
Developer-centered security and the symmetry of ignorance
Olgierd Pieczul

IBM
Dublin, Ireland

Simon Foley
IMT Atlantique, Lab-STICC,
Université Bretagne Loire

Rennes, France

Mary Ellen Zurko
MIT Lincoln Laboratory

Massachusetts Institute of Technology
Lexington, USA

ABSTRACT
In contemporary software development anybody can become a
developer, sharing, building and interacting with software compo-
nents and services in a virtual free for all. In this environment, it is
not feasible to expect these developers to be expert in every security
detail of the software they use, and we discuss how difficult it can be
to build secure software. In this respect, the practical challenges of
the emerging paradigm of developer-centered security are explored,
where developers would be required to consider security from the
perspective of those other developers who use their software. We
question whether current user-centered security techniques are ad-
equate for this task and suggest that new thinking will be required.
Two directions—symmetry of ignorance and security archaeology—
are offered as a new way to consider this challenge.

CCS CONCEPTS
• Security and privacy → Usability in security and privacy;
Software security engineering;

ACM Reference format:
Olgierd Pieczul, Simon Foley, and Mary Ellen Zurko. 2017. Developer-
centered security and the symmetry of ignorance. In Proceedings of New
Security Paradigms Workshop, Santa Cruz, California, USA, October 1–4, 2017
(NSPW’17), 11 pages.
DOI: 10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Recent shifts in software engineering technology and culture make
the traditional view of the software developer obsolete. Software
development is no longer the exclusive domain of the highly-skilled
technology professional, or the apprentice coder working in a sin-
gle language with a fully fleshed out design and lead architect for
guidance. Contemporary systems enable a continuum of develop-
ers, ranging from the end-user using domain-specific languages
to tailor their application use, application developers construct-
ing software from a palette of existing components, administrators
scripting complex network deployments, and programmers focused
on highly specialized code. Within this continuum, each developer
has their own domain expertise and uses this expertise, along with
the available systems and tools, to solve their domain problems.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
NSPW’17, Santa Cruz, California, USA
© 2017 ACM. 978-1-4503-6384-6. . . $15.00
DOI: 10.1145/nnnnnnn.nnnnnnn

However, individuals in this continuum are not omniscient; exper-
tise is within some domain and there will always be parts of the
system/domains about which they are ignorant: the end-user igno-
rant of the implementation of the system he uses, the application
developer ignorant of esoteric details of the APIs with which they
program, while also not necessarily understanding every applica-
tion of the software they build nor the network infrastructure that
hosts their application. We have symmetry of ignorance between
individuals: expertise and ignorance distributed across the con-
tinuum, which in the context of user-centered design, Rittel [42]
describes as a wicked problem.

An individual in this continuum, while expert in their own do-
main, may introduce security vulnerabilities through being ignorant
of some detail of some artifact that they use in solving their problem.
In addition, they have no notion of ensuring that the callers of their
code will not do the same. The challenge is, therefore, to ensure
that the developer of any artifact provides it with all appropriate
security, from the perspective of those who use the artifact while
being ignorant of its underlying detail.

This challenge is well understood from the perspective of end-
users and the systems that they operate. With over 20 years of
research on user-centered security, it is almost universally acknowl-
edged that users should not be blamed for bad security design of
computer systems’ security [44]. While there are still problems to
be solved, the security for users has improved significantly.

Usable security for developers encompasses a broader range of
factors, such as the design of the APIs that they use, availability,
quality and accessibility of documentation and code examples, de-
velopment tools and developer-oriented user interfaces. Contempo-
rary developers have to rely on security qualities and mechanisms
provided by the numerous components they integrate into their
software. However, as a result of bad (or little) design, difficult
access to important information and a general tendency to trans-
fer security burdens, they often fail to understand and use them
correctly (e.g. [13] and [14] for just two published examples). The
traditional view that developers are fully responsible for the secu-
rity of their software and that awareness, education and testing
are sufficient is beginning to change. Over the last few years we
observe an emerging paradigm of developer-centered security and
attempts to adopt well established usable security measures to soft-
ware development. This also maps within our broader continuum:
developers of a software artifact should consider its security from
the perspective of other developers who may use it while being
ignorant of its underlying detail.

However, engaging in usably secure software artifact design
in a manner that considers its developer-user’s needs, while cog-
nizant of its user’s ignorance, is not a straightforward task. The
fact that programming became more accessible does not mean that
the development of secure software is less complex. The scale and

NSPW’17, October 1–4, 2017, Santa Cruz, California, USA Olgierd Pieczul, Simon Foley, and Mary Ellen Zurko

layered nature of the development ecosystem, the diversity of pro-
gramming tools, processes, platforms, and developers themselves,
is unprecedented. The well-established solutions are too simple for
that problem and, we posit, the familiar research methodologies
are too limited.

In this paper we discuss practical challenges of the emerging
developer-centered security paradigm, focusing on scale and com-
plexity of all sorts. The key focus and contribution of this paper
is deepening our understanding and exploration of this paradigm.
We suggest a view through the lens of the symmetry of ignorance
(Section 5). Symmetry of ignorance provides us with a new way
to consider the challenge of developer-centred security. While not
a paradigm per se, it has been used in Software Engineering to
provide insights on software design. In this paper we use it to pro-
vide a new way to synthesize and understand the challenges of
developer-centred security; we are not aware of previous research
using symmetry of ignorance in this way. Recognising that symme-
try of ignorance underlies developer-centred security forces us to
rethink whether a user-centred paradigm is adequate. In this paper
we explore these inadequacies and put forward a challenge for a
new security paradigm.

The paper is organized as follows. Section 2 discusses developers
today, providing the foundation for pertinent complexity and scale
challenges. Section 3 outlines the challenges we see from that foun-
dation. Section 4 lays out special considerations that will inhibit
the impact of developer centered security findings and results. Sec-
tion 5 introduces the Symmetry of Ignorance approach. Section 6
discusses the current state of developer-centered security research.
The concluding section summarizes the paper thus far.

2 TODAY’S DEVELOPERS
In the past, most developers used to work in relatively specific
environments involving a single language and platform, such as
C and Unix. Programming used to be a specialized, engineering
discipline. While practicing this craft, the programmers became
more experienced, gained understanding and expertise in their field,
language and platform. Switching between them was considered a
challenge that required training (formal or experiential).

2.1 Accidental developers
Today, programming is not a specialized task, but rather one of
many aspects of using computer systems. Initiatives such as Coder-
Dojo promote teaching programming for kids as young as seven.
In many countries, programming is part of the national curriculum
in primary schools. In a few years, most school graduates will be
familiar with programming, much like their older friends or parents
were familiar with spreadsheet software, word processors, or email.

Basic programming is just one of many useful skills that po-
tential job candidates are expected to have. As computer software
becomes part of everyday life, programming becomes easier and
has more applications. Commonly used software products, such
as office applications, provide embedded programming environ-
ments to extend their functionality. Social media services and mo-
bile platforms provide ways to extend or integrate their services
with minimal effort and only very basic coding skills. Simple apps,
plugins, integrations and extensions are developed by thousands

every week. Also, many businesses today integrate various service
providers such as online stores, map services, delivery providers
(see Section 2.2). This, in turn, encourages more people to learn
some programming, as yet another IT skill that may be expected
from their future employers [45].

2.2 Everyday developers
The way professional developers interact with coding has changed
in recent years. Software business pushes towards increasingly
faster software development paradigms and higher levels of ab-
straction. Applications are developed as mash-ups of software com-
ponents, cloud services and platforms. Developers are expected to
code rapidly using off-the-shelf solutions. The competition, and a
continuous push for providing more functionality and integration,
results in developers being expected to gain a basic understand-
ing of a vast number of new technologies, APIs, platforms and
frameworks.

Rather than gaining a more in-depth understanding of a specific
platform, developers increase the breadth of the languages and tools
they are able to use. It is typical that a modern developer would use
a number of different programming languages routinely in their
daily job. In addition, the configuration of software frameworks and
platforms is often so advanced and customizable that the boundary
between configuration and coding becomes blurred.

Similarly, the traditional separation between development and
operations or administration is vanishing. With new software de-
livery approaches such as DevOps, developers are expected to au-
tomate packaging, deployment, monitoring and operation of their
service. This further increases the scope of their interests as well
as requires an even broader understanding of service delivery ele-
ments that programmers of the past did not have to consider. The
software has to be automatically deployed in some, often virtual,
environments which are also typically exposed to developers as
a programmable service. The infrastructure becomes yet another
software component that has to be integrated with their code, and
potentially extended with more code using integration points pro-
vided by the platform.

The time spent on what was traditionally considered “program-
ming” becomes smaller, compared with the time required to find
and learn new tools and technologies, analyze sample code and
decide on the integration approach. This makes developers more
users of the software than experienced programmers of the software
they use.

Anecdotally, we believe that some application developers know
less about the components they integrate into their product than
many of the end-users know about their everyday application.Much
greater diversity and variability of components means less time
and attention using and developing skills. Often, professional usage
of an application, such as CAD or finance analytics, requires more
tool-specific skill than development of software.

2.3 Proliferation of software components
While early software development was a language based discipline,
modern software development is a component integration job. It
is more like engineering, without the physical constraints on the
form factor of the components. Today’s software is developed using

Developer-centered security and the symmetry of ignorance NSPW’17, October 1–4, 2017, Santa Cruz, California, USA

Figure 1: Number of components in themost popular public
repositories, data from http://www.modulecounts.com

many separate, interoperating components. In recent years, and
with growing popularity of platforms such as Node.JS, the number
of components has grown significantly [55]. Figure 1 depicts the
growth of a number of components in popular repositories in recent
years. For example, by July 2017 the NPM repository for JavaScript
components has reached 470,000 distinct packages/modules, with
over 500 new modules on average being published daily. In each
case, these software components can be effortlessly downloaded
and integrated into an application using package managers that
automatically resolve all dependencies, adding components when
necessary. It is not uncommon that a very simple application, can
depend upon many hundreds of software modules and be a depen-
dent of many hundreds of others. The level to which developers rely
on re-usable code is also unprecedented [31]. The time for LangSec
has come and gone. It is time to work on ComposeSec [25, 26].

3 CHALLENGES FOR DEVELOPER
CENTERED SECURITY

3.1 Layered software abstractions
As we’ve discussed, today’s software is a collection of interoper-
ating components working in parallel and/or encapsulating one
another. Misunderstanding of an API or unexpected component
interoperation may lead to unpredictable security exposures. They
emerge from component misuse in areas that might not have been
considered as relevant to security. For example, developers typically
do not expect that the URL class from the Java standard library
allows URLs to point to local files [38] and corresponding docu-
mentation can be misleading by focusing primarily on HTTP URLs.
Such counter-intuitive behavior, the “dark side of the code” [38], can
be encapsulated in a component and effectively hide all information
about potential risk from its consumer.

A developer, casually integrating software components may not
fully comprehend their end-to-end operation. This, in turn, may
mean that they unwittingly enable execution paths that were not
expected, and those paths may lead to security problems. It is likely
that neither the developer integrating the component, nor the de-
veloper of the component, anticipated the usage of the component
in that particular way may have security impacts. API usability,

even when not thought to be related to security, has an impact on
their usable security.

3.2 Definition of interface
We find usable security work clustering around user-facing se-
curity related features or tasks. Examples include authentication,
access control and social media sharing, app permissions, personal
information exposure, crypto use for protections, crypto related
errors, and software updates. It is not clear, however, what should
be considered to be the equivalent of the interface in the context of
developer’s security usability. Developer centered security research
recognizes documentation and information sources as part of the
developer’s interface. We believe there is more to the “interface” to
be considered.

In the most narrow sense, the interface is just a set of method
names or their REST calls, their parameters, return values and so
forth. Developers experienced with an API, or working with code
that already uses an API, may be comfortable interacting with only
that. For example, a developer aware of the "GET /user/:id" REST
API that retrieves the user record may expect that corresponding
"DELETE /user/:id" API should be used to delete a user record,
based solely on the fact that such an API exists.

The wider definition of an interface could include immediately
available documentation that is presented to a developer when
writing code, or just listing available APIs. Such brief documentation
would typically contain a short description of an operation of anAPI,
descriptions of parameters, and so forth. For example, it is common
that Java developers will be presented with Javadoc documentation
tooltips while writing the code. Developers browsing REST APIs
will typically see similar information generated using a tool such
as Swagger.

An even wider definition of an interface may include exoge-
nous documentation with a discussion on the APIs usage, security
considerations, and code samples. In modern platforms access to
that documentation may be just one click away and developers
will consider referring to it as an essential or natural part of their
programming routine. Even further from the code context, “inter-
faces” include official support forums, blog posts and articles. We
see developer security studies beginning to use all these aspects
in various limited combinations as the community builds up the
base model of what it means to study developers doing their tasks
securely.

If we take a view that an interface is what a developer interacts
with when working with an API, the interface would also include
third-party content such as community forums and third party
code samples. These sources of information can be equally or, for
some developers, more popular than the official ones [2, 41]. Note
that the vendor or API producer does not have control over that
content. It is suggested [2] that improved documentation writing,
or making it more question and answer focused, may make more
developers use official sources of information. In the same way
that web search has come to dominate how end-users look up a
definition or reference explanation, developers will continue to
use unofficial information, especially if their question is simple
or their engagement with the component/service in question is
incidental. There is progress towards acknowledging community

NSPW’17, October 1–4, 2017, Santa Cruz, California, USA Olgierd Pieczul, Simon Foley, and Mary Ellen Zurko

sources such as Stack Overflow as part of the interface, albeit not
fully controlled. Major software vendors have begun to provide
their official documentation using the Stack Overflow platform
and experience [33]. A more thorough approach would promote
safe usage of APIs and also correct wrong recommendations in
community sources. Would it take a Heartbleed type exposure
traced to those sources to incentivize such a behavior change?

The gradually increasing scope of the developer’s interface when
interacting with an API does not need to mean that programmers
would typically work in one scope or the other; or that broader
scopes include all of the narrower elements. Each developer may
uniquely combine them. In addition to a developer’s preference, the
effective interface will also depend on the type of API, the platform
and development tools, and what they provide. It may also depend
on the programmer’s familiarity with the API or API type, or APIs
from the same vendor, its current usage in the code, or whether the
vendor has provided useful material in any of the sources.

For end-user interfaces, the most narrow scope is the GUI, then
integrated help, online documentation, and so forth. Research on
usable security recognizes that users may prefer to use different
parts of the interface [15], types of help and documentation [24] or
errors and warnings [11]. We argue that in the case of developers,
the scale and possible variety in different combinations of elements
that define their interface are much larger, and consequently raise
new challenges to systematic analysis.

The developer’s lifecycle does not stop at programming and
direct usage of APIs. With the cultural shift towards the DevOps
model, developers are often responsible for configuration and op-
eration of their software. Depending on the nature and scale of
their software, developers may perform these tasks manually using
user/administrator interfaces, or automatically using additional APIs.

Effectively, the concept of interface, in the context of developers,
is the API itself and the entire ecosystem surrounding it. As the
traditional boundary between the user, programmer and admin-
istrator becomes blurred, the area of study of developer-centered
security expands to encompass all of these.

3.3 Demographics and work environment
Ecological validity of study demographics is a key issue in usable
security research. For end-user studies, appropriate population sam-
pling techniques are used. In addition, exposure to relevant security
concepts is often measured and reported to check for bias or impact.
While the population of developers may be seen as more homoge-
neous than general software users, in the context of the efficacy
of security usability measures it may be much more diverse. Some
research points out different groups of programmers [34], such as
novice or professional. [3] suggests considering company size as
well. However, we argue that the demographic factors to consider
go beyond what is currently in the literature. Below, we describe
some additional key factors. We also discuss environmental com-
plexities that we believe will call for significantly new approaches
to developer assistance and research.

Developer skill and experience. Developers have varying levels of
programming skill, with no universally accepted measure [8]. They
may be professionals who program for a living or just accidental.
This can be captured with a survey question. They may also be

professionals in another computing field for which programming is
a side task, which is more difficult to capture. Programmers varying
understanding of and experience with security is also currently
captured with survey questions. Developers will have different
abilities in comprehending various parts of the extended interface,
such as documentation. Aswe discussed, where they go for interface
information will vary, and also vary within a single developer by
target field, platform, tool or API.

Team, structure, culture and policies. Another set of demographic
factors is the environment in which a developer works, the devel-
opment process, technical leadership and oversight. A programmer
working on their own will be dependent on their own understand-
ing of the API. In professional environments developers work in
teams, sometimes code in pairs and continuously exchange infor-
mation. They may commonly use different, or multiple, sources
of security best practices advice that may vary in content [4]. The
written code is typically reviewed, sometimes in the context of secu-
rity. This may strengthen (or weaken) developer motivation for due
diligence, or make it simpler to find key information and interpret
it. Development processes may have an impact (e.g. waterfall, agile,
hybrid). The existence of specific security policies and processes
will have an impact. These include having a secure development
lifecycle, who is explicitly responsible for security, whether there
is security testing, what security test tools are used, and are there
compliance mandates (e.g. government certification, PCI).

Existing code. Another factor impacting a developer’s approach
to security is whether the developer is coding in a language, inte-
grating the component or service with their software, or working
with existing component integration calls. The existing contex-
tual code is likely to drive assumptions and exposure to extended
interface information. Working with existing integration calls is
likely to limit their exposure to a very narrow part of the compo-
nent interface, such as API name and parameters. It may also bias
their understanding, making them follow existing, good, or wrong
interpretation and practices.

In addition, every time a developer works with a new API (di-
rectly or indirectly), they will begin with assumptions based on all
the APIs they’ve worked with, and their work with the new API
will shift their model of what to expect with the next API.

Automated assistance. User security can be improved by au-
tomatic assistance, reminding or warning them about potential
threats. Similarly, automatic assistance can be provided to devel-
opers, warning them about potentially dangerous coding patterns
or mistakes. Such tools range from simple static analysis with pre-
scribed patterns, through data-flow models, to psychology-driven
solutions recognizing developers’ shortcomings [9]. However, the
breadth of possible activities and complex nature of security errors
in contemporary software [38] limits the efficacy of these tools.
This raises a research question, how far can automated developer
assistance scale to cover modern software. Is it just a matter of
larger databases of problems, more sophistication in static analysis,
or taking advantage of community and crowdsourcing, or do we
need to look for new mechanisms? Perhaps the assistance tools can
involve humans and help to automate and simplify human-based
review or community oversight [32].

Developer-centered security and the symmetry of ignorance NSPW’17, October 1–4, 2017, Santa Cruz, California, USA

3.4 Impact on experiments
[3] provides an excellent overview and research agenda for taking
the usable security research techniques and approaches used for
end-users, and applying them to developer usable security. Their
emphasis is on what might reasonably be accomplished in this more
complex domain. In this context, we are looking towards what new
approaches might be applied given the complexity we have out-
lined above. We are particularly interested in new approaches to
field studies or analyzing data from the field. [3] rightly calls out
that in-situ observational, field, and/or diary studies are likely to
be needed. In particular, field-based work will be most obviously
needed when research is meant to cover code development at the
scale beyond a single developer working on a single app. Organiza-
tional demographics have the potential for a great deal of impact.
Also, recruiting developers, especially professional, for experiments
may be harder and more costly than software users.

We previously reported on the limitations of expert review of
a security UX in the wild [59]. In the context of displaying public
key certificates, we found that expert review was only helpful for
the most approachable parts of that task, and could not provide
help on areas that required deep domain expertise to understand
and discuss. While that is a diminishing problem for end-user se-
curity experience, it is likely to loom large for developer tools and
APIs for security. One author forced herself to use a very painful
text editor during the early days of usability evaluations of text
editors, to remind herself of the limitations of the technology and
approaches. At this stage we can only recommend rigorous evalua-
tion of usability impact of any expert reviews for developers’ tools
with instruments that work on tasks in the wild or in context.

We have begun (albeit naively and without the help of a profes-
sional in the field) to explore how Archaeology can be applied to
developer artifacts to produce insights. The term “software archae-
ology” is currently in use as a pure software engineering notion ap-
plied to support considerations of poorly documented legacy code,
aimed at understanding what the code does. Instead, we propose
integration with true archaeological activities as a new paradigm
for developing insights into human activities in developer-centered
security, in the production or use of security relevant software.
What differentiates archaeology from other approaches using so-
ciology and ethnographic anthropology [49] is that archaeology
starts its analysis with artifacts and other forms of material culture.
Instead of working first to achieve access to the humans involved,
an archaeological approach can start with artifacts such as pro-
grams, binaries, and source code. Similar archaeological approach
has been applied in other disciplines, such as media [27].

We find the possibilities particularly interesting for studying hu-
man activity through the analysis of open source code and projects,
since those are highly available artifacts. We also see the potential
for an artifact-first approach to provide insights into contexts that
are difficult for current usable security research methods to handle,
including closed cultures and historical organizational activities
that are no longer available to be directly inspected or analyzed.
One archaeological approach is to look at artifacts in layers over
time, reconstructing the progression and mapping to actual time.
This approach might yield new insights into how the developers ap-
proached or impacted the security of a code base over time, as each

layer builds upon or responds to the previous ones. This can yield
insights into tools and techniques that build or maintain security
in a code base over time.

Another archaeological approach that might yield insights into
developer centered security is considering “howwas this thing used”
(or “for what purpose was it used”). This is done by doing detailed
analysis of the object. Archaeologists examine bits of a pot to see
what did it contain at some point (cabbage shows up a lot), was it
ever in a cooking fire, does it have a handle that has wear marks
from being handled by a hand or by a stick, etc. Archaeological
analysis of the use of security code (such as APIs) might log and
analyze the various values passed in as parameters, the types of
programs it is found in, the set of languages in the system it is in,
and so on.

The archaeological approach can be seen as a form of expert
review, but instead of UX experts, with experts versed in software
developer history and culture, and in software architecture, tools,
and artifacts. At this stage of exploration, it is not clear which
fields and techniques used in archaeology will yield the best results
when analyzing software. Organizational culture and history are
likely to have a deeper impact on developer centered security than
they do on end-user security. We see this as a new opportunity for
collaboration with emerging archaeology grad students.

Our initial foray [39] considers the evolution of security defenses
in a contemporary open-source software package over a twelve year
period. The qualitative analysis style study systematically analyzed
security advisories, codebase revisions and related discussions. A
number of phenomena emerged from this analysis that provide
insights into the process of managing code-level security defenses.
This study confirmed in the wild a phenomena previously observed
only in lab experiments, such as developer “blind spots” [37], or
only demonstrated at small scale [38]. It also showed that metrics,
such as CVSS, often used in quantitative studies are arbitrary and
inconsistent. The study also showed that performing qualitative
style investigations requires significant effort even for the relatively
limited scope.

The recommendation in [3] to model lab studies of bug finding
and fuzzing tools after successful investigations into end-user secu-
rity tools consciously assumes that the lab tasks will be simplified
in terms of both code base and organizational interactions. In our
experience in the wild, the context of use of existing tools is nothing
near that simple. In general, the current state of security bug find-
ing tools presumes familiarity with both the code base and what
the security error case means. Familiarity with the code base can
be made tractable in a lab study, but, as we have discussed, is not
common in the wild for systems of more than app size. Understand-
ing of security error cases is more likely to be a place where lab
studies of existing tools can produce insights. For example, when
fuzz testing finds a crash, the developer has a crash to analyze,
and a protocol run captured by the tool with one or more errors,
potentially over an extended period of time. When fuzz testing
finds a system that is unresponsive (or inappropriately responsive)
in the same context (either to a single request or for some short
period of time), the developer has the captured protocol run and a
dynamic, running system. The debugging challenge is nontrivial, in
terms of understanding the system/code, error cases executed up to

NSPW’17, October 1–4, 2017, Santa Cruz, California, USA Olgierd Pieczul, Simon Foley, and Mary Ellen Zurko

that point, and protocol specifications/requirements. We leave aside
the cases when the fuzz testing itself is in error (which we have
encountered). In short, we recommend field studies as a precursor
to any lab studies of existing vulnerability-finding tools, to provide
qualitative insights into their use.

IDEs are considered effective in practice. Developers are notori-
ously fussy (or fanatical) about their IDE of choice. In some cases,
there are very compelling reasons to choose the very simplest text
editors (e.g. vi, emacs). Developing code for contexts such as net-
work devices forces a lifecycle over a very restricted UI (e.g. ssh’ing
into the device to debug and change the code). This will only be-
come more common with the growth of IoT. Research on whether
techniques pioneered in a full GUI IDE can survive the transition
to vi will be sorely needed.

4 ADOPTION INHIBITORS
The adoption of security usability measures for developers may
face challenges that are different from those of security for software
users.

4.1 Incorrect assumptions
While software vendors may accept that users require support, they
have not yet recognized that developers, users of their APIs, are
experiencing similar problems and require assistance [17]. Devel-
opers of the libraries or APIs continue to assume (or are allowed to
assume) that the consumers will read the documentation. Security-
related information relegated to the documentation can include
guidance on secure usage of the component, or due diligence tasks.
Given the number of components the developer has to deal with
means that it is often impossible to carefully examine the documen-
tation. We see a place in the research agenda for using the same
economic techniques that have been used to determine the amount
of time and user value reading all privacy policies would cost. Even
if attempted, developers may not reach a part that covers a specific
security-related information consideration [38].

In the case of small open source software components, the docu-
mentation often does not exist and developers are directed to the
source code. Examining the discussions of the popular code plat-
forms confirms that many developers assume that the consumers
will examine the source code before using the code [6]. Developers
often do not attempt to read official documentation and instead look
for easy examples in web search or on sites such as Stack Overflow
[41]. This is not a surprise, as in many cases developers work with
examples, often have very simple problems to solve and seek a
quick answer. This, unfortunately, can lead to replicating insecure
code or patterns [2]. As with other aspects of human nature, it
will take the boldest possible statements about the results of usable
security studies to provide direction that alters assumptions and
misconceptions.

4.2 Misaligned incentives
Usable security for developers is not currently considered to be a
feature that gives a market advantage to the vendor. When making
their software or services extensible with APIs, many vendors still
provide it only at a basic level, considering it secondary to the
end-user functionality. Their main objective in the area of APIs

is likely to be allowing partners to cover gaps in functionality or
explore niche markets or use cases. In the case of open source,
or community-driven products, volunteer contributors are often
more interested in solving interesting technical problems, rather
than focusing on good developer experience or documentation.
SimplySecure is one of the few initiatives targeted at bringing
usable security and privacy to open source components.

Vendors’ interest in rapid adoption of their APIs emphasizes
allowing developers to integrate quickly and easily. Some measures
that enhance secure usage of the service by developers may be per-
ceived as slowing down the adoption [35]. For example, many cloud
services offer consumers the ability to receive runtime updates from
the service delivered to endpoints on their server, known commonly
as webhooks. Since the communication between the service and
consumer is done over the Internet, the communication should be
encrypted and authenticated. Service vendors could provide only
HTTPS endpoints to eliminate the possibility of a consumer imple-
menting insecure communication. This would require the consumer
to perform extra steps to enable HTTPS at initial integration and
testing, including obtaining a certificate and securely storing the
private key. Vendors have not yet generally decided to implement
such requirements. We have yet to see a developer security study
that measures task time to securely use a service or API in the same
way user security studies have.

The incentives for developers to use their APIs securely is an-
other aspect meriting attention with economic analysis techniques.
Software end-users share the incentive for secure application us-
age with usable application designers, though they are not always
aware of the risks. Developers consuming APIs are less incentivized
to cooperate on security responsibility. Security can be a concern
secondary to functionality and time to market [3]. In addition,
developers are not by and large directly impacted by not taking
advantage of the (usable) security measures provided to them. It is
application users that will eventually be exposed.

4.3 Backward compatibility
Changes impacting users, such as changes to the user interface, can
be immediately consumed, especially in the context of cloud-based
services. However, consuming changes to API security usability
has much more friction. Developers use a particular version of
the API, and do not look for updates, especially if the library in
that particular version is already used. They have dependencies on
particular versions which will result in costs in development time
and testing, for themselves and their team, if they update. Finally,
when they write the code they will typically not actively look for
any updates in API or documentation.

Improving the security usability of their programming interfaces
is also challenging to vendors. They can not easily deprecate APIs,
because of the cost of upgrading to their consumers. This means
that any change results in another version of the API that has to
be supported in parallel with old versions, often for several years.
The same applies to documentation, code samples and so forth. The
more popular and widespread the API is, the harder it will be to
deprecate the old, unusable one. This is especially expensive in
the context of cloud APIs where the support means maintaining
the software that handles every version of the API. The technical

Developer-centered security and the symmetry of ignorance NSPW’17, October 1–4, 2017, Santa Cruz, California, USA

difficulty and additional cost will discourage software vendors from
investing in improving security usability of their programming
interfaces.

With the proliferation of software components and cloud APIs,
vendors have to frequently update their software interfaces. The
software community has yet to develop mechanisms for making
API changes easy to handle and adopt by the consumers. Future
research in this area should consider the problem of addressing
remediation of usability problems. We see an analogy with the
recent emergence of end-user software patching as a research topic
in usable security.

4.4 Security usability vulnerabilities
In our previous research [39] we observed examples where prob-
lems that were not technically security vulnerabilities, but were
usability problems, were reported to the development team as vul-
nerabilities and fixed as such. In some cases, the securitymechanism
was so counter-intuitive and difficult to work with that it resulted in
an implementation bug by the component’s own development team.
In that same exploration, we found instances of similar problems
that were dismissed by component developers as not technically
a vulnerability. Even within a single community, the approach to
usable security problems can be inconsistent.

Security usability problems may lead to security exposures in
the component or service consumers. Some may be considered to
be bugs, or unacceptable negligence by the vendor. A usability bug
is more likely to require API changes than other vulnerabilities
in a component, which can often be fixed by internal component
changes. When internal vulnerabilities are fixed, they only require
the consumer to update the component to a new version and, in
the case of cloud services, the consumer also owns deploying that
update. A security usability bug fix can have more expensive impact.

This raises a question of what processes and practices the soft-
ware community should adopt to deal with usability problems that
have an adverse security effect. For example, should a misleading
API name, or insecure usage of an API included in documentation,
be considered just a flaw in usability or a security vulnerability? Rec-
ognizing a problem as a vulnerability has consequences, especially
in the context of professional/enterprise software, where secure
development lifecycles typically levy requirements on the process
of disclosure to the customer, and official vulnerability advisories.
The effort required to process a usability problem this way will
discourage vendors from including them in the vulnerability classi-
fications, especially if, strictly speaking, the component itself is not
vulnerable [39]. This is in addition to the backward compatibility
problems explained in the previous section.

On the other side, with the number of software components used
and easy to use software repositories [55], consumers may not be
reading security advisories, but rather rely on tools that automat-
ically update vulnerable software components to safer versions.
This will prevent them from learning that the “vulnerability” might
have an impact on the way their software was implemented and
may require changes in their code to remediate the problem.

We believe that effective notification about security usability
problems is, on its own, a security usability problem. It involves
extending research to areas such as CVSS, CVEs, security incident

response teams, and the secure development lifecycle requirements
on all of them. The software community should establish a process
for handling this kind of problem, considering that it is unlikely that
consumers will actively look for information about such problems
or analyze the changes in APIs or documentation.

5 SYMMETRY OF IGNORANCE
User-centered design strives to avoid the bias inherent in technology-
dominated development whereby technology experts are believed
to better understand the end-user’s needs. On the other hand, as an
application domain expert, the end-user best understands their own
needs, while their understanding of the system they use is limited to
how they consume its interface (as characterized in Section 3.2) and
are typically ignorant of its underlying implementation/technology.
Equally, the professional developer, while considered an expert on
the implementation underlying the interface they produce, is often
ignorant of the domains to which their systems will be applied by
end-users. Thus there is a symmetry of ignorance [42] between the
end-user and developer: the end-user domain expert is ignorant of
the implementation while the developer implementation expert is
ignorant of the user domain. The symmetry in this context means
that some degree of ignorance, thought not necessarily equal, exists
at either side.

This symmetry of ignorance plays out across the many stake-
holders in a contemporary system. As illustrated in the previous
sections, we have many kinds of developers who could be con-
sidered domain experts for the interfaces that they produce while
potentially ignorant of the implementation of the interfaces pro-
duced by others and which they consume. However, symmetry of
ignorance is not limited to end-users and developers, it applies to
all stakeholders in the system, including system administrators and
architects.

The case-study in [38] can be seen as an example of symmetry
of ignorance. In this case-study, a developer of an online bookmark-
ing service uses an existing library component to take a web-page
snapshot of the URL to be bookmarked. However, they are ignorant
that integrating this component may expose systems in their local
network, and consider that any such problem, if it exists, should be
handled by an administrator of the system that uses an application.
The administrator, however, is ignorant of the fact that a bookmark
application can expose their network, and ignorant of the expec-
tation that they should provide security controls. In addition, the
snapshot library developer is unaware that the network access plat-
form API they use allows for access of local files through "file:"
URLs, while a platform API developer does not expect its users to
have not first fully read and understood the documentation and the
cited RFC. Lastly, the application developer, consuming the library,
is ignorant of this issue as it is hidden by encapsulation.

Thus, user-centered security should not be limited to just end-
users and developers, it should concern all the producers and con-
sumers of interfaces and the recognition that there is both expertise
and ignorance distributed across these stakeholders, which in the
context of user-centered design, Rittel [42] describes as a wicked
problem.

NSPW’17, October 1–4, 2017, Santa Cruz, California, USA Olgierd Pieczul, Simon Foley, and Mary Ellen Zurko

Fischer [18, 19] argues that user-centered design techniques are
generally limited to closed systems; the techniques focus on un-
derstanding the needs of the user and “designing the system for
use before use”. There is a similar emphasis in user-centered se-
curity: security is designed by considering user needs before use.
Participatory-design approaches, where users are actively involved
in the design, have a similar focus; for example, in the use of di-
alectics as a means to understand security needs in mobile app
development [54]. While security-usability studies may help to im-
prove understanding of how to support user needs securely, it is at
heart, design for use before use. Studies that test security usability
are iterations, and in the sense of this model, the design for next
use. Usable security is lacking in techniques that can predictively
design for the next range of uses which will dynamically evolve as
part of use.

5.1 Whither user-centered security?
This separation between design and then use does not fit easily
with our contemporary system view, where user needs evolve,
requirements change and new technologies are incorporated, all
as a part of the normal ‘use’ of the system. Fischer considers that
it is not possible to design such open systems that anticipate all
uses in advance and that one must “design to support design after
design” [19]. With respect to security, we see this need for a new
paradigm that supports design for design after design across the
examples in the previous sections. However, it is not clear whether
user-centered security can enable this. Much of the discussion and
examples in the paper illustrate this; we focus on a number of
examples in the following.

Dark side of the code. There is a dark-side to an API [38], whereby
part of its underlying behavior, while understood by its developer,
is not properly understood by the developer who uses the API, and
through mis-use introduces security vulnerabilities. Equally, the
component developer may not appreciate the various ways that
his API may be used. This symmetry of ignorance was illustrated
in Section 3.1 and the case study [38] on the online bookmarking
service outlined above. At its heart is the problem that design for
use before use promotes a dark-side of the code. Decisions are made
about how an API is used when least is known about how the API
will be used. In some respects, through design for use before use, we
are revisiting the age-old debate about structured development [29]
which pointed to the dangers of making implementation-design
decisions when least is known about the implementation.

Today’s secure default is tomorrow’s vulnerability. Commonly
recommended for user-centered security [10] and equally relevant
to developer-centered security, secure default is intended to allow
secure use of the system without having to configure security be-
forehand. For example, the producer of an SSL package provides
a default keystore configured with trusted CAs and secure cipher
specifications, enabling secure communication by default. As a sim-
ple dictum, secure default is an example of design for use before
use. Once the design is deployed, CA keys may be compromised,
ciphers deprecated and vulnerabilities discovered, whereupon to-
day’s secure default becomes tomorrow’s vulnerability. Of course,
for every threat-scenario against a safe default a counter-argument

can be made: package consumers have a software update process
in place, the producer maintains the package and consumes secu-
rity advice from elsewhere, and so forth. However, we question
whether it is possible to design, before use, a secure default that
can anticipate every possible use. Symmetry of ignorance between
package consumer, producer and the sources of security advice
means we cannot a priori provide a secure default for every pos-
sible use scenario and, therefore, there is a need to consider the
design of a security default that supports design after design.

An interface by any other name. Another recommendation for
developer-centered security could be an unambiguous naming con-
vention for artifacts in producer interfaces, APIs, and so forth. A
reliable naming scheme should ensure that interface artifacts can
be referred to using globally distinct names, while avoiding attacks
such as [51] which uses typo squatting and namespace manipula-
tion to trick developers into using fake replacements for popular
packages. Relying on a global body, such as ICANN, to decide
names will not scale to the proliferation of software components
and developers, and furthermore, a malicious producer can still
mis-represent/ignore any naming conventions. One could consider
using X.509 certificates to securely tie the names to real world
entities (producer domains with public keys), however, based on
past experiences [23], the required PKI would likely be unmanage-
able and not support usable-security. Moreover, given the transient
nature of Internet domains and the declining numbers of system
administrators relative to the number of Internet domains [30],
we envisage that it would become impossible for consumers to
maintain a consistent view of the relationships between producers
and their interface names. Using a decentralized naming scheme
such as SDSI [12] could provide a ‘web of trust’ for interface names,
however, while attractive in theory, in practice SDSI naming has
had little adoption over its twenty year history. Furthermore, all
of these naming schemes are vulnerable to subterfuge attacks [21]
whereby an attacker can confuse a consumer’s understanding of a
name by injecting malicious naming certificates.

These conventional naming schemes are designs for naming
before use. Our intuition here is that it is akin to building nam-
ing mechanisms that uphold some safety property in an Alpern-
Schneider [5] sense: it is known before use, that the mechanism
will ensure that some predicate holds in every possible valid nam-
ing state. However, it is argued in [21] that naming is not a safety
property, but a security property. Schneider [43] demonstrates that
run-time mechanisms can only enforce safety properties with the
observation that security mechanisms are (safe) approximations
of security properties. Interpreting this result for a secure naming
mechanism means that any naming mechanism is an approxima-
tion for secure naming and that potentially valid naming states that
must be excluded from use by the mechanism. However, in design-
ing the mechanism we cannot anticipate every possible use, before
use, and therefore at some point it may be desired to revise the
excluded states. This necessitates building a different mechanism
(while approximating the same secure naming property). Thus, it
does not support a design for design after design.

Our position is that the current user-centred security paradigms
that support user-centered security through design for use before
use are inadequate and that a new security paradigm is needed

Developer-centered security and the symmetry of ignorance NSPW’17, October 1–4, 2017, Santa Cruz, California, USA

that enables design for for design after design. Meta-design [18, 19],
with its view of the system as a continuous collaborative develop-
ment between stakeholders and technologies may provide a means
to support design for design after design. Whether this view has ap-
plication for security in contemporary systems is a topic for future
research.

6 DEVELOPER CENTERED SECURITY
RESEARCH SO FAR

NSPW has been the venue of choice for the earliest efforts to ap-
propriately focus on Developer Centered Security. As [22] points
out, the earliest work in usable security, [60], included the need to
focus on developers. [20] was the first full paper at NSPW to focus
on developers, exploring a way to increase developer awareness
of security and risk tradeoffs at requirements design time. It the
potential impact of a method and tool for security requirements
identification. [56] calls for concentrating attention on the tools
that provide security to developers. It is the first to call out the
importance of usability of (security) APIs. It also calls for security
mechanisms that do not require security expertise from developers
who use them. In addition, it calls for integrated security solutions
that do not require an opt-in; what we might call “secure by default”
today. [52] brought the analogy of “point and shoot” to the security
design space, mapping out three levels of abstraction in precision
and control, and showing where there are gaps in the current tool-
ing. [16] considered applying ethnographic tools such as document
analysis, interviews, and participatory observation to technological
infrastructures. Ethnoarchaeology may yield additional insights,
marrying the ethnographic approach with archaeology, and em-
phasizing inspection of the artifacts alone (without access to the
people and cultures producing them). We list these references here
because considered developers activities and tools in the context of
NSPW. None of these references delves into current practice as a
foundation for consideration of the security of the creation and use
of developer created artifacts, as this paper does.

There is a growing body of work on usable security and app de-
velopers. [7] surveyed over 200 app developers on resources they go
to for security. The most common response was they searched on-
line. Many consulted their friends and social network. [13] analyze
apps for HTTPS vulnerabilities, setting up the notion that systemic
code vulnerabilities can point to the need for better usable security
for developers. [14] conduct interviews with developers of apps
found to have HTTPS vulnerabilities, to evaluate their acceptance
of proposed countermeasures. [2] used lab study, survey, and code
analysis to show that API document produces more secure results
but is harder to use than Stack Overflow. [1] conducted a controlled
experiment of python developers across 5 cryptographic APIs. They
find that simplified APIs can produce security results, but also need
documentation, code examples, and extended functionality sup-
port for related features to ensure both functional correctness and
security of the tasks. More strongly, easy to use documentation
and available code examples seemed to compensate for more com-
plex APIs in terms of functionality, though not security. Across the
board, about 20% of the participants thought their code was secure
when it was not. These results focus on individual app developers
and their activities. We call out the complexities of large team, long

term software development, which raises issues that we believe will
need to be addressed in the developer-centered security research
agenda.

[36] triangulates Stack Overflow posts, a survey, and GitHub
code analysis to analyze developer use of crypto APIs. The APIs are
seen as too low level. Yet they find that developers are (surprisingly)
confident of their understanding of crypto concepts. [28] surveyed
59 software developers on their security API use and their prefer-
ences on security API abstractions. They find a tendency towards
use of higher level abstraction APIs, and a good number of difficul-
ties using the APIs available. These papers also focus on individual
developers, not the broader organizational and team culture that
they work in.

Microsoft’s pioneering efforts in Secure Development Lifecycles
made them also pioneers in recognizing the gaps in developer cen-
tered security and calling for and experimenting with approaches to
close the gaps. [47]’s SOUPS keynote was a follow-on to Microsoft’s
experience with making threat modeling accessible to developers
through the STRIDE structure [46]. [48] made the threat modeling
interface both richer and gamified. [40] of Microsoft discussed the
NEAT approach to producing security warnings (the presentation
came complete with glasses for having your whiskey neat). This
work focuses on the approaches they developed, while in this paper
we concentrate on the challenges in the current software devel-
opment environment and their implications for effective secure
development techniques and tools (some of which are likely to
have also been motivators of the previous work).

A number of works research whether a specific technique or tool
can impact the secure development practices of developers. In the
search for influencing developers to code securely, [58] studies 32
teams of masters students working on a realistically sized banking
system. They found no detectable difference in security between
teams with and without using security patterns. [53] Was a one-
year study on the impact pen testing had on a software development
team. Pen-tests improved developer awareness of security, but there
were no reports of tangible changes in secure development practices.
A stream ofwork out of UNCC looks at an IDEwith interactive static
analysis of security problems [50, 57]. Semi-structured interviews
with students and professionals show that they can have impact,
and inform the developer about security vulnerabilities. [37] finds
that simply priming developers in context can make them more
aware of potential vulnerabilities in code. There is not yet a study
on how much priming would result in saturation/overload. These
studies focus on a specific tool or technique and its impact, while
we focus on existing practices likely to explain some of the lack of
impact of some techniques, and limit the impact of others.

[54] looks at what impacts developers to code (more) securely.
A Grounded Theory qualitative analysis of interviews with 12 de-
velopers discovered that developers relied on dialectics during the
development lifecycle to help consider security. Participants were
chosen for their experience with app security. Part of our thesis is
that software security is impacted by many more developer activi-
ties than those undertaken by app developers knowingly working
on app security.

NSPW’17, October 1–4, 2017, Santa Cruz, California, USA Olgierd Pieczul, Simon Foley, and Mary Ellen Zurko

7 CONCLUSION
In this paper we lay out the major changes in development culture,
processes, and technology that we believe create a discontinuity in
the scale and complexity of evaluating developer-centered security.
This includes the continued developer expertise shift from depth
to breadth and an unprecedented scale of code reuse. The pace of
this change seems to be increasing over time. Engagement with
these changes and better understanding of today’s (and tomorrow’s)
software developer are essential pre-requisites to the much desired
impact of studies on developer’s security usability.

The assumption that developers are like end-users [47] has been
an excellent first step, but like all analogies, it has its limitations.
We agree that, just like end-users, they should not have to be om-
niscient in security, however, we argue that usability measures
developed for users will not provide the same foundation and cov-
erage for developers. There are many more individuals involved in
the development process with different incentives and constraints.
Consequently, studying this problem requires new methods. We
argue that current approaches for studying and analyzing humans
that use software will not scale for many aspects of developers. In
some cases, we recommend adding to the current research agenda
with familiar techniques from economics. We also see potential in
fields of study of human activity that address complexity at scale
and with an artifacts-first approach, such as archeology.

In addition to the challenge of how to conduct developer security
usability studies, we need new approaches to support developer-
centered security. User-centered security emphasizes design for
use before use. Our position is that this does not directly translate
to developer-centered security. The task of the development of
secure code is a significantly more complex and recursive problem
than secure usage of already developed software, and symmetry of
ignorance means that the problem is not a simple partitioning of
user and developer. The challenge is one of designing security for
design after design.

ACKNOWLEDGEMENTS
The authors would like to thank Bill Andreas, Senior UX Designer
at CA and amateur archaeologist, for his insights into the field of
archaeology. We also thank our anonymous reviewers, workshop
attendees, and our shepherds Heather Lipford and Kent Seamons,
for their help inmaking this a better paper. Simon Foley’s research is
supported in the Cyber CNI Chair of Institute Mines-Télécomwhich
is held by IMT Atlantique and supported by Airbus Defence and
Space, Amossys, EDF, Orange, La Poste, Nokia, Société Générale and
the Regional Council of Brittany; the Chair has been acknowledged
by the French Centre of Excellence in Cybersecurity. Mary Ellen
Zurko’s work on this paper was done while she was an independent
consultant.

REFERENCES
[1] Yasemin Acar, Michael Backes, Sascha Fahl, Simson Garfinkel, Doowon Kim,

Michelle L. Mazurek, and Christian Stransky. 2017. Comparing the Usability of
Cryptographic APIs. In IEEE Symposium on Security and Privacy.

[2] Y. Acar, M. Backes, S. Fahl, D. Kim, M. L. Mazurek, and C. Stransky. 2016. You Get
Where You’re Looking for: The Impact of Information Sources on Code Security.
In 2016 IEEE Symposium on Security and Privacy (SP). 289–305.

[3] Yasemin Acar, Sascha Fahl, and Michelle L. Mazurek. 2016. You are Not Your
Developer, Either: A Research Agenda for Usable Security and Privacy Research

Beyond End Users. In Cybersecurity Development (SecDev).
[4] Yasemin Acar, Christian Stransky, Dominik Wermke, Charles Alexander Forbes

Weir, Michelle Mazurek, and Sascha Fahl. 2017. Developers Need Support, Too: A
Survey of Security Advice for Software Developers. IEEE, 22–26.

[5] B. Alpern and F.B. Schneider. 1987. Recognizing Safety and Liveness. Distributed
Computing 2 (1987), 117–126.

[6] Adam Baldwin. 2015. A Malicious Module on npm. blog, https://blog.liftsecurity.
io/2015/01/27/a-malicious-module-on-npm. (2015).

[7] Rebecca Balebako and Lorrie Cranor. 2014. Improving app privacy: Nudging app
developers to protect user privacy. IEEE Security & Privacy 12, 4 (2014), 55–58.

[8] Frederick P. Jr. Brooks. 1975. The Mythical Man-Month. Addison-Wesley, Reading,
Mass.

[9] Justin Cappos, Yanyan Zhuang, Daniela Oliveira, Marissa Rosenthal, and Kuo-
Chuan Yeh. 2014. Vulnerabilities As Blind Spots in Developer’s Heuristic-Based
Decision-Making Processes. In Proceedings of the 2014 New Security Paradigms
Workshop (NSPW ’14). ACM, New York, NY, USA, 53–62.

[10] Lorrie Faith Cranor. 2008. A Framework for Reasoning About the Human in the
Loop. , Article 1 (2008), 15 pages.

[11] Serge Egelman and Eyal Peer. 2015. The Myth of the Average User: Improving
Privacy and Security Systems Through Individualization. In Proceedings of the
2015 New Security Paradigms Workshop (NSPW ’15). ACM, New York, NY, USA,
16–28.

[12] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and T. Ylonen. 1999. SPKI
Certificate Theory. RFC 2693 (Experimental). (Sept. 1999).

[13] Sascha Fahl, Marian Harbach, Thomas Muders, Lars Baumgärtner, Bernd
Freisleben, and Matthew Smith. 2012. Why Eve and Mallory Love Android:
An Analysis of Android SSL (in)Security. In Proceedings of the 2012 ACM Confer-
ence on Computer and Communications Security (CCS ’12). ACM, New York, NY,
USA, 50–61.

[14] Sascha Fahl, Marian Harbach, Henning Perl, Markus Koetter, and Matthew Smith.
2013. Rethinking SSL Development in an Appified World. In Proceedings of the
2013 ACM SIGSAC Conference on Computer & Communications Security (CCS
’13). ACM, New York, NY, USA, 49–60.

[15] Adrienne Porter Felt, Elizabeth Ha, Serge Egelman, Ariel Haney, Erika Chin, and
David Wagner. 2012. Android Permissions: User Attention, Comprehension, and
Behavior. In Proceedings of the Eighth Symposium on Usable Privacy and Security
(SOUPS ’12). ACM, New York, NY, USA, Article 3, 14 pages.

[16] Laura Fichtner, Wolter Pieters, and André Teixeira. 2016. Cybersecurity As a
Politikum: Implications of Security Discourses for Infrastructures. In Proceedings
of the 2016 New Security Paradigms Workshop (NSPW ’16). ACM, New York, NY,
USA, 36–48.

[17] Barbara Filkins. 2016. IT Security Spending Trends. Technical Report. SANS
Institute.

[18] G. Fischer, D. Fogli, and A. Piccinno. 2017. Revisiting and Broadening the Meta-
Design Framework for End-User Development. In New Perspectives in End User
Development. Kluwer Publishers, Dordrecht, The Netherlands.

[19] Gerhard Fischer and Thomas Herrmann. 2011. Socio-Technical Systems: A Meta-
Design Perspective. International Journal of Sociotechnology and Knowledge
Development (IJSKD) 3, 1 (2011), 1–33.

[20] Ivan Flechais, M. Angela Sasse, and Stephen M. V. Hailes. 2003. Bringing Security
Home: A Process for Developing Secure and Usable Systems. In Proceedings of
the 2003 Workshop on New Security Paradigms (NSPW ’03). ACM, New York, NY,
USA, 49–57.

[21] Simon N. Foley. 2013. Noninterference Analysis of Delegation Subterfuge in
Distributed Authorization Systems. In Trust Management VII - 7th IFIP WG 11.11
International Conference, IFIPTM 2013, Malaga, Spain, June 3-7, 2013. Proceedings.
193–207.

[22] M. Green and M. Smith. 2016. Developers are Not the Enemy!: The Need for
Usable Security APIs. IEEE Security Privacy 14, 5 (Sept 2016), 40–46.

[23] Peter Gutmann. 2014. Engineering Security.
[24] Almut Herzog and Nahid Shahmehri. 2007. User Help Techniques for Usable

Security. In Proceedings of the 2007 Symposium on Computer Human Interaction
for the Management of Information Technology (CHIMIT ’07). ACM, New York,
NY, USA, Article 11.

[25] H. M. Hinton. 1997. Under-specification, Composition and Emergent Properties.
In Proceedings of the 1997 Workshop on New Security Paradigms (NSPW ’97). ACM,
New York, NY, USA, 83–93.

[26] H. M. Hinton. 1998. Composing partially-specified systems. In Proceedings. 1998
IEEE Symposium on Security and Privacy (Cat. No.98CB36186). 27–37.

[27] Erkki Huhtamo and Jussi Parikka. 2011. Media archaeology: Approaches, applica-
tions, and implications. Univ of California Press.

[28] Luigi Lo Iacono and Peter Leo Gorski. 2017. I Do and I Understand. Not Yet
True for Security APIs. So Sad.. In 2nd European Workshop on Usable Security,
EuroUSEC 2017.

[29] M.A. Jackson. 1989. Getting It Wrong: A Cautionary Tale. In JSP & JSD: The
Jackson Approach to Software Development, John Cameron (Ed.). IEEE CS Press.

[30] Daniel E. Geer Jr. 2012. Power. Law. IEEE Security & Privacy 10 (2012), 94–95.

https://blog.liftsecurity.io/2015/01/27/a-malicious-module-on-npm
https://blog.liftsecurity.io/2015/01/27/a-malicious-module-on-npm

Developer-centered security and the symmetry of ignorance NSPW’17, October 1–4, 2017, Santa Cruz, California, USA

[31] Tobias Lauinger, Abdelberi Chaabane, William Robertson, Christo Wilson, and
Engin Kirda. 2017. Thou Shalt Not Depend on Me: Analysing the Use of Out-
dated JavaScript Libraries on the Web. In Proceedings of the ISOC Network and
Distributed System Security Symposium (NDSS), San Diego, CA, USA.

[32] Heather Richter Lipford and Mary Ellen Zurko. 2012. Someone to Watch over
Me. In Proceedings of the 2012 New Security Paradigms Workshop (NSPW ’12).
ACM, New York, NY, USA, 67–76.

[33] Kevin Montrose. 2016. Introducing Stack Overflow Documenta-
tion Beta. StackOverflow blog, https://stackoverflow.blog/2016/07/21/
introducing-stack-overflow-documentation-beta/. (2016).

[34] B. A. Myers, A. J. Ko, T. D. LaToza, and Y. Yoon. 2016. Programmers Are Users
Too: Human-Centered Methods for Improving Programming Tools. Computer
49, 7 (July 2016), 44–52.

[35] Brad A. Myers and Jeffrey Stylos. 2016. Improving API Usability. Commun. ACM
59, 6 (May 2016), 62–69.

[36] Sarah Nadi, Stefan Krüger, Mira Mezini, and Eric Bodden. 2016. Jumping Through
Hoops: Why Do Java Developers Struggle with Cryptography APIs?. In Proceed-
ings of the 38th International Conference on Software Engineering (ICSE ’16). ACM,
New York, NY, USA, 935–946.

[37] D. Oliveira, M. Rosenthal, N. Morin, K-C Yeh, J. Cappos, and Y. Zhuang. 2014.
It’s the Psychology Stupid: How Heuristics Explain Software Vulnerabilities and
How Priming Can Illuminate Developer’s Blind Spots. In Proceedings of the 30th
Annual Computer Security Applications Conference (ACSAC ’14). ACM, New York,
NY, USA, 296–305.

[38] Olgierd Pieczul and Simon N. Foley. 2015. The Dark Side of the Code. In Se-
curity Protocols XXIII: 23rd International Workshop, Cambridge, UK, March 31 -
April 2, 2015, Revised Selected Papers, Bruce Christianson, Petr Švenda, Vashek
Matyáš, James Malcolm, Frank Stajano, and Jonathan Anderson (Eds.). Springer
International Publishing, Cham, 1–11.

[39] Olgierd Pieczul and Simon N. Foley. 2017. The Evolution of a Security Control. In
Security Protocols XXIV: 24th International Workshop, Brno, Czech Republic, April
7-8, 2016, Revised Selected Papers, Jonathan Anderson, Vashek Matyáš, Bruce
Christianson, and Frank Stajano (Eds.). Springer International Publishing, Cham,
67–84.

[40] Rob Reeder, E. Cram Kowalczyk, and Adam Shostack. 2011. Helping engineers
design NEAT security warnings. In Proceedings of the Symposium On Usable
Privacy and Security (SOUPS), Pittsburgh, PA.

[41] Ninlabs research. 2013. API Documentation. online. (2013). http://blog.ninlabs.
com/2013/03/api-documentation/.

[42] H Rittel. 1984. Developments in Design Methodology. John Wiley & Sons, New
York, Chapter Second Generation Design Methods, 317–327.

[43] Fred B. Schneider. 2000. Enforceable Security Policies. ACM Trans. Inf. Syst.
Secur. 3, 1 (Feb. 2000), 30–50.

[44] Bruce Schneier. 2016. Stop Trying to Fix the User. IEEE Security and Privacy 14,
5 (Sept. 2016), 96–96.

[45] Charlotte Seager. 2015. Will learning to code help you get a job? Guardian
Careers. (2015).

[46] A. Shostack. 2008. Experiences threat modeling at Microsoft. In Workshop on
Modeling Security (ModSec).

[47] Adam Shostack. 2010. Engineers are People Too. Proceedings of the Symposium
On Usable Privacy and Security (SOUPS), keynote. (2010).

[48] Adam Shostack. 2014. Elevation of Privilege: Drawing Developers into Threat
Modeling. In 2014 USENIX Summit on Gaming, Games, and Gamification in
Security Education (3GSE 14). USENIX Association, San Diego, CA.

[49] Sathya Chandran Sundaramurthy, John McHugh, Xinming Ou, Michael Wesch,
Alexandru G. Bardas, and S. Raj Rajagopalan. 2016. Turning Contradictions
into Innovations or: How We Learned to Stop Whining and Improve Security
Operations. In Twelfth Symposium on Usable Privacy and Security (SOUPS 2016).
USENIX Association, Denver, CO, 237–251.

[50] Tyler W. Thomas, Heather Lipford, Bill Chu, Justin Smith, and Emerson Murphy-
Hill. 2016. What Questions Remain? An Examination of How Developers Un-
derstand an Interactive Static Analysis Tool. In Twelfth Symposium on Usable
Privacy and Security (SOUPS 2016). USENIX Association, Denver, CO.

[51] Nikolai Philipp Tschacher. 2016. Typosquatting in Programming Language Package
Managers. Master’s thesis. University of Hamburg.

[52] Sven Türpe. 2012. Point-and-shoot Security Design: Can We Build Better Tools
for Developers?. In Proceedings of the 2012 New Security Paradigms Workshop
(NSPW ’12). ACM, New York, NY, USA, 27–42.

[53] Sven Türpe, Laura Kocksch, and Andreas Poller. 2016. Penetration Tests a
Turning Point in Security Practices? Organizational Challenges and Implications
in a Software Development Team. In Twelfth Symposium on Usable Privacy and
Security (SOUPS 2016). USENIX Association, Denver, CO.

[54] C. Weir, A. Rashid, and J. Noble. 2017. I’d Like to Have an Argument, Please:
Using Dialectic for Effective App Security. In 2nd European Workshop on Usable
Security, EuroUSEC 2017.

[55] Erik Wittern, Philippe Suter, and Shriram Rajagopalan. 2016. A Look at the
Dynamics of the JavaScript Package Ecosystem. In Proceedings of the 13th Inter-
national Conference on Mining Software Repositories (MSR ’16). ACM, New York,
NY, USA, 351–361.

[56] Glenn Wurster and P. C. van Oorschot. 2008. The Developer is the Enemy. In
Proceedings of the 2008 New Security Paradigms Workshop (NSPW ’08). ACM, New
York, NY, USA, 89–97.

[57] Jing Xie, Heather Lipford, and Bei-Tseng Chu. 2012. Evaluating Interactive
Support for Secure Programming. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI ’12). ACM, New York, NY, USA, 2707–
2716.

[58] Koen Yskout, Riccardo Scandariato, and Wouter Joosen. 2015. Do Security Pat-
terns Really Help Designers?. In Proceedings of the 37th International Conference
on Software Engineering - Volume 1 (ICSE ’15). IEEE Press, Piscataway, NJ, USA,
292–302.

[59] Mary Ellen Zurko. 2005. Security and Usability. O’Reilly, Chapter IBM Lotus
Notes/Domino: Embedding Security in Collaborative Applications.

[60] Mary Ellen Zurko and Richard T. Simon. 1996. User-centered Security. In Pro-
ceedings of the 1996 Workshop on New Security Paradigms (NSPW ’96). ACM, New
York, NY, USA, 27–33.

https://stackoverflow.blog/2016/07/21/introducing-stack-overflow-documentation-beta/
https://stackoverflow.blog/2016/07/21/introducing-stack-overflow-documentation-beta/
http://blog.ninlabs.com/2013/03/api-documentation/
http://blog.ninlabs.com/2013/03/api-documentation/

	Abstract
	1 Introduction
	2 Today's developers
	2.1 Accidental developers
	2.2 Everyday developers
	2.3 Proliferation of software components

	3 Challenges for Developer Centered Security
	3.1 Layered software abstractions
	3.2 Definition of interface
	3.3 Demographics and work environment
	3.4 Impact on experiments

	4 Adoption inhibitors
	4.1 Incorrect assumptions
	4.2 Misaligned incentives
	4.3 Backward compatibility
	4.4 Security usability vulnerabilities

	5 Symmetry of Ignorance
	5.1 Whither user-centered security?

	6 Developer centered security research so far
	7 Conclusion
	References

