Authorisation Subterfuge by Delegation in
Decentralised Networks

Simon Foley and Hongbin Zhou

Department of Computer Science,
University College, Cork, Ireland.
s.foley@cs.ucc.ie, zhou@cs.ucc.ie

1 Introduction

Trust Management [1,4, 10] is an approach to constructing and interpreting the
trust relationships among public-keys that are used to mediate security-critical
actions. Cryptographic credentials are used to specify delegation of authorisa-
tion among public keys. Existing trust management schemes are operational in
nature, defining security in terms of specific controls such as delegation chains,
threshold schemes, and so forth.

However, Trust Management approaches tend not to consider whether a par-
ticular authorisation policy is well designed in the sense that a principle can-
not somehow bypass the intent of a complex series of authorisation delegations
via some unexpected circuitous route. In an open system no individual has a
complete picture of all the resources and services that are available. Unlike the
administrator who ‘sees everything’ in a traditional closed system, the princi-
pals of an open system are often ordinary users and are open to confusion and
subterfuge when interacting with resources and services. These users may inad-
vertently delegate un-intended authorisation to recipients.

In this paper we introduce the problem of authorisation subterfuge, whereby,
in a poorly designed system, delegation chains that are used by principals to
prove authorisation may not actually reflect the original intention of all of the
participants in the chain.

2 Authorisation Subterfuge

2.1 Delegation of Authorisation

A simple model is used to represent delegation of authorisation between pub-
lic keys. A signed credential, represented as { Kp,p [} ,, indicates that Ka
delegates to K g, the authorisation permission p. Permissions are structured in
terms of lattice (PERM,<,M), whereby given p < ¢ means that permission ¢
provides no less authorisation than p. A simple example is the powerset lattice of
{read, write}, with ordering defined by subset, and greatest lower bound defined
by intersection.

Given a credential {| Kp,q [} -, and p < g then there is an implicit delegation
of p to K by Ka, written as (Kp,p|) g ,. Two reduction rules follow.

{|KBap|}KA (IKB7pDKA7pl§p
(Kp:p)g, (KB 0 D,

If delegation is regarded as transitive, and if K4 delegates p to Kp, and Kp
delegates p to K¢, then it follows that K4 implicitly delegates p to K¢.

(l KC?Z)DKBW(‘ KBap/ DKA
(|KCapmp/ DKA

This corresponds to SPKI certificate reduction [4] (greatest lower bound is equiv-
alent to SPKI tuple intersection). It is not unlike a partial evaluation over a
collection of KeyNote credentials, resulting in another credential. At this point,
we do not consider permissions that cannot be further delegated.

2.2 Incompetence in Delegation

Bob (represented as public key Kp) holds credential Cy = {| K, buy100 [}
reflecting an authorisation to make purchases for his organisation (K4) up to
a limit of €100. Bob delegates this authority to another staff member Clare by
signing {| K¢, T [}, where T represents the highest value in the permission
ordering and K¢ is a public key owned by Clare. Bob believes that this is a
reasonable strategy as,on the basis of his view of the world, certificate reduction
gives (| Kc,buy100), (and no more).

In this case, Bob’s delegation strategy is incompetent as in an open system
it fails the principle of least privilege. Bob does not consider the possibility
of the existence of other certificates, for example, { Kp,buy1000 [}, ~(where
buy100 < buy1000), indirectly authorising Clare for purchases up to €1, 000
(and possibly unknown to Bob). Thus, when writing delegation certificates one
must be careful to exactly specify the desired permission and no more. Bob
should have signed Cz = {| K¢, buy100 [} ;- .. An implication of this is that a sys-
tematic naming scheme for permissions becomes critical in ensuring the principle
of least privilege. For example, Keynote suggests a global registration scheme (for
example, IANA /ICANN) to ensure uniqueness of permission attributes.

2.3 Confusion in Delegation

Continuing the example above, suppose that Bob also works for an organi-
sation with public key Kz and is unaware of the existence of the certificate
C3 = {| Kp,buy100 [} ;- . Bob signs certificate C2 = {| K¢, buy100 [}, as rec-
ommended, believing that the resulting certificate chain (with K4 — Kp — K¢)
provides the appropriate buy100 authorisation for Clare (as an employee of K 4).
Unknown to Bob, Clare could use certificate C3 to provide an alternative chain
Kz — Kp — K¢ as proof of authorisation for buy100.

This confusion may introduce problems if the certificate chains that are used
to prove authorisation are also used to determine who should be billed for the
transaction. Bob believes the chain K4 — Kp — K¢ provides the appropriate

accountability for Clare’s authorisation; his view of the world has not considered
the existence of C'5. In this case we think of Bob as more confused in his delega-
tion actions rather than incompetent; the permission naming scheme influences
his local beliefs and it was the inadequacy of this scheme that led to the con-
fusion. Perhaps Bob has too many certificates to manage and in the confusion
looses track of which permissions should be associated with which keys.

Such inadequacies can lead to vulnerabilities when certificate chains are used
to provide evidence of accountability for an authorisation. For example,

— Kz, collaborating with K¢ conceals {| Kp,buy100 |}Kz from Kp so that
Clare can order from an unintended supplier (authorised via Kz).

— Kz conceals {| Kp,buy100 [}, from Kp and K¢ and then, unknown to
Clare, cut-and-pastes certificate chain [Cy; Cs] from Clare to [Cs; Ca].

— Kz, collaborating with K 4 conceals {| Kp,buy100 [} ;- to facilitate plausible
deniability (for K 4) on the validity of an order. A third party cannot confirm
the intent of the original delegation, viz, whether it should be billed to K 4
or Kz.

Certificate chains have been used in the literature to support degrees of ac-
countability of authorisation, for example, [3,8,2]. The micro-billing scheme [3]
uses KeyNote to help determine whether a micro-check (a KeyNote credential,
signed by a customer) should be trusted and accepted as payment by a merchant.
In [8], delegation credentials are used to manage the transfer of micropayment
contracts between public keys; delegation chains provide evidence of contract
transfer and ensure accountability for double-spending. These systems are vul-
nerable to authorisation subterfuge (leading to a breakdown in accountability)
if care is not taken to properly identify the ‘permissions’ indicating the payment
authorisations when multiple banks and/or provisioning agents are possible.

2.4 Dishonesty in Delegation

Bob has a legitimate expectation that so long as he delegates competently then
he should not be liable for any confusion that is a result of poor permission
design. Bob can use this view to act dishonestly. In signing a certificate he can
always deny knowledge of the existence of other certificates and the inadequacy
of permission naming in order to avoid accountability. While Bob secretly owns
company Kz, he claims that he cannot be held accountable for the ‘confusion’
when Clare (an employee of K 4) uses the delegation chain Ky — Kp — K¢ to
place her order.

3 What’s in a Name?

A number of ad-hoc strategies can be used to avoid the problems of incompe-
tence, confusion and dishonesty. One strategy would be to ensure that Bob had
different roles (public keys) corresponding to the different organisations (K 4 and

K7) that he works for. This assumes competence on Bob’s part to ensure he is
in the right role when delegating authorisation.

Another strategy would be to ensure that each permission is sufficiently de-
tailed to avoid ambiguity. For example, including a company name as part of
the permission { K, <OrgA:buy100> [} - may help avoid the vulnerabilities in
the particular example above. However, at what point can a principal be sure
that a reference to a permission is sufficiently complete? Achieving this requires
an ability to be able to fix a permission within a global context, that is, to have
some form of global identifier and/or reference for the permission.

In addition to global uniqueness, it is preferable that permission identi-
fiers also be non-transient. Including just a globally unique organisation name
within a permission may not be sufficient. Organisation names and their own-
ership can change. For example, the domain name registration mishap con-
cerning panix.com [11] may result in subterfuge when delegating permission
<panix.com:buy100>.

In Trust Management frameworks such as KeyNote and SPKI/SDSI, public
keys provide globally unique identifiers that are tied to the owner of the key.
These can also be used to avoid permission ambiguity within delegation chains.
For example, given { Kp, <K 4:buy100> |}KA there can be no possibility of sub-
terfuge when Bob delegates authority to Clare with {| K¢, <K :buy100> [} .
In this case the certificate makes the intention of the delegation very clear and
provides accountability in the delegation chain for the authorisation held by
Clare.

Needless to say that this strategy does assume a high degree of competence on
Bob’s part to be able to properly distinguish between permissions <K 4 : buy100>
and <Kz :buy100>, where, for example, each public key could be 342 characters
long (using a common ASCII encoding for a 2048 bit RSA key). One might be
tempted to use SDSI-like local names to make this task more manageable for
Bob. However, in order to prevent subterfuge, permissions require a name that is
unique across all name spaces where it will be used, not just the local name space
of Bob. In Bob’s local name space the permission <(Bob’s Alice) :buy100> may
refer to a different Alice to the Alice that Clare knows.

Another possible source of suitable identifiers is a global X500-style naming
service (if it could be built) that would tie global identities to real world entities,
which would in turn be used within permissions. However, X500-style approaches
suffer from a variety of practical problems [5] when used to keep track of the
identities of principals. In the context of subterfuge, a principal might easily be
confused between the (non-unique) common name and the global distinguished
name contained within a permission that used such identifiers.

One practical difficulty when relying on public keys as global identifiers is that
their use is often transitory. A public key serves as an identifier (for its owner)
for as long as the key is regarded as valid. If the (private) key is compromised,
or if the owner decides to re-key then authorisation certificates will have to be
re-issued by all participants on delegation chains involving the permission. If K 4
re-keys to K4, and issues a new certificate { Kpg, <K', :buy100> |}K,A then Bob

(and everyone else) will have to issue new certificates {| K, <K’y :buy100> [}z ,
and so forth. This is contrary to the trust management strategy [10] whereby
role memberships can be maintained independent of the permissions that are
delegated to them. This contrasts with the use of X500-like global names. In
this case, we assume that the name is non-transitory while the key is transitory.
A re-keying results in the issuing of a new identity certificate. The owner uses
their new key to re-issue existing authorisation certificates, whose permissions
refer to the name of the principal rather than the public key. Other authorisation
certificates signed by other principals remain valid as their permissions are based
on non-transitory global names rather than transitory keys.

4 Conclusion

In this paper we described how poorly characterised permissions within crypto-
graphic credentials can lead to authorisation subterfuge during delegation oper-
ations. This subterfuge results in a vulnerability concerning the accountability of
the authorisation provided by a delegation chain: does the delegation operations
in the chain reflect the true intent of the participants?

The challenge here is to ensure that permissions can be referred to in a man-
ner that properly reflects their context. Since permissions are intended to be
shared across local name spaces then their references must be global in nature.
In the paper we discuss some ad-hoc strategies to ensure globalisation of per-
missions. In particular, we consider the use of global name services and public
keys as the sources of global identifiers. In general we are interested in system-
atic ways of determining whether a particular delegation scheme using particular
permissions is sufficiently robust to be able to withstand attempts at subterfuge.
For the example above, Bob would like to know whether is is safe for him to
delegate permission <panix.com:buy100> to Clare.

Trust Management, like many other protection techniques, provide opera-
tions that are used to control access. As with any protection mechanism the
challenge is to make sure that the mechanisms are configured in such a way
that they ensure some useful and consistent notion of security. We would like
some assurance that a principal cannot bypass security via some unexpected but
authorised route. It is argued in [6] that verifying whether a particular configu-
ration of access controls is effective can be achieved by analysing its consistency,
that is, whether it is possible for a malicious principle to interfere with the the
normal operation of the system. This type of analysis [7, 9] is not unlike the anal-
ysis carried out on authentication protocols. In the case of mechanisms based
on trust management it is a question of determining consistency between po-
tential delegation chains. Developing a suitable verification framework for the
consistency of delegation chains is a topic of ongoing research [12].

5

Acknowledgements

This work is supported by the UCC Centre for Unified Computing under the
Science Foundation Ireland WebCom-G project and by Enterprise Ireland Basic
Research Grant Scheme (SC/2003/007).

References

1.

2.

10.

11.
12.

M Blaze et al. The keynote trust-management system version 2. September 1999.
Internet Request For Comments 2704.

M. Blaze, J. Ioannidis, S. Tonnidis, A. Keromytis P. Nikander, and V. Prevelakis.
Tapi: Transactions for accessing public infrastructure. submitted for publication,
2002.

Matt Blaze, John Ioannidis, and Angelos D. Keromytis. Offline micropayments
without trusted hardware. In Financial Cryptography, Grand Cayman, February
2001.

C Ellison et al. SPKI certificate theory. September 1999. Internet Request for
Comments: 2693.

C.M. Ellison. The nature of a usable PKI. Computer Networks, 31:823-830, 1999.
S.N. Foley. Evaluating system integrity. In Proceedings of the ACM New Security
Paradigms Workshop, 1998.

S.N. Foley. A non-functional approach to system integrity. Journal on Selected
Areas in Communications, 21(1), Jan 2003.

S.N. Foley. Using trust management to support transferable hash-based micropay-
ments. In Proceedings of the 7th International Financial Cryptography Conference,
Gosier, Guadeloupe, FWI, January 2003.

S.N. Foley. Believing in the integrity of a system. In IJCAR Workshop on Auto-
mated Reasoning for Security Protocol Analysis. Springer Verlag Electronic Notes
in Computer Science, 2004.

R Rivest and B Lampson. SDSI - a simple distributed security infrastructure. In
DIMACS Workshop on Trust Management in Networks, 1996.

T. Zeller. New York Times, January 18 2005.

H. Zhou and S.N. Foley. A logic for analysing authorisation subterfuge in delegation
chains. In Submitted for publication, 2005.

