
Trust Management of XMPP Federation
Simon N. Foley and Wayne Mac Adams

Department of Computer Science,
University College Cork, Ireland

Email: s.foley@cs.ucc.ie, w.macadams@4c.ucc.ie

Abstract—Deploying an XMPP server requires system security
configuration, including firewalls and XMPP security controls.
Security threats include DNS spoofing, rogue servers, inadequate
authentication/authorization, spambots, etc. An system adminis-
trator who understands the threats and their mitigation manages
the server configuration. This administrator must also deal with
routine requests to update the configuration in order to federate
with new XMPP domains. In practice it is non-trivial, time-
consuming and costly to get the configuration right.

We describe the development of a configuration agent that can
automate some of these system administration activities while
ensuring that the server is correctly configured and available.
The agent is used by individual XMPP servers to (autonomically)
configure when and how they should federate to provide end-to-
end services. The KeyNote Trust Management system is used
by the agent to help manage the trust relationships across the
federation and to decide when it is safe to admit a new domain.

I. INTRODUCTION

The Extensible Messaging and Presence Protocol (XMPP)
[3] is an open standard originally created by the Jabber com-
munity for instant messaging and presence and has evolved to
support a much wider range of other services such multi-party
chat, voice and video calls. An XMPP server may be config-
ured to support host-based security controls. For example, an
IP address white-list may specify the other XMPP servers with
which a server may be willing to federate. The XMPP protocol
supports different authentication methods, including simple
password-based, dial-back and TLS-based authentication. In
addition to server-to-server configuration, server to client sys-
tem connections can be configured. Individual XMPP servers
also support, to varying degrees, specific configuration options
for application-level security controls whereby mediation is
based on application-level content. For example, the Openfire
XMPP server packet-filter and content-filter plug-ins provide
user-to-user access controls and message filtering of message
content based on regular-expressions.

The XMPP server administrator is responsible for ensuring
that their system configuration adequately defends against ap-
propriate threats. For example, the administrator of a corporate
XMPP server may require that clients and servers connect only
via TLS in order to mitigate DNS spoofing, while dial-back
server authentication is an adequate mitigation is considered
adequate for a public/free service. An administrator might
also use a white-list to ensure that only organizations with
business agreements are permitted to federate and connect
with the server. In deciding whether the XMPP server of
another organization should be added to the white-list, the

administrator may require that the server of the other orga-
nization is adequately configured; for example, that it has
adequate IM SPAM (SPIM) and Denial of Service controls
in place. The XMPP standards foundation [3] provide some
recommended best practices for secure configuration, such
as XEP-0205 (Denial of Service), XEP-0178 (authentication)
XEP-0165 (JID Mimicking) and XEP-0159 (SPIM).

We are interested in providing a degree of autonomic
configuration support for the XMPP administrator. Rather
than operating directly on the configuration, the administrator
creates a business policy that defines the conditions under
which the XMPP configuration may be changed. An auto-
mated agent running on an XMPP server, on behalf of the
administrator, accepts configuration change-requests, and if
the request is permitted by the policy then the agent updates
the configuration. In the simplest case, the request originates
from the administrator and the agent ensures that the resulting
configuration is at least consistent with the current business
policy. In the more general case, the request may originate
from some third party, for example, the user of another server
requesting federation. In this case, the agent must determine
whether the high-level policy indicates that it can trust the
originator, for example, that a business-agreement is in place
and may update the white-list. This request should be acted
on by the automated agent without requiring intervention of
the administrator.

This paper describes the design and implementation of
an agent service that, subject to a policy, can update an
XMPP server configuration based on third-party requests. The
KeyNote Trust Management system [4] provides the policy
framework and is used to manage the trust relationships
between the administrator and third-parties. An advantage
of taking a Trust Management approach is that it does not
necessarily rely on a centralized authorization/policy service
and the policy rules can be distributed across the network. The
paper is structured as follows. Section 2 provides an overview
of Trust Management. Section 3 outlines the architecture and
design of the XMPP configuration agent. Sections 4 and 5
explores how the agent might be used in practice by presenting
a series of sample policies. Section 6 outlines the current
implementation of the agent in the Openfire XMPP server.

II. TRUST MANAGEMENT SYSTEMS

Trust Management [6] is an approach to constructing and
interpreting the trust relationships among public keys that
are used to mediate security critical actions. Cryptographic

credentials specify delegation of authorisation between public
keys. When a request from an untrusted principle (key) is made
to a networked application to execute a particular action, then,
authentication notwithstanding, the application must determine
whether the key(s) that made the request is authorised. Trust
Management provides assistance to applications in making
these decisions and facilitates decentralized policies: autho-
rization may be determined without having to consult some
central authorisation server, and users may further delegate
their authority without reference to a Central Authority.

KeyNote [4] is a flexible trust management scheme that
provides a simple credential notation for expressing both
security policies and delegation. Authorisation comes in the
form of digitally signed public key credentials that bind public
keys to the authorisation to perform various actions. For
example, Sally may hold a credential, signed by her manager’s
private key, binding her public key to her authorisation to
capture deals up to a value of £100.00. Sally’s public key signs
an order request to the purchasing application; her credential
provides proof of authorisation.

In practice, authorisation is achieved by a collection of
credentials that exhibit the necessary trust relationships be-
tween their keys. For example, we may trust Sally’s public
key for orders up to £100.00 if her manager’s public key is
trusted to delegate orders up to £100.00 (or more), and so forth
along a delegation chain that ends in a key that is known to
be appropriately trusted. Given a policy (public keys, trusted
in known ways), and a collection of credentials, a network
application must determine whether a particular public key is
authorised to request a particular operation. KeyNote has been
used to provide trust management for applications including
active networks [5] and web servers [1].

III. MANAGING XMPP CONFIGURATIONS USING
KEYNOTE TRUST MANAGEMENT

Figure 1 depicts use of the XMPP agent. The goal of the
Federated Autonomic Configuration (FAC) agent is to provide
an orchestrated security configuration service for a secure
XMPP service. This includes host-level controls via XMPP
server-server and server-client configuration, application-level
controls, for example, packet and content filtering controls and
other security controls such as firewalls whose policies must
be aligned with the XMPP policies. The current prototype
is limited to host-based XMPP configuration controls and is
intended to provide a proof of concept for the more general
approach, which is a topic for future research.

A. Agent Behavior

A Target server with IP address T and public key KT hosts
a FAC agent and an XMPP server. The target server has a
KeyNote policy that specifies the conditions under which it
is willing to trust a request. A Requestor with public key
KR sends a signed request (to federate with XMPP server
at address R) to T . This is done by including the address of
the server that hosts the requester XMPP service in the request

Fig. 1: XMPP Agent Application

along with KeyNote credentials that are intended to prove that
the requester can be trusted for the request.

Msg1 : Requestor → Target : {R, . . .}sKR

Msg2 : Requestor → Target : KeyNote credentials

The target FAC agent confirms the signature on the message
from the requester and, if valid, then the target queries
(KeyNote) as to whether the public key KR is trusted to carry
out the action whereby [Server_IP_Address ← R]. If
the query is successful then the Target FAC agent updates the
whitelist entry on the Target XMPP configuration. If it is not
successful then the request is rejected.

B. Target FAC Agent Policy

The target FAC agent has a policy defining the IP addresses
it trusts, and thus willing add to the white-list, if requested to
do so. For example, the KeyNote policy credential

Authorizer: POLICY
Licensee: TargetAdmin
Conditions: App_domain="XMPP" &&
Server_IP_Address=˜"ˆ192\.168\.40\.5\d$"
Signature:

defines the conditions under which the identified Licensee
can be trusted. For ease of exposition this is given as the
identifier TargetAdmin; in practice it would be the public
key KT owned by the target administrator. The Conditions
field uses a C-like expression syntax to specify the authority
that the Licensee has been granted. In this case it is the
authority to add address to the XMPP white-list that match
the regular expression "ˆ192\.168\.40\.5\d$". Thus,
the Target Administrator may use the agent to request that
addresses in the range 192.168.40.50 - 192.168.40.59 be added
to the white-list; any other requests are rejected.

C. Delegation Credentials

Suppose that the Target administrator trusts the administra-
tor (with public key KAlice) of another XMPP server with
address 192.168.40.55 and issues the following credential.

Authorizer: TargetAdmin
Licensee: KAlice
Conditions: App_domain="XMPP" &&
Server_IP_Address="192.168.40.55";
Signature: signed by target administrator

At some future point, when wishing to federate with the Target
XMPP server, KAlice sends a signed request to the Target
FAC Agent, along with the above credential. The FAC agent
on the Target executes a KeyNote query as to whether the
key KAlice can be trusted for [Server_IP_Address ←
192.168.40.55], given the policy credential and the above
credential provided by KAlice. In this case a chain of trust
exists from POLICY to KAlice that satisfies these conditions
and the query is successful.

D. Managing Other Configuration Attributes

In addition to server whitelist update (based on attribute
Server_IP_Address), requests to update of the Openfire
Packet Filter plugin are supported. Based on the request, the
agent modifies packet filter rules that are used to block or
admit packets involving specific users and/or groups.

Continuing the example, KAlice decides to delegate au-
thority to make a federation request to KBob, a user of the
XMPP server managed by KAlice. She signs the credential:

Authorizer: KAlice
Licensee: KBob
Conditions: App_domain=="XMPP" &&
Server_IP_Address=="192.168.40.55"
&& Action_Authorizers==KBob
&& Date >= 20100101 && Date <= 20100201;
&& UserName=="Bob" && PacketType=="message"
Signature: signed by alice

Bob signs a request to federate his (Alice’s) XMPP server
with the Target server, and submits credentials as proof
of authorization. His request results in KeyNote query
[Server_IP_Address ← 192.168.40.55;UserName ←
Bob;PacketType ← Message], which evaluates to
true, the agent adds 192.168.40.55 to the server
whitelist and adds a packet filter rule permitting Bob’s
messages. Note, Bob may not delegate his authority further
(Action_Authorizers==KBob) and that the credential is
valid only for the dates specified. In this way federation is
provided only to those who have requested it, thus ensuring
the principle of least privilege.

IV. EXAMPLE: THREAT MITIGATION

Most XMPP server administrators require mitigation of
certain threats prior to federation. An XMPP server is vul-
nerable to a variety of threats, including DNS Cache poi-
sioning, Denial of Server (DOS) attacks, worms, spim, and
eavesdropping. These threats can be mitigated, both within
the XMPP service and its hosting server. For example, within
the XMPP service, attributes such as number of connection
attempts and concurrent logins are suggested for avoiding
DOS attacks [2], while firewalls provide external controls.
Ordinarily a server administrator checks that a requesting
server satisfies his security policy by confirming the threat

mitigation with the requester administrator. In the following
example we illustrate how this policy can be encoded in terms
of KeyNote credentials.

The TargetServer policy states that only servers that
mitigate eavesdropping and DOS may be trusted. Eavesdrop-
ping mitigation requires TLS (Transport Layer Security) for
server to server communication in addition to SRTP (Secure
Real-time Transport Protocol) for any video communication.
DoS mitigation requires either an XMPP stanza size limit of
less than 30000 bytes or else have both XMPP multi-user chat
disabled and firewall packet filtering in place.

Authorizer: POLICY
Licensee: TargetServer
Conditions: App_domain="XMPP" &&
(Eavesdropping_Mitigation=="true" ->

{XMPP_TLS_for_s2s=="required" &&
XMPP_SRTP_for_video=="required"};)&&

(DOS_Mitigation=="true" ->
{XMPP_Sanza_byte_size_limit<30000 ||
(XMPP_Multi_User_Chat=="disabled" &&
Firewall_Packet_Filtering=="enabled")};);

The Target administrator issues a credential stating that XMPP
security audits from a SecurityConsultant are trusted:

Authorizer: TargetServer
Licensee: SecurityConsultant
Conditions: App_domain="XMPP";
Signature:

Suppose that the SecurityConsultant audits Alice’s
XMPP server (192.168.40.55) and issues a credential
specifying the controls that are present on her server.

Authorizer: SecurityConsultant
Licensee: Alice
Conditions: App_domain="XMPP" &&
Server_IP_Address="192.168.40.55" &&
XMPP_TLS_for_s2s=="required" &&
XMPP_SRTP_for_video=="required" &&; &&
XMPP_Sanza_byte_size_limit==25000 &&
XMPP_Publish_Suscribe_Service=="disabled"
&& Ingress_IP_Filtering=="enabled" &&
Third_Party_DOS_Mitigation_OK=="true";
Signature: by security consultant

These controls imply that Alice’s configuration provides both
DOS_Mitigation and Eavesdropping_Mitigation
(on the basis of the target policy). Finally, Alice trusts her
user Bob for XMPP application requests.

Authorizer: Alice
Licensee: Bob
Conditions: App_domain="XMPP" &&
Server_IP_Address="192.168.40.55"
Signature:by Alice

Using these credentials, Bob can make a (successful) request
to the Target FAC agent to federate with Bob’s XMPP server.

V. EXAMPLE: BUSINESS LEVEL FEDERATION

A FAC agent can mediate white-list modification based on
any KeyNote policy. This policymay be based on organiza-
tional or business requirements. For example, a business has

two types of business agreements: b2b roles, which correspond
to business-to-business agreements and b2c roles which cor-
respond to a business-to-customer agreement. The business
has a policy that any individual involved in a b2b agreement
may federate XMPP and ERP services, while b2c agreements
are limited to XMPP services. This policy is specified as
follows, where TargetAdmin corresponds to the public key of
the system administrator of the business.

Authorizer: POLICY
Licensee: TargetAdmin
Conditions: role=="b2b"->
{App_domain=="XMPP" ||
App_domain =="ERP";};

role=="c2b"->
{App_domain =="XMPP";};
Signature:

The system administrator issues a credential to the director of
the business indicating that he/she is unconditionally trusted.

Authorizer: TargetAdmin
Licensee: TargetDirector
Conditions:
Signature:

Upon aquiring a new client Angela, the TargetDirector
establishes a b2c relationship and issues credential:

Authorizer: TargetDirector
Licensee: Angela
Conditions: role=="c2b";
Signature:

Suppose that Angela, the director, has at some point issued
a credential trusting her administrator Alice to properly
administrate the host at 192.168.40.55

Authorizer: Alice
Licensee: Angela
Conditions:
Server_IP_Address="192.168.40.55"
Signature:

And, as above, Alice trusts XMPP user Bob

Authorizer: Alice
Licensee: Bob
Conditions:App_domain="XMPP" &&
Server_IP_Address="192.168.40.55"
Signature:

VI. IMPLEMENTATION

The FAC agent has been implemented to support configura-
tion management of an Openfire XMPP server and comprises
three components: an Agent Server, an Openfire Agent plugin
and an Agent Client plugin.

The Agent Client Plugin generates a request to a remote
target FAC agent. Currently, it provides a simple user-interface
that allows a user to manually select the request and credentials
to be sent to the server. We are investigating how this can be
done automatically whereby a failure response to an XMPP
connection attempt is trapped and generates a request to the
corresponding FAC agent at the target and is, in turn, followed
by a repeated connection attempt.

The Agent Server sits alongside the XMPP server waiting
for connections from Agent clients. A request from a client is
interpreted as a KeyNote query and the result is passed back to
the agent which takes the appropriate action. If the requester is
authorised then the Agent will dispatch a configuration change
to to Openfire FAC Agent plugin.

The Openfire FAC Agent plugin acts on (trusted) requests
from the FAC Agent Server. The current prototype provides
support for Openfire whitelist update and addition of packet
filter rules.

Openfire configuration updates by a FAC Agent are tem-
porary and expire after a ValidityPeriod, which can be
specified in the policy and/or delegation credentials.

VII. DISCUSSION

This paper describes an agent that automates configuration
management of an XMPP server. The current implementation
is limited to policies involving host and user based controls,
that is, white-list configuration and user/group based packet
filtering. We are investigating how this agent may be extended
to include other policy attributes. For example, support for at-
tributes: Authentication specifying server authentication
configuration options (none, password, dialback, TLS, etc.),
and Content_Filter specifying a regular-expression to be
added to the the Openfire content filter rules for blocking text.
The agent will be extended to coordinate configuration with
other security controls, such as firewall configuration [7]. This
goes beyond the firewall-centric approach described in [8].

The FAC agent currently operates independently of the
Openfire server where requests are made by a user via a simple
user interface. Future research will investigate how requests
can be made transparently (to the requesting user): on being
denied a connection to a target service, the requester (XMPP
server) requests a configuration change to the target FAC.
Acknowledgements. This research has been supported by
Science Foundation Ireland grant 08/SRC/11403.

REFERENCES

[1] “Apache-ssl,” Open source software distribution. http://www.apache.org.
[2] “XEP-0205: Best practices to discourage denial of service attacks,” XMPP

Standards Foundation, http://xmpp.org/extensions/xep-0205.html.
[3] “XMPP standards foundation,” Webpage, http://xmpp.org.
[4] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. D. Keromytis, “The keynote

trust-management system, version 2, IETF RFC 2704,” September 1999.
[5] M. Blaze, J. Ioannidis, and A. Keromytis, “Trust management and

network layer security protocols,” in Security Protocols International
Workshop. Springer Verlag LNCS, 1999.

[6] M. Blaze, J. Feigenbaum, and M. Strauss, “Compliance checking in the
policymaker trust management system,” in FC ’98: Proceedings of the
Second International Conference on Financial Cryptography. London,
UK: Springer-Verlag, 1998, pp. 254–274.

[7] W. Fitzgerald and S. Foley, “Management of heterogeneous security
access control configuration using an ontology engineering approach,” in
Proceedings of the 3rd ACM workshop on Assurable and usable security
configuration, ser. SafeConfig ’10. ACM, 2010, pp. 27–36. [Online].
Available: http://doi.acm.org/10.1145/1866898.1866903

[8] S. Ioannidis, A. D. Keromytis, S. M. Bellovin, and J. M. Smith, “Im-
plementing a distributed firewall,” in ACM Conference on Computer and
Communications Security, 2000, pp. 190–199.

