that the developer still has to know about the
dark side of the code, because they need to be able to anticipate the places
they input in their unit tests that would generate enough activity for the base
line behaviour. The application can still do lots of useful stuff, they need to
anticipate. So it might just be shifting your understanding, where instead of



The Dark Side of the Code (Transcript of Discussion) 19

having to understand enough about checks in your actual program to prevent
the bad behaviour, you would just know enough about it to make sure that your
norm generating tests for good behaviour. So it just seems like a bit of a shift
from one to the other, but you are still requiring developers to know about the
dark side.

Olgierd Pieczul: Using unit tests is just one of a number of possible ways
to generate the base line behaviour. Another could be to monitor application
operating in a test or production environment.

Frank Stajano: He makes the valid point that you cannot come up with a unit
test that tests the entire network for some scenario if you don’t think about it,
right? You’re not going to come up with that at random.

Ross Anderson: It may be more general than that. The application will only
work in those sorts of cases that were initially tested, you cannot use it to
innovate, you can’t use it to do new stuff. If you test an automated car to drive
on the left-hand side of the road and you take it to France it will just freak out
and it would stop, and all the gears will crunch, and smoke will come from the
parts and it will expire. Now that may be OK for an application, but it’s not
OK for a platform, because the whole point of a platform is that other people
can then build stuff on top of it to do entirely new stuff. This would be no good
for testing Windows 11.

Alastair Beresford: So maybe one way to fix this is to record the application
activity for the first 10 days in production, assuming that there are no attackers.
I record how it is used and then flip the switch.

Olgierd Pieczul: Of course, the expected behaviour may be gathered in mul-
tiple ways.

Ross Anderson: So it gives new zest to the application development life-cycle,
all the programs are a teenager that will try all sorts of new stuff, but by the
time it’s 25 it will be set it its ways, and it will never change.

Tom Sutcliffe: Do you feel this may risk breaking the abstractions that your
library is trying achieve in the first place?

Sandy Clark: That is OK. If you break them, you find out where they are
broken and then you understand the assumptions that were made in the first
place that do not work.

Tom Sutcliffe: Yes, but it may be that it was an implementation detail, which
really doesn’t actually matter for your use base, but have to spend two days
debugging it to establish that. I'm just thinking of the case where, for example,
you upgrade a library and suddenly it starts caching the DNS requests some-
where such that you don’t get your resolve step happening. And then it suddenly
breaks your norms.

Olgierd Pieczul: We have thought about it as well. It is a question when
behaviour is being captured. It may happen during development cycle of a new



20 S.N. Foley and O. Pieczul

version of the library, but also, when the application is upgraded to the new
library.

Tom Sutcliffe: If all those libraries are under your control and are bundled
with your app then I guess you could do that. But if you're potentially deploying
against different versions, and you don’t necessarily know, you don’t have a well
specified environment to start with, it could get quite tricky.

Olgierd Pieczul: Yes, this is a problem, and a possible way to solve it was to
limit captured behaviour on both high and low level and only build the norms
for the things you control, or you know that are not changing.

Tom Sutcliffe: 1 suppose it does lead onto the fact that if you do control
more of the stack then you’re less likely to get unexpected behaviours if you are
deploying against fixed versions that you’ve run and tested with, so yes.

Ross Anderson: So if you're got a big red button in your app that says,
training now, and then the attacker is just going to socially engineer the user
into pressing the big red button.

Mark Lomas: Can I suggest that part of the problem is that your internal
network is too open. What we tend to do for testing applications, is to put
them on an isolated VLAN where they have no external connectivity at all. Now
clearly the application will not function, so the developer has to decide, as part
of application design, that it will communicate with these other entities within
the organisation. Then they have to set up a firewall, set up logging and verify
if there’s at least one test case that exercise that firewall rule. If there isn’t one
then the developer made a mistake, if there is one, and it’s inconsistent, then if
you change control to make that permanent rule, and then gradually, gradually
open up control to allow the expected behaviour.

Olgierd Pieczul: That is true, but the problem is that the application may
legitimately contact that server for other purposes. For example, application
may be expected to contact a database server but not to contact it in context
of creating snapshot images of its interface. Also, unexpected access to files, will
still work regardless what network protection is used.

Bruce Christianson: So this gives you access to external behaviour, but not
to information flows that are internal? Can you enforce information flow using
a mechanism like this?

For example, most frauds are done by people doing things that the rules
allow them to do, but then using the information for a purpose other than the
purpose for which they’re supposed to have access.

Olgierd Pieczul: So in some cases it’s a question of granularity of all those
protections.

Bruce Christianson: Yes.

Olgierd Pieczul: So for example, the firewall rules can be very specific to say
that this application is only allowed access to this very limited set of targets. Or
it may open files but only some classes may open class can open some files.



The Dark Side of the Code (Transcript of Discussion) 21

Bruce Christianson: Could you augment this by actual instrument, put an
instrument in the application code, and follow in control paths through the
application code, tracing that, and seeing whether that complied with what you
expected.

Alastair Beresford: And maybe it’s the broader question about what level or
levels you actually try and track.

Bruce Christianson: Which is kind of where we came in, yes, that’s fair, yes,
OK. Right, thank you very much. ..



	The Dark Side of the Code (Transcript of Discussion)

