
A Firewall Algebra for OpenStack
Simon N. Foley and Ultan Neville,
Department of Computer Science,
University College Cork, Ireland

Abstract—An algebra is proposed for constructing and reason-
ing about anomaly-free firewall policies. Based on the notion of
refinement as safe replacement, the algebra provides operators
for sequential composition, union and intersection of policies.
The algebra is used to provide a uniform way to specify and
reason about OpenStack host-based and network access controls,
in particular, security group and perimeter firewall policies.

I. INTRODUCTION

The cloud computing paradigm has become widely adopted,
with applications ranging from research to enterprise. How-
ever, for end-users, administrators and providers alike, there
are security challenges. Managing the host-based and network
access controls within and across cloud deployments is com-
plex and error-prone. Cross-tenant accesses are often necessary
for service-to-service communication, and the environment
is highly dynamic due to platform and service migration.
Multiple access control policies of varying types are required
for a deployment, and a misconfigured policy may permit
accesses that were intended to be denied or vice-versa. We
regard the specification of an access control policy as a process
that evolves. Threats to, and access requirements for, resources
within a cloud do not usually remain static, and over time, a
policy or distributed policy configuration may be updated on
an ad-hoc basis possibly by multiple specifiers/administrators.
This can be problematic and may introduce conflicts, whereby
the intended semantics of the specified access controls become
ambiguous.

In this paper, we present a firewall policy algebra for
constructing and reasoning over anomaly-free policies. The
algebra allows a policy specifier to compose policies in such
a way that the result of the composition upholds the access
requirements of each policy involved, and allows one to reason
as to whether some policy is a safe (secure) replacement for
another policy in the sense of [7], [8], [12].

The proposed algebra is used to reason about OpenStack
cloud deployments. OpenStack [1] is an open-source cloud
operating system. It provides Infrastructure-as-a-Service (IaaS)
through a collection of interrelated projects/services. These
services are used to manage pools of compute, storage, and
networking resources throughout a datacenter [1]. This paper
focusses on the OpenStack Neutron networking service.

The primary contribution of this paper is an algebra that
can be used to explore different kinds of firewall policy in
a distributed configuration. The paper is organised as follows.
Section II presents an algebra FW0 for OpenStack host-based
and network access control policy configuration. In Section III,

OpenStack perimeter firewalls and security groups are encoded
in the algebra. Section IV presents a case study OpenStack
deployment that illustrates the practical use of the algebra.
Section V outlines an extension to the algebra. Related work
is outlined in Section VI and Section VII concludes the paper.

The Z notation [15] is used to provide a consistent syntax
for structuring and presenting the definitions and examples in
this paper. We use only those parts of Z that can be intuitively
understood and Appendix A gives a brief overview of the
notation used. Mathematical definitions have been syntax- and
type-checked using the f UZZ tool [14].

II. FW0 THE BASIC FIREWALL ALGEBRA

In this section we present an algebra for constructing
and reasoning about anomaly-free firewall policies. For the
purposes of this paper we focus on stateless firewall policies
that are defined in terms of constraints on individual IP
addresses, ports, and protocols. Support for other features such
as IP/port ranges, TCP flags and stateful filtering is provided
by an extended algebra FW1 [9] which we do not consider
in this paper for reasons of space, but discuss its application
in Section V.

Let IP, PORT and PROTO define the sets of IP addresses,
ports and protocols, respectively.

[IP,PORT,PROTO]

For simplicity, we do not consider how the values of these
types may be constructed, other than to assume that the usual
human-readable notation can be used, such as 1.2.3.4 for
IP addresses, natural numbers for ports, and literals tcp and
udp for protocols TCP and UDP, respectively. For ICMP,
literals include valid ICMP Type/Code combinations, such
as icmp8/0 2 PROTO and icmp17/0 2 PROTO, with
icmpAll 2 PROTO representing an instance of ICMP for all
valid ICMP Type/Code combinations.

A network packet header is a five-tuple (s, sprt, d, dprt, p),
representing network traffic originating from source IP address
s, with source port number sprt, destined for destination IP
address d, with destination port number dprt, using protocol
p. Let Packet define the set of all packet headers:

Packet == IP ⇥ PORT ⇥ IP ⇥ PORT ⇥ PROTO

A firewall policy defines the packets that may be allowed or
denied by a firewall. Let Policy define the set of all firewall
policies, whereby

Policy == {A,D : PPacket | A \ D = ;}

A firewall policy (A,D) 2 Policy defines that a packet p 2 A
should be allowed by the firewall, while a packet p 2 D should
be denied by the firewall. Given (A,D) 2 Policy then A and D
are disjoint: this avoids any contradiction in deciding whether
a packet should be allowed or dropped. Thus, Policy defines
the set of anomaly-free policies in the sense that they contain
no redundancy, shadowing, or other anomalies [5].

Consider the following network security policy which
we will refer to throughout this section. Client IP ad-
dress 192.168.2.5 is permitted access to a HTTP server at
172.16.1.6 and to a Git server at 172.16.1.5, and all Telnet
traffic to the HTTP server is to be denied. The packets that are
used to define this policy include http

1

, git

1

and tel

1

, where

http

1

== (192.168.2.5, 1025, 172.16.1.6, 80, tcp)
git

1

== (192.168.2.5, 1025, 172.16.1.5, 9418, tcp)
tel

1

== (192.168.2.5, 1025, 172.16.1.6, 21, tcp)

A firewall policy Admin

1

2 Policy allows the HTTP and Git
packets while denying the Telnet traffic:

Admin

1

== ({http

1

, git

1

}, {tel

1

})

Note that (A,D) 2 Policy need not partition Packet: the allow
and deny sets define the packets to which the policy explicitly
applies and an implicit default decision is applied for those
packets in Packet \ (A [D). For the purposes of modeling
OpenStack firewalls it is sufficient to assume default deny,
though we observe that the FW0 can also be used to reason
about default allow firewall policies.

The policy accessor functions allows and denies are analo-
gous to functions first and second for ordered pairs:

allows,
denies : Policy ! PPacket

8 a, d : P Packet •
allows (a, d) = a ^
denies (a, d) = d

Thus, we have for all P : Policy then P =
(allows(P), denies(P)).

a) Policy Refinement: An ordering can be defined over
firewall policies, whereby given P,Q 2 Policy then P v Q
means that P is no less restrictive than Q, that is, any packet
that is denied by Q is denied by P. Intuitively, policy P is
considered to be a safe replacement for policy Q, in the sense
of [7], [8], [12] and any firewall that enforces policy Q can be
reconfigured to enforce policy P without any loss of security.
The set Policy forms a lattice under the safe replacement
ordering and is defined as follows.

FW0

?,> : Policy
v : Policy $ Policy
u , t : Policy ⇥ Policy ! Policy

? = (;,Packet) ^ > = (Packet, ;)
8P,Q : Policy •

P v Q , (allows (P) ✓ allows (Q)) ^
(denies (P)◆ denies (Q)) ^

P u Q = (allows (P) \ allows (Q),
denies (P) [denies (Q)) ^

P t Q = (allows (P) [allows (Q),
denies (P) \ denies (Q))

Formally, PvQ iff every packet allowed by P is allowed by Q
and that any packet explicitly denied by Q is also explicitly de-
nied by P. Note that in this definition we distinguish between
packets explicitly denied in the policy versus packets implicitly
denied by default. This means that, everything else being
equal, a policy that explicitly denies a packet is considered
more restrictive than a policy that relies on the implicit default-
deny for the same packet; we shall see that this distinction is
important when safely extending policies with new rules.

Safe replacement is defined as the cartesian product of
subset orderings over accept and deny sets and it therefore
follows that Policy is a partially ordered set under v. ? and
> define the most restrictive and least restrictive policies, that
is, for any P 2 Policy we have ?vPv>. Thus, for example,
any firewall enforcing a policy P can be safely reconfigured
to enforce the (not very useful) firewall policy ?.

Consider an update to the network security policy in our
running example, where SSH traffic is to be denied to the
HTTP and Git servers from malicious IP $BADIP. Some
packets to be considered as part of this access restriction are
mal

1

and mal

2

, where

mal

1

== ($BADIP, 1025, 172.16.1.6, 22, tcp)
mal

2

== ($BADIP, 1025, 172.16.1.5, 22, tcp)

A firewall policy Admin

2

2 Policy extends the previous policy
Admin

1

to deny these packets from this malicious host:

Admin

2

== ({http

1

, git

1

}, {tel

1

,mal

1

,mal

2

})

We note that Admin

2

safely replaces Admin

1

: Admin

2

v
Admin

1

, but Admin

1

is not a safe replacement for Admin

2

.
b) Policy intersection: Under this ordering, the meet, or

intersection PuQ, of two firewall policies P and Q is defined
as the policy that denies any packet that is explicitly denied
by either P or Q, but allows packets that are allowed by both
P and Q. Intuitively, this means that if a firewall is required
to enforce both policies P and Q then it can be configured to
enforce the policy PuQ, since PuQ is a safe replacement for
both P and Q, that is (PuQ)vP and (PuQ)vQ. Given the
definition of safe replacement as a product of two powerset
lattices it follows that the policy meet provides the greatest
lower bound operator. Thus, P u Q provides the ‘best’/least
restrictive (under v) safe replacement for both P and Q.

Consider a third firewall policy Admin

3

, that permits the
client IP address 192.168.2.5 SSH access to the HTTP
and Git servers in our example, and denies all network
traffic from the client destined for IP $BADIP. The policy
Admin

3

== ({ssh

1

, ssh

2

}, {mal

3

}) enforces these access
restrictions according to packets ssh

1

, ssh

2

and mal

3

, where

ssh

1

== (192.168.2.5, 1025, 172.16.1.6, 22, tcp)
ssh

2

== (192.168.2.5, 1025, 172.16.1.5, 22, tcp)
mal

3

== (192.168.2.5, 1025, $BADIP, 6697, tcp)

We have Admin

2

uAdmin

3

= (;, {tel

1

,mal

1

,mal

2

,mal

3

}), a
safe replacement for both policies Admin

2

and Admin

3

.
c) Policy Union: The join of two firewall policies P and

Q is defined as the policy that allows any packet allowed by
either P or Q, but denies packets that are explicitly denied by
both P and Q. For example, we have Admin

2

t Admin

3

=
({{http

1

, git

1

, ssh

1

, ssh

2

}}, ;). Intuitively, this means that a
firewall that is required to enforce either policy P or Q can be
safely configured to enforce the policy PtQ since t provides
a lowest upper bound operator and we have P v (P t Q) and
Q v (P t Q).

d) Proposition: The set of all policies Policy forms a
lattice under safe replacement. This follows from the definition
of v as a cartesian product of two powerset lattice orderings.

A. Constructing firewall policies

The lattice of policies FW0 provides us with an algebra for
constructing and interpreting firewall polices. The following
constructor functions are used to build primitive policies.

Given a set of packets A then (Allow A) is a policy that
allows packets in A, and (Deny D) is a policy that explicitly
denies packets in D.

Allow,
Deny : PPacket ! Policy

8X : PPacket •
Allow X = (X, ;) ^
Deny X = (;,X)

This provides what we refer to as a weak interpretation of
allow and deny: packets that are not explicitly mentioned in
parameter X are default-deny and therefore not specified in
the deny set of the policy. The following provides us with a
strong interpretation for these constructors:

Allow

+,
Deny

+ : PPacket ! Policy

8X : PPacket •
Allow

+ X = (X,Packet \ X) ^
Deny

+ X = (Packet \ X,X)

In this case (Allow

+ A) allows packets specified in A while
explicitly denying all other packets, and (Deny

+ D) denies
packets specified in D while allowing all other packets.

e) Proposition: A firewall policy P : Policy can be
decomposed into their corresponding allow and deny policies
and re-constructed using the algebra; for any (A,D) 2 Policy,
since A and D are disjoint then

(Allow

+ A) t (Deny D) = (A,Packet \ A) t (;,D)

= (A,D)

= (Allow A) u (Deny

+ D)

Thus, an alternative specification for policy Admin

3

is

Admin

3

== (Allow

+ ({ssh

1

, ssh

2

})
tDeny ({mal

3

})

f) Sequential Composition: Firewall policies are conven-
tionally constructed as a sequence of rules, whereby for a
given network packet, the decision to allow or deny a packet
is checked against each policy rule, starting from the first, in
sequence, and the first rule that matches gives the result that
is returned. The algebra FW0 can be extended to include
a similar form of sequential composition of policies. The
policy constructions above can be regarded as representing
the individual rules of a conventional firewall policy.

Let (Allow A) o

9

Q denote a sequential composition of an
allow rule (Allow A) with policy Q with the interpretation that
a packet that is matched by A is allowed; if it does not match
A then policy Q is enforced. The resulting policy either: allows
packets in A (and denies all other packets), or allows/denies
packets according to policy Q. This is defined as:

(Allow A) o

9

Q = (Allow

+ A) t Q

= ((A [allows(Q)),

((Packet \ A) \ denies(Q)))

= ((A [allows(Q)), (denies(Q) \ A))

which is as expected. A similar definition can be provided for
the sequential composition (Deny D)o

9

Q whereby a packet that
is matched by D is denied; if it does not match D then policy
Q is enforced. This is defined as:

(Deny D) o

9

Q = (Deny

+ D) u Q

= (allows(Q) \ D, denies(Q) [D)

While in practice its usual to write a firewall policy in
terms of many constructions of allow and deny rules, in
principle, any firewall policy P : Policy can be defined in terms
of one allow policy (Allow allows(P)) and one deny policy
(Deny denies(P)) and since the allow and deny sets of P are
disjoint we have Po

9

Q = (Deny denies(P))o
9

(Allow allows(P))o
9

Q. We have

o

9

: Policy ⇥ Policy ! Policy

8FW0; P,Q : Policy •
P o

9

Q = (Q t (Allow

+ (allows(P))))
u(Deny

+ (denies(P)))

Continuing the running example, we give the policy Admin

4

as the sequential composition of Admin

2

and Admin

3

.

Admin

4

== Admin

2

o

9

Admin

3

, where:

({http

1

, git

1

}, {tel

1

,mal

1

,mal

2

}) o

9

({ssh

1

, ssh

2

}, {mal

3

})
= (({ssh

1

, ssh

2

}, {mal

3

})
t({http

1

, git

1

},Packet \ {http

1

, git

1

}))
u(Packet \ {mal

1

,mal

2

, tel

1

}), {mal

1

,mal

2

, tel

1

}))
= ({ssh

1

, ssh

2

, http

1

, git

1

}, {tel

1

,mal

1

,mal

2

,mal

3

})

The policy negation of P : Policy allows packets explicitly
denied by P and explicitly denies packets allowed by P. We
define:

not : Policy ! Policy

8FW0; P : Policy •
not P = (Allow

+ (denies (P)))t
(Deny (allows (P)))

Thus, the negation of policy Admin

4

is

not Admin

4

= (Allow

+ ({tel

1

,mal

1

,mal

2

,mal

3

})t
(Deny ({ssh

1

, ssh

2

, http

1

, git

1

}))

From this definition it follows that (not P) is simply
(denies (P), allows (P)) and thus not (Deny D) = (Allow D)
and not (Allow A) = (Deny A). Note however, that in general
policy negation does not define a complement operator in
the algebra FW0, that is, it not necessarily the case that
(P t not P) = > and (P u not P) = ?.

g) Policy projection: The projection operators @u and
@d filter a policy by a set of IP addresses. Firstly, let alSrc(S)
give the set of all packets that have s 2 S as source IP,
and similarly alDst(D) gives all packets with a destination
IP address d 2 D.

alSrc, alDst : P IP ! PPacket

8 S,D : P IP •
alSrc(S) = S ⇥ PORT ⇥ IP ⇥ PORT ⇥ PROTO ^
alDst(D) = IP ⇥ PORT ⇥ D ⇥ PORT ⇥ PROTO

For a policy P and a set of IP addresses S, P@uS is the
upstream projection of P, and consists of the allow and deny
packets from P where each packet has as source IP some
member of S. Similarly, P@dS is the downstream projection
of P, it consists of the allow and deny packets from P whereby
each packet has as destination IP some member of S.

@u ,
@d : Policy ⇥ P IP ! Policy

8P : Policy; S : P IP •
P @u S = (allows(P) \ alSrc(S), denies(P) \ alSrc(S))
^
P @d S = (allows(P) \ alDst(S), denies(P) \ alDst(S))

B. Firewall policy anomalies

A firewall policy is conventionally constructed as a sequence
of order-dependent rules. When a network packet matches with
two or more policy rules, the policy is anomalous [4]–[6]. By
definition, the allow set and deny set of some P : Policy are

disjoint, and therefore P is anomaly-free by construction. We
can, define anomalies using the algebra, by considering how
a policy changes when composed with other policies.

h) Redundancy: A policy P is redundant given policy Q
if their composition results in no difference between the result-
ing policy and Q, in particular, Po

9

Q = Q. Considering policies
Admin

1

and Admin

2

, we see that Admin

1

is redundant to
Admin

2

since Admin

1

o

9

Admin

2

= Admin

2

. We note that
even though both policies explicitly accept the same packets,
and that Admin

1

denies packets mal

1

and mal

2

by default, it
is not the case that Admin

2

is redundant to Admin

1

.
i) Shadowing: Some part of policy Q is shadowed by

the entire policy P in the composition P o

9

Q if the packet
constraints that are specified by P contradict the constraints
that are specified by Q, in particular, if (not P) o

9

Q = Q.
This is a very general definition for shadowing. Perhaps a
more familiar interpretation of this definition is one where
the policy P is a specific allow/deny rule that shadows a part
or all of the policy with which it is composed. Recall that
(not(Allow A)) = (Deny A) and, for example, in (Allow A) o

9

Q all or part of policy Q is shadowed by the rule/primitive
policy (Allow A) if Q denies the packets specified in A, that
is, (Deny A) o

9

Q = Q. Similarly, in (Deny D) o

9

Q part or all of
policy Q is shadowed by the rule/primitive policy (Deny D)
if (not (Deny D)) o

9

Q = Q.
Further definitions for shadowing may be constructed using

the algebra. For example, an interpretation of the generali-
sation anomaly [4] in the composition P o

9

Q, where Q is a
generalised by P if all of P shadows (specifically) part of Q.
We are currently investigating how other anomalies can be
reasoned about within the algebra.

j) Inter- policy anomalies: Anomalies can also occur
between the different policies of distributed firewalls [5]. In
the following, assume that P is a policy on an upstream
firewall and Q is a policy on a downstream firewall. An inter-
redundancy anomaly exists between policies P and Q if some
part of Q is redundant to some part of P, whereby the target
action of the redundant packets is deny. Given some set of
packets A denied by P, and some set of packets B denied by
Q, if (Deny A) o

9

(Deny B) = (Deny A) then there exists an
inter-redundancy between P and Q.

An inter-shadowing anomaly exists between policies P and
Q if some part of Q’s allows are shadowed by some part of
P’s denies. Given some set of packets A denied by P, and
some set of packets B allowed by Q, if (Deny A)o

9

(Allow B) =
(Deny A), then there is an inter-shadowing anomaly between P
and Q. An inter-spuriousness anomaly exists between policies
P and Q if some part of Q’s denies are shadowed by some
part of P’s allows. Again, given some set of packets A allowed
by P, and some set of packets B denied by Q, if (Allow A) o

9

(Deny B) = (Allow A), then there exists an inter-spuriousness
anomaly between P and Q.

III. OPENSTACK FIREWALL POLICIES

In this section the algebra is used to encode the network
and host-based access controls available in OpenStack. The

OpenStack Networking service, called Neutron, is a standalone
API-centric networking service. In general, the OpenStack
networking configuration for a deployment will be segmented
into four physical data center networks, as part of three distinct
security domains. The Management network is used for inter-
communication between OpenStack services, and is consid-
ered the Management Security Domain. The API network is
used by tenants to access OpenStack API’s, and is considered
the Public Security Domain. The External network, also in the
Public Security Domain, is used by virtual machines (VMs)
for Internet access. The Guest network is used for instance-
to-instance communication between VMs, and is considered
the Guest Security Domain. In this paper, we focus on host-
based and network access controls within the Guest Security
Domain. These controls consist of perimeter firewall policies
and Neutron security groups.

A. Perimeter firewall policies

Firewall-as-a-Service (FWaaS) adds perimeter firewall man-
agement to an OpenStack project by filtering traffic at the
Neutron router. It is implemented as a sequence of iptables
rules, where a default-deny policy is enforced. One firewall
policy is supported per project, whereby the policy is applied
to all networking routers within the project [2]. FWaaS is
currently considered an experimental feature of OpenStack
Networking [3]. A FWaaS rule can be constructed using the
OpenStack Neutron command-line client:

neutron firewall-rule-create
--source-ip-address $s
--source-port $sprt
--destination-ip-address $d
--destination-port $dprt
--protocol $p
--action $act

The source ($s) and destination ($d) IP fields may be given
as a single IP address/an IP address block (CIDR), the source
($sprt) and destination ($dprt) ports may be specified as single
port values or ranges. The protocol ($p) field may be given
as TCP/UDP/ICMP/Any, and the action field ($act) specifying
the access decision, may be given as allow/deny.

A FWaaS policy is a sequence of allow and/or deny rules
defined over packet filter conditions. Let FC define the set of
all FWaaS filter conditions

FC == P IP ⇥ PPORT ⇥ P IP ⇥ PPORT ⇥ PPROTO

whereby a filter condition (s, sprt, d, dprt, p) 2 FC matches a
network packet that has a source IP address in s, originating
from a source port in sprt, destined for destination IP in d,
with destination port from dprt, using a protocol from p. A
FWaaS rule defines an action (allow or deny) for a given filter
condition. Let Rule define the set of all FWaaS rules where

Rule ::= allow hhFCii
| deny hhFCii

Let flatten(f) define the flattening of a FWaaS filter condition
f 2 FC into an equivalent set of individual packets, where

flatten : FC ! PPacket

8 s, d : P IP; sprt, dprt : PPORT; p : PPROTO •
flatten(s, sprt, d, dprt, p) = s ⇥ sprt ⇥ d ⇥ dprt ⇥ p

k) Proposition: It follows from its definition that the
flattening function defines an isomorphism between firewall
filter conditions FC and PPacket. This proposition means that
any FWaaS allow rule (allow f) 2 Rule has a corresponding
unique representation (Allow flatten(f)) in the policy algebra
and vice-versa. With a similar result for FWaaS deny rules,
we can define a FWaaS interpretation function as

I : Rule ! Policy

8 f : FC •
I(allow f) = (Allow (flatten (f))) ^
I(deny f) = (Deny (flatten (f)))

A FWaaS firewall policy is defined as a sequence of rules
hr1, r2, . . . , rni for ri 2 Rule, and is encoded in the policy
algebra as I(r1) o

9

I(r2) o

9

. . . o

9

I(rn).

B. Security group policies

A security group policy is a container for IP filter rules.
Traditionally, security group capabilities were managed as part
of the OpenStack Compute service, called Nova, and were
instance-based. In Neutron, security groups are virtual inter-
face port based. When utilizing Neutron as part of an Open-
Stack deployment, best practice [3] stipulates that security
group capabilities be disabled in Nova, due to both possible
conflicting policies, and also the more powerful capabilities of
Neutron security groups. Security group rules allow admin-
istrators/tenants the ability to specify the type and direction
of traffic that is allowed to pass through a virtual interface
port. When a port is created in Neutron it is associated with
a security group. If no security group is specified, a ‘default’
security group is assigned. This default group will drop all
ingress traffic except that traffic originating from the default
group, and allow all egress [3]. Rules may be added/removed
to/from any security group by a tenant/administrator to change
the default behaviour. A security group rule can be constructed
using the OpenStack Neutron command-line client:

neutron security-group-rule-create
--direction $dir
--port-range-min $min
--port-range-max $max
--remote-ip-prefix $rsrc
--remote-group-id $rsrc
--protocol $p
SECURITY GROUP

The direction field ($dir) is specified as ingress/egress. The
remote source ($rsrc) may be given as an IP address/an IP
address block (CIDR) using the remote IP prefix, or as a

Neutron security group using the remote group id. Selecting
a security group as the remote source will allow access
to/from any instance in that security group, depending on
the value specified in the direction field. The destination port
($min, $max) may be given as a single port/port range. The
protocol field ($p) may be specified as TCP/UDP/ICMP/Any.
Additionally, when specifying a rule with an ICMP protocol,
given that ICMP does not support ports, the specific ICMP
Type/Code may be given in place of the destination port. The
SECURITY GROUP attribute specifies as to which security
group to which this rule applies. Note that there are additional
parameters that may be provided as command-line arguments,
however the above are sufficient for our purposes.

A security group policy is a sequence of filter conditions
that define the packets to be accepted relative to the members
of the security group. Network traffic may flow to and from
a security group, as defined by direction:

Dir ::= ingress | egress

Let FCSG define the set of all security group filter conditions:

FCSG == P IP ⇥ Dir ⇥ P IP ⇥ P PORT ⇥ P PROTO

A security group filter condition (sgm, dir, rsrc, dprt, proto) 2
FCSG specifies that for all members sgm of the security
group to which the rule belongs, network traffic is permitted
in direction dir to/from remote-source rsrc (depending on
direction dir), to destination ports dprt, using protocols p.

A security group filter condition f can be mapped to the set
of packets flattensg (f) that it matches, whereby

flattensg : FCSG ! P Packet

8 sgm, rsrc : P IP; prt : PPORT; p : PPROTO •
flattensg(sgm, egress, rsrc, prt, p)
= sgm ⇥ PORT ⇥ rsrc ⇥ prt ⇥ p ^

flattensg(sgm, ingress, rsrc, prt, p)
= rsrc ⇥ PORT ⇥ sgm ⇥ prt ⇥ p

If the direction attribute is ingress then the filter condi-
tion constrains packets coming from the remote source and
destined to the members of the security group; if direction
attribute is egress then the filter condition constrains packets
coming from members of the security group (source) and
destined to the remote resource. A security group rule is
simply an allow action on its filter condition:

Is : FCSG ! Policy

8 f : FCSG •
Is (f) = (Allow (flattensg (f)))

A security group policy is written as a sequence of security
group rules hr1, r2, . . . , rni where each ri 2 FCSG and is en-
coded in the policy algebra as Is (r1)o9Is (r2)o9. . .o9Is (rn). Note
that in this encoding it is assumed that each rule in the original
policy has the same membership, that is, group(ri) = group(rj)
for all rules ri and rj in the policy where group(r) gives the
group in the rule/filter condition r.

IV. REASONING ABOUT OPENSTACK HOST CONTROLS

Continuing the running example, consider a company that
migrated platforms and services to an on-premises OpenStack
deployment. The deployment hosts both a development and a
production cloud for the Web-service provided by the company
and the code revision control systems for the Web-service.
These two private clouds are defined as independent Open-
Stack projects/tenants as depicted in Figure 1. System Admin-
istrator Bob manages the network access controls (NAC) for
both the development and production clouds. In the following
subsections, a partial extract of the security group and FWaaS
rules enforced in cloud deployment are examined.

Fig. 1. Guest and External Network Architecture

A. Reasoning about security groups
Bob creates a security group policy Git

SG1

within the
development cloud to manage the type of traffic permitted
to/from the code revision control server. sgm

1

denotes the set
of IP addresses for the members of this security group. Bob
begins to add rules git

1

, git

2

, for ICMP ping for each member
of the dev/tester subnet to allow developers and testers to ping
the Git server in the development cloud.

git

1

= ({192.168.1.3}, ingress, sgm

1

,
PORT, {icmp8/0})

git

2

= ({192.168.1.4}, ingress, sgm

1

,
PORT, {icmp8/0})

Git

SG1

= Is (git

1

) o

9

Is (git

2

)

Bob finds this tedious and decides to simply add a rule git

3

that
allows all inbound ICMP traffic from the dev/tester subnet.

git

3

= ({192.168.1.0/24}, ingress, sgm

1

,
PORT, icmpAll)

Git

SG2

= Git

SG1

o

9

Is (git

3

)

In doing so, however, git

1

and git

2

are now redundant to git

3

,
(Is (git

1

) o

9

Is (git

2

)) o

9

Is (git

3

) = Is (git

3

).
Rule git

4

is introduced to allow all developers and testers
access to the code revision control system (Git) in the devel-
opment cloud, where:

git

4

= ({192.168.1.0/24}, ingress, sgm

1

,
{9418}, {tcp})

Git

SG3

= Git

SG2

o

9

Is (git

4

)

Cross-tenant access is required for source code replication,
therefore Bob must ensure that rsync via SSH is permitted
from the Git server in the development cloud to the Git server
in the production cloud. To do so, he introduces rule git

5

,
where:

git

5

= (sgm

1

, egress, {172.16.1.7}, {22}, {tcp})
Git

SG4

= Git

SG3

o

9

Is (git

5

)

Bob creates the security group policy Web

SG

to manage
the accesses to/from the Web-service load balancer in the
development cloud. Let sgm

2

denote the set of IP addresses
for the members of this security group. Bob adds rules to allow
HTTP traffic from the developers and testers (web

1

), and from
the administrators (web

2

), where:

web

1

= ({192.168.1.0/24}, ingress, sgm

2

, {80}, {tcp})
web

2

= ({192.168.2.0/24}, ingress, sgm

2

, {80}, {tcp})
Web

SG

= Is (web

1

) o

9

Is (web

2

)

The security group policy DB

SG

is created by Bob to
manage accesses to/from the Web-service data tier in the
development cloud. The literal sgm

3

denotes the set of IP
addresses for the members of this security group. He adds
the rule db

1

to allow all inbound traffic from members of the
Web

SG

group to MySQL port 3306.

db

1

= (sgm

2

, ingress, sgm

3

, {3306}, {tcp})
DB

SG

= Is (web

1

)

The development cloud enforces the security group policies
Git

SG4

,Web

SG

and DB

SG

. Recall that a security group policy
is a container for allow rules managing the access to/from
the security group, and that each security group policy in a
cloud deployment is enforced independent of the other security
group policies. Thus, the overall security group policy is the
union of the individual policies:

Dev

SG

= Git

SG4

t Web

SG

t DB

SG

B. Reasoning about FWaaS firewalls

As part of the configuration, Bob must also ensure the
appropriate traffic traverses the perimiter firewall at the edge
router of the development cloud. He therefore enforces FWaaS
policy Dev

FW1

and begins to add some rules.

dev

1

= deny ({172.16.1.5},PORT, IP, {22}, {tcp})
dev

2

= allow ({172.16.1.5},PORT, IP, {22}, {tcp})
Dev

FW1

= I (dev

1

) o

9

I (dev

2

)

Bob mistakenly introduces rule dev

1

, creating a shadowing
anomaly of rule dev

2

, that is, not (I (dev

1

)) o

9

I (dev

2

) =
I (dev

2

), whereby the logical traffic flow is broken between
the code revision control systems in the development and
production clouds.

Rule dev

3

ensures the developers and testers are permitted
to ping the Git server in the development cloud.

dev

3

= allow ({192.168.1.0/24},PORT, {172.16.1.5},
PORT, icmpAll)

Dev

FW2

= Dev

FW1

o

9

I (dev

3

)

The rule dev

4

permits unwanted Telnet traffic to the Git server,
thereby allowing spurious traffic into the development cloud,
where:

dev

4

= allow ({192.168.1.0/24},PORT, {172.16.1.5},
{21}, {tcp})

Dev

FW3

= Dev

FW2

o

9

I (dev

4

)

Recall that all traffic entering the development cloud must
traverse the development cloud perimeter firewall, and that
the policy defining the complete set of internal accesses for
the cloud is given as Dev

SG

. Thus, the policy constraining
accesses for traffic from upstream firewall Dev

FW3

to down-
stream composite security groups Dev

SG

is calculated as:

Pol

IN

DEV

= Dev

SG

@d (sgm

1

[sgm

2

[sgm

3

[floatIP)o
9

Dev

FW3

@d (sgm

1

[sgm

2

[sgm

3

[floatIP)

where floatIP is the set of floating IP addresses used by the
tenant. Note that all security group members are included since
(at the time of writing) FWaaS applies to all routers within a
tenant, not just to the perimeter.

l) The production cloud firewall: Bob must also ensure
the configuration is correct for the production cloud perimiter
firewall Prod

FW1

.

prod

1

= deny ({$BADIP},PORT, IP, {80}, {tcp})
Prod

FW1

= I (prod

1

)

Rule prod

1

denies HTTP traffic to the production Web servers
from the known malicious IP range $BADIP.

prod

2

= allow ({172.16.1.5},PORT, {172.16.1.7},
{22}, {tcp})

Prod

FW2

= Prod

FW1

o

9

I (prod

2

)

Rule prod

2

is introduced by Bob to ensure the rsync via
SSH between the code revision control systems in the de-
velopment and production clouds is permitted. However, the
problematic rule dev

1

in the development cloud firewall, has
also caused a shadowing anomaly between the two perimeter
firewalls (not (I (dev

1

)) o

9

I (prod

2

) = I (prod

2

)), whereby
the the development cloud firewall is denying traffic from the
development Git server to the Git server in the production
cloud, while the rule prod

2

of the production cloud firewall
is permitting the traffic.

prod

3

= allow (IP,PORT, IP, {80}, {tcp})
Prod

FW3

= Prod

FW2

o

9

I (prod

3

)

Bob introduces prod

3

to allow all other HTTP traffic to the
Web-service load balancer. The rule prod

3

is generalised by
the rule at prod

1

, as prod

1

partially shadows prod

3

.
m) Production cloud Git security group: In the produc-

tion cloud, Bob creates security group Git2

SG

to manage the
type of traffic permitted to/from the production code revision
control server. The literal sgm

4

denotes the set of IP addresses
for the members of this security group. Rule git

p

1

is introduced
to allow all developers and testers access to the code revision
control system (Git) in the production cloud, where:

git

p

1

= ({192.168.1.0/24}, ingress, sgm

4

,
{9418}, {tcp})

Git2

SG

= Is (git

p

1

)

The rule git

p

2

, intended to ensure rsync via SSH between the
code revision control systems in the development and produc-
tion clouds is permitted, is inter-shadowed by the upstream
rule dev

1

of the development cloud perimiter firewall, where:

git

p

2

= ({172.16.1.5}, ingress, sgm

4

, {22}, {tcp})
Git2

SG2

= Git2

SG

o

9

Is (git

p

2

)

Recall Pol

IN

DEV

which provided a policy about traffic travers-
ing the perimeter firewall for the development cloud to the
composite security group. A similar policy can be given for
the traffic traversing the perimeter firewall of the production
cloud destined to the security group within the production
cloud. Further definitions can be given about policies on traffic
leaving the respective clouds. These in turn can be composed
to give a policy that is effectively about the rsync via ssh
for the code revision systems in the development cloud to the
production cloud.

V. POLICIES OVER IP AND PORT RANGES

The proposed algebra provides a semantics for firewall
policies. While useful for the purposes of reasoning, it is not
efficient to naively implement the algebra since a policy is
defined in terms of rules constraining individual IP addresses
and ports. For example, a policy constraining access from a
subnet range 192.168.*.* involves more than 65K indi-
vidual packet rules, whatever about the impact of combining
these with further constraints on destination IPs and ports.
In practice, firewall rules are defined in terms of ranges of
IP addresses and ports. The policy algebra FW I defines a
firewall policy in terms of rules constraining ranges of IP
addresses and ports. Extending the policy algebra to include
ranges is a non-trivial revision to FW0, as is illustrated using
the following example.

Suppose that a policy is defined in terms of (allow and
deny) sets of IP address and port ranges, where we use natural
numbers to represent individual IP addresses and ports. For
example, the policy

P1 = ({([1 . . 3], [1 . . 3], [1 . . 3], [1 . . 3], {tcp})}, ;)

has no deny constraints (;) and has one accept rule that permits
any packet matching ([1 . . 3], [1 . . 3], [1 . . 3], [1 . . 3], {tcp})

(ranges of source and destination IP addresses and ports, and
protocols). A second policy is similarly defined:

P2 = ({([2 . . 4], [2 . . 4], [2 . . 4], [2 . . 4], {tcp})}, ;)

In composing these policies under a lowest-upper-bound style
operation one cannot simply take a union of the sets of
intervals as in some cases they may coalesce and in other
cases they may partition into a number of disjoint intervals.
The composition of the above policies, result in the following
policy.

P1 t P2 = ({([1 . . 4], [2 . . 3], [2 . . 3], [2 . . 3], {tcp}),
([1 . . 3], [1], [1 . . 3], [1 . . 3], {tcp}),
([2 . . 4], [4], [2 . . 4], [2 . . 4], {tcp}),
([1 . . 3], [2 . . 3], [2 . . 3], [1], {tcp}),
([1 . . 3], [2 . . 3], [1], [1 . . 3], {tcp}),
([2 . . 4], [2 . . 3], [2 . . 3], [4], {tcp}),
([2 . . 4], [2 . . 3], [4], [2 . . 4], {tcp})}, ;)

VI. RELATED WORK

In this section, we examine a selection of related research
from the perspective of firewall policy modelling, firewall
configuration analysis and firewall/security policy composi-
tion/refinement.

Much work has been completed in area of firewall configu-
ration analysis, and various types of firewall policy model have
been proposed. In [4], a firewall policy is modelled as a single
rooted tree. Relations between rules are defined on a pairwise
basis, and definitions for firewall configuration anomalies are
provided. In [5], the work is extended to distributed firewall
policies. In [6], a firewall policy is modelled as a linked-list,
and in [10] rule relations within a policy are modelled in a di-
rected graph. In [11], [16] Binary Decision Diagrams (BDDs)
are used to model firewall rulesets. Concerning configuration
analysis, in [4]–[6], [10], [16] an algorithmic approach is taken
to detect/resolve anomalies.

Our work differs from these, firstly, in that we model a
firewall policy as an ordered pair of disjoint sets, where the
set of policies Policy forms a lattice under v, and each P 2
Policy is anomaly-free by construction. Secondly, we regard
as a novel aspect of our work, the algebraic (as opposed to
algorithmic) approach taken towards modelling anomalies in
a single policy, and across a distributed policy configuration
through policy composition.

In [17], a firewall policy algebra is proposed. However,
the authors note that an anomaly-free composition is not
guaranteed as a result of using the algebraic operators they
define. Our work differs, in that policy composition under the
t,u and o

9

operators defined in this paper all result in anomaly-
free policies.

In [13], a process algebraic approach for the migration of
VMs and related packet-filter firewall policies is presented.
The algebra, called cloud calculus, is used to capture the topol-
ogy of cloud computing systems and the global firewall policy
for a given configuration. We would view our work presented
in this paper as a possible extension of the work in [13], given

that the FW0 algebra may be used in conjuction with cloud
calculus to guarantee anomaly-free dynamic firewall policy
reconfiguration. We would also view the ordering relation v as
a viable alternative for the given equivalence relation defined
over ‘cloud’ terms for the formal verification of firewall policy
preservation after a live migration.

VII. CONCLUSION

A policy algebra FW0 is defined in which firewall policies
can be specified and reasoned about. At the heart of this
algebra is the notion of safe replacement, that is, whether
it is secure to replace one firewall policy by another. The
set of policies form a lattice under safe replacement and
this enables consistent operators for safe composition to be
defined. Policies in this lattice are anomaly-free by construc-
tion, and thus, composition under greatest lower and lowest
upper bound operators preserves anomaly-freedom. A policy
sequential composition operator is also proposed that can be
used to interpret firewall policies defined more conventionally
as sequences of filter condition rules. The algebra can be used
to characterize anomalies, such as shadowing and redundancy,
that arise from sequential composition.

The algebra FW0 provides a formal interpretation of the
host-based and network access controls in OpenStack. In
particular, it gives a meaning for OpenStack security group
policies and perimeter firewalls. This provides us with a
uniform notation to define and reason about different kinds
policies in OpenStack. For example, reasoning over combi-
nations of perimeter firewall and security group policies to
ensure that modifications are safe (replacements) and checking
for heterogenous inter-policy anomalies.

The results in this paper are described in terms of the algebra
FW0 for stateless firewall policies. As outlined in Section V,
supporting stateful policies defined in terms of constraints on
ranges of IPs and ports requires a more expressive algebra.
While this algebra FW I is not described in this paper for
reasons of space, it has been been implemented in Python and
can be used to model and reason about OpenStack policies in
a manner similar to FW0.

ACKNOWLEDGEMENTS

This research has been supported in part by by Sci-
ence Foundation Ireland grants SFI 10/CE/I1853 and
SFI 13/RC/2077.

REFERENCES

[1] Openstack - Open source software for creating private and public clouds.
https://www.openstack.org/, Website last accessed, July 2015.

[2] OpenStack Cloud Administrator Guide, Eight Revision. OpenStack
Foundation, February 2015.

[3] OpenStack Security Guide, 6th Revision. OpenStack Foundation, April
2015.

[4] E. Al-Shaer and H. Hamed. Firewall Policy Advisor for Anomaly
Discovery and Rule Editing. In Integrated Network Management, 2003.
IFIP/IEEE Eighth International Symposium on, pages 17–30, 2003.

[5] E. Al-Shaer, H. Hamed, R. Boutaba, and M. Hasan. Conflict classi-
fication and analysis of distributed firewall policies. IEEE J.Sel. A.
Commun., 23(10):2069–2084, September 2006.

[6] F. Cuppens, N. Cuppens-Boulahia, and J. Garcia-Alfaro. Detection
and removal of firewall misconfiguration. In Proceedings of the 2005
IASTED International Conference on Communication, Network and
Information Security, volume 1, pages 154–162, 2005.

[7] S.N. Foley. A model for secure information flow. In IEEE Symposium
on Security and Privacy, May 1989.

[8] S.N. Foley. The specification and implementation of commercial
security requirements including dynamic segregation of duties. In ACM
Conference on Computer and Communications Security, 1997.

[9] S.N. Foley and U. Neville. An algebra for iptables firewall policies.
Technical report, in preparation, University College Cork, Ireland, 2015.

[10] A. Hari, S. Suri, and G. Parulkar. Detecting and resolving packet filter
conflicts. In INFOCOM 2000. Nineteenth Annual Joint Conference of
the IEEE Computer and Communications Societies. Proceedings. IEEE,
volume 3, pages 1203–1212. IEEE, 2000.

[11] S. Hazelhurst, A. Fatti, and A. Henwood. Binary decision diagram
representations of firewall and router access lists. Department of
Computer Science, University of the Witwatersrand, Tech. Rep, 1998.

[12] J.L. Jacob. The varieties of refinement. In J. M. Morris and R. C. Shaw,
editors, Proceedings of the 4th Refinement Workshop, pages 441–455.
Springer-Verlag, 1991.

[13] Y. Jarraya, A. Eghtesadi, M. Debbabi, Y. Zhang, and M. Pourzandi.
Cloud calculus: Security verification in elastic cloud computing plat-
form. In Waleed W. Smari and Geoffrey Charles Fox, editors, CTS,
pages 447–454. IEEE, 2012.

[14] J. M. Spivey. The fuzz manual. Computing Science Consultancy, 1992.
[15] J. M. Spivey. The Z Notation: A Reference Manual. Series in Computer

Science. Prentice Hall International, second edition, 1992.
[16] L. Yuan, J. Mai, Z. Su, H. Chen, C. Chuah, and P. Mohapatra. Fireman:

A toolkit for firewall modeling and analysis. In Proceedings of the
2006 IEEE Symposium on Security and Privacy, SP ’06, pages 199–
213, Washington, DC, USA, 2006. IEEE Computer Society.

[17] H. Zhao and S. M. Bellovin. Policy algebras for hybrid firewalls.
Technical Report CUCS-017-07, Columbia University, 2007.

APPENDIX

A set may be defined in Z using set specification in
comprehension. This is of the form {D | P • E }, where D
represents declarations, P is a predicate and E an expression.
The components of {D | P • E } are the values taken by
expression E when the variables introduced by D take all
possible values that make the predicate P true. For example,
the set of squares of all even natural numbers is defined as
{ n : N | (n mod 2) = 0 • n2 }. When there is only one
variable in the declaration and the expression consists of just
that variable, then the expression may be dropped if desired.
For example, the set of all even numbers may be written as
{ n : N | (n mod 2) = 0 }. Sets may also be defined in display
form such as {1, 2}.

In Z, relations and functions are represented as sets of pairs.
A (binary) relation R, declared as having type A $ B, is a
component of P(A ⇥ B), where PX is the powerset of X. For
a 2 A and b 2 B, then the pair (a, b) is written as a 7! b,
and a 7! b 2 R means that a is related to b under relation R.
Functions are treated as special forms of relations. The schema
notation is used to structure specifications. A schema such as
FW0 defines a collection of variables (limited to the scope of
the schema) and specifies how they are related. The variables
can be introduced via schema inclusion, as done, for example,
in the definition of sequential composition.

