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Abstract

We present a refined model for Role Based Access Control policies and

define a risk measure for the model, which expresses elements of the oper-

ational, combinatorial and conflict of interest risks present in a particular

policy instance. The model includes risk-reducing mechanisms corresponding

to practical mechanisms like firewalls, stack checking, redundancy, and event

tracking that are frequently used to reduce risks in real systems. We also

define policy transformation operators that produce new policies that allow

the behaviours of the old policy while potentially reducing the risk measure.

Sequences of these operators can be used to find policies that are less risky

but still implement the initial policy. An example is give for Grid computing.

1 Introduction

In general, Role-Based Access Control (RBAC) policies [18] are rigid; once the policy

is constructed out of the basic elements of users, roles and permissions, it is hard to

reason about the security implications of any changes that may be applied to the
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initial setup. For example, what is the risk associated with adding the user Alice

into an accountant’s role, given that she is already in the sales role? Or, is it safe

to host the accounting system on the same server as the sales system, on the basis

of the users who may have access to the server?

Existing research to address this category of problems have ranged from the

analysis of security configurations for potentially dangerous conflicts of interest [5,

19] to frameworks that provide support for dynamic RBAC policies [12, 21]. Such

approaches typically regard security modelling as a binary problem: a system and/or

its configuration is either secure or not.

Setting up and maintaining a security configuration requires an ongoing process

of security evaluation so that any changes made will, at least, make the system no

less secure than it was prior to any changes. Each time a configuration is changed

there is a chance for something unexpected. At best, any change, prompted for

instance by business growth or changing business dynamics, leads to a more secure

system. In practice, reconfiguration is a balance of security against other attributes

such as price, availability, reliability and performance. So, one may pose questions

like “does reconfiguring my system with the intention of improving performance

increase or decrease the risk of security failure?”

Using formal methods to analyse and verify properties of secure systems requires

considerable specification effort. The cost of in-depth specification and subsequent

security analysis may be justified for small critical security mechanisms such as au-

thentication protocols [4, 14, 16] and security kernels [17]. However, such in-depth

analysis would not scale well to the configuration of a large and/or complex appli-

cation system.

We are interested in developing shallow and pragmatic security analysis methods

for systems. This is achieved through the analysis of how a system is configured,

rather than an analysis of its underlying mechanisms and protocols. Instead of
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concentrating on detailed semantics and complete formal verification of components,

we are concerned more with the ability to trace, at a practical level of abstraction,

how component security requirements relate to each other and any overall security

requirements. We believe that a complete security verification of a system is not

achievable in practice; we seek some degree of useful feedback from an analysis to

indicate how reasonable a particular system configuration is.

In this paper, we propose a new approach to security configuration, which is

based on defining transformations for RBAC policies. The transformations are based

on a refined model of RBAC policies that incorporates the notion of risk . Another

model of RBAC policies based on risk was defined in [13]. However, the approach

of [13] is different; the notion of risk adopted does not provide for risk-enhancing

mechanisms and the model does not define any formal risk-based semantics for the

different elements of RBAC policies, and the related transformations. In [10], Millen

adapts Meadow’s lattice-based Chinese Wall mechanism [9] to determine optimal

configurations that can survive component failures. Rather than taking a binary

approach to the ability to survive failure (in the sense of [10]), our approach allows

a measurement of the relative risks of failure associated with a configuration.

The paper is organised as follows. In Section 2 we introduce the basic components

of our refined RBAC model. Section 3 defines an interpretation of risk and Section 4

uses this interpretation to provide a risk based semantics for the refined RBAC

model. In Section 5 we define policy transformations in terms of implementation

and equivalence relations. Section 6 illustrates how an example of Grid access control

policy administration can be interpreted within our configuration framework.

2 A Refined RBAC Model

Role-based access control (RBAC) [18] is widely used to provide access control in

database management systems, operating systems and middleware architectures. In
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RBAC, access rights (permissions) are associated with roles, and users are members

of a set of roles. When a user is a member of a role, they gain all the permissions of

that role in the system. This allows an organisation to model its security infrastruc-

ture along the lines of its business use cases, assigning a role to a set of use cases

and assigning users to the roles associated with the use cases they need to perform.

Adding the indirection permissions through roles can lead to a coarser grain of con-

trol but can make the system easier to administer as it reduces the state space for

administrators. For example, if the thousands of permissions can be grouped into

tens of roles, then we’ve greatly reduced the difficulty in administering users.

Role Based Access Control (RBAC) is usually defined in terms of Users , Roles

and Permissions [18].

• Permissions : represent actions, capabilities, applications or any other active

behaviour that can be “performed” and, to which, we intend to control autho-

risation. We write the set of permissions as perm ∈ PERM .

• Roles : roles are logical groupings of permissions that reflect a particular task

that can be assigned to some user. In our model, we assume that roles do

intersect in their underlying permissions. We write the set of all roles as

role ∈ ROLE.

• Users : users include humans or any other entity that can be assigned a role.

We write the set of all users as user ∈ USER.

Based on these components, a standard RBAC policy pol ∈ POLICY can be defined

as a tuple, (PERM,USER,ROLE, userRoles, rolePerms), such that:

userRoles : USER → ℘(ROLE)

rolePerms : ROLE → ℘(PERM),

4



The former mapping assigns each user a set of roles and the latter assigns a set of

permissions to each role. In the rest of this section, we refine the model of RBAC

policies to include additional elements that model practical security measures.

2.1 Containers

The first such element is that of containers, which are defined as execution contexts

that are shared by sets of computations. A container might represent a subnet, a

server, a virtual machine inside a server, a process inside a virtual server, a con-

tainer inside an application server, or a distributed transaction. Each container is

implemented by a set of mechanisms, some inherent in the implementation of the

container and some that are used to represent ad-hoc mechanisms that are used to

‘harden’ operations/permissions. They serve to protect the computations from each

other in such a way that a failure in one computation does not compromise the safety

of the container. We write the set of all containers as cont, cont′ ∈ CONTAINER

and the set of mechanisms as mech,mech′ ∈MECH.

If a container is to be effective it must utilize permissions to perform actions.

Thus we associate with each container the set of permissions it utilizes:

containerPerms : CONTAINER→ ℘(PERM)

and the set of mechanisms used to separate computations in the container:

containerMechs : CONTAINER→ ℘(MECH)

For example, the Stackguard compilation tool [3] compiles programs and incorpo-

rates code to defend against likely stack smashing attacks. Therefore, given a con-

tainer c with containerPerms(c) = {Apache}, then having containerMechs(c) =

{Stackguard} would represent a more robust version of Apache. If, in addition,
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the container running Apache were running on a secure system, such as security en-

hanced Linux, then containerMechs(c) = {selinux, Stackguard} would represent

an even more secure version of Apache. Other examples of protection mechanisms

that can be included within a configuration include ad-hoc mechanisms such as

TCP-wrappers [20] and more general mechanisms such as a Java Virtual Machine

running a security manager.

In reality, certain mechanism-permission and mechanism-mechanism composi-

tions do not make sense, for example a hardware network firewall doesn’t compose

with a stack frame checker. To avoid such bad compositions, we introduce the special

commutative relation:

ψc ∈ (MECH ∪ PERM)× (MECH ∪ PERM)

Any compatible mechanisms or permissions are in the relation. For a policy, pol, to

be compatible with ψc it must be the case that

∀c ∈ pol.CONTAINER,

∀m,m′ ∈ pol.containerMechs(c),

∀p, p′ ∈ pol.containerPerms(c) :

(m,m′) ∈ ψc ∧ (m, p) ∈ ψc ∧ (p, p′) ∈ ψc.

For example, (TCP wrapper, SMTP ) ∈ ψc, since a TCP wrapper can be composed

with SMTP to protect email traffic, but (JVMS ,Apache) /∈ ψc, since it does not

make sense to apply a Java Security Manager to the Apache server.

2.2 Roles

Like containers, roles are also composed from a set of permissions that are usually

executed together, however in a use case rather than in an execution environment.
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However, unlike a container, a role does not execute the activities underlying its

permissions, but rather makes available for utilisation the permissions (and their

resources) to any users that may be assigned to that role. More precisely, roles

are the means through which users can avail of a subset of permissions associated

with that role. For example, the role Accountant within Bank of America may

have the specific permissions to check funds, prepare financial statements and make

presentations.

Also just as containers have mechanisms to strengthen security inside a con-

tainer, we extend roles with mechanisms to strengthen the security of that role.

These mechanisms can include a diverse set of monitoring and checking tools, e.g.,

monitoring the activity of users in certain roles in real time using intrusion detec-

tion techniques such as [2] to predict if an attack is suspected. Another mechanism

might restrict the activation of a role to users physically within a security perimeter.

We choose the role mechanisms from the same set MECH, but we use a different

typing mechanism (though having the same form as ψc), ψr. ψr is used along with

a new relation:

roleMechs : ROLE → ℘(MECH)

such that, ∀r ∈ ROLE,∀m,m′ ∈ roleMechs(r),∀p, p′ ∈ rolePerms(r) : (m, p) ∈

ψr ∧ (p, p′) ∈ ψr ∧ (m,m′) ∈ ψr. Intuitively, ψr maintains the correctness of the

compositionality of permissions and mechanisms inside roles.

2.3 RBAC Policies

Based on the refined components of our RBAC model given in the previous sec-

tions, we define our extended RBAC policies as a tuple consisting of USER, ROLE,

PERM , userRoles, and rolePerms, plus the new sets, CONTAINER andMECH,

and three new mappings, containerMechs, containerPerms and roleMechs. The

only restriction is that any permission that is accessible to a user must be contained
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in at least one container and the compatibility rules given in ψr and ψc must hold.

A standard RBAC policy can be encoded into our refined model by using one

container per permission, placing that permission in containerPerms and finally,

using no mechanisms for roles or containers.

3 Risk

We define in this section the concept of risk and we formalise its measure on our

extended policy. Our concept of risk combines our intuition about the likelihood

of a failure occuring and the consequence of that failure. These two concepts are

intertwined: as the consequence of a failure in a policy increases, the likelihood will

also increase, as the policy becomes a better target for hackers.

Intuitively, we deal with three main elements of risk:

• The first is operational ; indicating the possibility of RBAC entities deviating

from their specified operational behaviour. Such deviation may affect security

properties of the entity, such as the failure in protecting data privacy by causing

that data to be output over public communication channels. It may also affect

quality properties, such as the failure to deliver information at a minimum

quality of service (QoS) standard. Our notion of operational risk is linear;

for example, consider a role that has two permissions, where the first could

be misused to cause a privacy breach while the second could be misused to

commit fraud; in this case the role has an operational risk level of the privacy

and fraud vulnerabilities combined. Throughout the paper, we are interested

only in security aspects of the operational risk.

• The second element of risk is combinatorial ; it expresses the possibility of vul-

nerabilities that appear only as a result of the combination (co-existence) of a

number of permissions together in the same container or role. Again, we are
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interested in this paper in the security aspect of the combinatorial risk. The

combinatorial risk level resulting from the co-existence of permissions within

a particular role is perceived as the threat arising from the collective usage

of those permissions by any of the users belonging to that role or the con-

tainers acting on the permissions. For example, a role with two permissions

each utilising a server up to 75% of the server’s capacity could introduce a

denial of service vulnerability when utilised at the same time. This interpre-

tation of the combinatorial risk is different within the context of a container,

where the co-existence of multiple permissions within a container introduces

threats resulting from the collective management of those permissions by the

container. For example, a container running an insecure operating system un-

derneath its permissions may introduce privacy vulnerabilities, compared to

another container running on an operating system with multilevel security. In

any case, combinatorial risk is non-linear. For example, it is not possible to

infer the denial of service vulnerability of the role described above, by simply

knowing that one of the two permissions has privacy vulnerability, the other

fraud vulnerability, and then composing the two.

• The final risk element arises from conflicts of interest, which normally exist

among competing roles and is controlled using separation of duties [7, 11, 18].

For example, one role may represent the auditing function and another the

accounts payable. Having a single user in both roles may represent a conflict

of interest as the same user could approve a payment to a bogus supplier and

later, as part of an audit, confirm that the payment met corporate guidelines.

In order to formalise a measure of risk, we define security threats as a finite set,

Rset = {l1, l2, . . . , ln}. For simplicity, we shall take these in English words, like

l1 = ddos attack , l2 = buffer overflow , l3 = privacy etc. Then we define the lattice

of risk levels, L = (Rset,v,t,u,>,⊥), where ⊥ denotes the safest element in the
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Figure 1: A lattice of the F , P and D risk levels.

lattice and > denotes the riskiest element. For example, assume that F is the risk

level of fraud, P is the risk level of privacy breach and D is the risk level of denial

of service, then Figure 1 illustrates one such lattice of risk levels ordered by subset

inclusion.

In order to be able to denote the level of each of the operational, combinatorial

and conflict of interest risks as described above in terms of the lattice of risk levels,

we define the following functions:

α : (PERM ∪MECH) → L

β : ℘(PERM) → L

γ : ℘(ROLE) → L

The α function defines operational risk levels for permissions and mechanisms,

whereas the β function defines the combinatorial risk level of different permissions

co-existing together (represented as a set). Finally, the γ function represents a con-

flict of interest relation, where the risk of such a conflict is based on the roles within

domains that a single user may be assigned.
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4 Risk Measures

In the following sections, we define measures of risk for the refined RBAC model

introduced in the previous section. This measure reflects the operational, combi-

natorial, and conflict of interest risk elements as discussed earlier. To make the

description easier, we look first at the risk in containers, domains, and then users,

and finally combine them to form a single risk measure for an RBAC policy.

4.1 Container Risk

We define the operational risk in a container inside a policy based on the permissions

held by the container, the security mechanisms used in the container and the function

α defined in the previous section:

Rop
c (cont) =

⊔
perm∈containerPerms(cont)

α(perm) u
l

mech∈containerMechs(cont)

α(mech)

The risk in a container increases with the number of permissions being used in that

container. This reflects the fact that both the risk that something will go wrong

inside the container and the consequences of multiple failures will increase, which is

reflected by the first least upper bound calculation. On the other hand, the risk level

is lowered by using security mechanisms to implement the container. This decrease

is reflected by taking the greatest lower bound of the resulting permissions with the

risk levels of the mechanisms in use. If the policy is valid, the mechanisms (permis-

sions) in a container must be compatible with each other with the corresponding

permissions (mechanisms).

For example, an auditing mechanism to improve fraud detection (adm) could

have a risk level of {P,D}, a cryptographic mechanism to improve privacy (crypto)

might have a risk level of {F,D} and a syn-cookies mechanism [1] to lessen DDOS

vulnerabilities (syn) could have risk level {F, P}. We might use those mechanisms
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to run a sensitive application for which α(app) = {F, P,D}. By taking the greatest

lower bound of the extra mechanisms of adm, crypto and syn, as well as app, the

risk level of the policy is lowered. For example:

Rop
c ({app}) = {F, P,D}

Rop
c ({adm}, {app}) = {D,P}

Rop
c ({syn, adm}, {app}) = {P}

Rop
c ({crypto, syn, adm}, {app}) = {}

The combinatorial risk in a container is simpler because the function β works

directly on the set of permissions used inside the container:

Rcmb
c (cont) = β(containerPerms(cont)) u

l

mech∈containerMechs(cont)

α(mech)

For example, a container may have permission to delete a user and permission to

refund money to a user. Having both those permissions together gives the container

the opportunity to commit fraud and to hide the fact by deleting the evidence. This

vulnerability must be encoded in the β function.

4.2 Roles

Roles also introduce an operational risk element using the same function α as above:

Rop
r (role) =

⊔
perm∈rolePerms(role)

α(perm) u
l

mech∈roleMechs(role)

α(mech)

As with containers, having many permissions within a single role will increase the

risk level of that role since the operational risk levels of individual permissions join

together. However, adding mechanisms to a role lowers this risk level. For example,
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given a role with permissions pay supplier, refund customer, users with this role

could commit fraud by paying bogus suppliers or refunding money to their friends.

One can imagine a mechanism, say limit remits, that limits a user to issuing a

maximum of $1000 per day in funds to either suppliers or customers. By attaching

that mechanism to the role, we can reduce the operational risk.

As one may expect, roles also have combinatorial risk defined using β:

Rcmb
r (role) = β(rolePerms(role)) u

l

mech∈roleMechs(cont)

α(mech)

For example, a role may have permissions to execute two applications, each of

which could consume up to 75% of the processor’s computational resources. Exe-

cuting both together will most likely cause a denial of service that is captured in

β. However, that particular risk can be mitigated by using a special sequential

mechanism which prevents the user utilizing the role from having more than one

application active at a time.

4.3 Users

Unlike containers and roles, users have only one element of risk; i.e. the conflict of

interest risk, which we define using the special function, γ, as follows:

Rconf
u (user) = γ(userRoles(user)))

Note that while one could imagine mitigating this risk by some user mechanism

(to augment the existing container and role mechanisms) in most systems this is

not possible because it is difficult to track users as they switch roles. This is often

due to the fact that these roles are actually implemented as separate users using

disconnected login systems.

13



4.4 Policies

The risk semantics of a policy is defined by joining all of the risk components defined

for its components:

Rp(pol) =
⊔

user∈pol.USER

Rconf
u (user)

t
⊔

role∈pol.ROLE

Rop
r (role) tRcmb

r (role)

t
⊔

cont∈pol.CONTAINER

Rop
c (cont) tRcmb

c (cont)

5 Policy Transformation

In this section, we define an implementation and an equivalence relation among

policies as well as a set of policy transformations that produce policies that imple-

ment the input policy but have a different risk profile than the input policy. These

transformations may be used in sequence to produce a policy with minimum risk.

5.1 The Implements Relation

The implements relation allows us to formalise the idea that a new policy preserves

the permissions granted to a set of users in an older policy, while allowing for arbi-

trary new elements (users, containers, roles and permissions) to appear in the new

policy. More formally, we define the implements relation as follows.

Definition 1 (The implements relation)

Given two policies pol, pol′ ∈ POLICY , we say that pol′ implements pol (or pol is
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implemented by pol′), written as pol I pol′, if the following holds:

∀u ∈ pol.USER, p ∈ pol.PERM,

∃r ∈ pol.ROLE :

r ∈ pol.userRoles(u) ∧ p ∈ pol.rolePerms(r)

⇒ ∃r′ ∈ pol′.ROLES : r′ ∈ pol′.userRoles(u) ∧ p ∈ pol′.rolePerms(r′)

Intuitively, every permission held by a user u in pol is also held by u in pol′. Note

that this does not mean that the USER or PERM sets have to be identical in pol

and pol′, as pol may contain users that have no permissions and permissions that

no users have been granted that do not appear in pol′. Likewise, pol′, may contain

new users and permissions as these do not inhibit its ability to implement pol.

5.2 The Equivalence Relation

Our equivalence relation captures scenarios where two policies are deemed to have

the same risk semantics and they both implement each other. More formally, we

define the equivalence of two policies as follows.

Definition 2 (The equivalence relation)

Two policies, pol and pol′, are said to be equivalent, written as pol l pol′, if pol and

pol′ differ only in the following:

• The renaming of roles or containers

• The existence of roles with no permissions or roles with no users assigned

• The existence of users that have no permissions

• The existence of containers that have no permissions

• The existence of mechanisms that are unused by any container or role
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Moreover, one can prove the following properties.

Theorem 1 Assuming pol l pol′, then:

1. Rp(pol) = Rp(pol
′)

2. ∀pol′′ ∈ POLICY : pol′′ I pol ⇔ pol′′ I pol′

Proof sketch. The proof of 1. is by induction over the definition of l. Essentially,

the definition of l involves either the renaming of permissions, the addition of

roles/containers with no permissions or the addition of mechanisms that are unused

by any container or role. According to our definition of risk measures in Section 4,

none of these changes will induce any change in the risk value of a policy. As for

part 2., we can show that this holds by showing that the definition of l preserves

the definition of I. This can be shown by induction over the definition of l. �

5.3 Mechanism Replacement

The first technique we consider is quite straightforward; replacing the mechanisms

used to reduce risk in containers and roles. The resulting policy trivially implements

the input policy because mechanisms do not affect the ability of a user to make use

of a granted permission. This is defined by a transformation Mc and Mr:

Mc : POLICY × CONTAINER× ℘(MECH) → POLICY

Mr : POLICY ×ROLE × ℘(MECH) → POLICY

where the given set of mechanisms replace the mechanisms used in the given con-

tainer or role. The container or role must exist within the policy and must be

compatible using ψc or ψr with the existing permissions for the container or role.

Lemma 1 Given a policy, pol, then the Mc,Mr transformations preserve the im-

plements relation, as follows:
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∀pol, c ∈ pol.CONTAINER, r ∈ pol.ROLE,mset ∈ ℘(MECH) :

pol I Mc(pol, c,mset) ∧ pol I Mr(pol, r,mset)

Proof sketch. For the case of Mc, given that the set of permissions in the new policy

resulting from the transformation is the same as the old set, and by Definition 1

above for the implements relation, it is possible to show that pol I Mc(pol, c,mset).

Similar line of reasoning can be applied to Mr. �

Depending on the mechanisms in place and the new mechanisms replacing the old,

these transformations may reduce the overall risk of the policy. Note that since

risk is not a total order, changing mechanisms can cause the resulting risk to be

incomparable with the original risk. This can make doing local search for sequences

of transformations difficult.

5.4 Reallocation of Permissions

The reallocation of permissions between containers or roles is necessary whenever

we seek to change the combinatorial risk levels inside those containers or roles.

Rearranging permissions can also increase the number of compatible mechanisms

used to reduce risk.

We define the reallocation of permissions within containers as a function,

Uc : POLICY × CONTAINER× PERM×

(CONTAINER ∪ {⊥}) → POLICY

The resulting policy moves the given permission, which must be in the permissions

set associated with the first container, to the second container. If the second con-

tainer is ⊥ then the permission is simply removed from the first container. If the

second container is given, the permission must be compatible using ψc with the other

17



permissions and mechanisms used in that container. If the second container is not

currently a member of pol.CONTAINER then it is added.

For example, assume we want to remove one of two permissions, perm1, perm2,

currently co-existing in a container, cont, to a new empty container, cont0. The

transformation Uc(pol, cont, perm2, cont0) will result in a policy holding two con-

tainers, cont holding perm1 and cont0 holding perm2. Since the allocation of per-

missions to containers does not affect the set of permissions a user is assigned, the

resulting policy implements the input policy.

Lemma 2 Given a policy, pol, then the Uc transformation preserves the implements

relation, as follows:

∀pol, c ∈ pol.CONTAINER, p ∈ containerPerms(c), c′ ∈ CONTAINER ∪ {⊥} :

pol I Uc(pol, c, p, c
′)

Proof sketch. Given that Uc only moves permissions across the different contain-

ers, the set of permissions allocated to a particular role remains the same, and

by Definition 1 above for the implements relation, it is possible to show that

pol I Uc(pol, c, pset, c
′). �

The next transformation defines the reallocation of permissions among roles:

Ur : POLICY × (ROLE ∪ {⊥})× PERM ×ROLE → POLICY

whose value is a new policy, pol′ where the first role, r, no longer contains the given

permission in pol′.rolePerms(r) and where the target role, r′, which may be a new

role, contains that permission in pol′.rolePerms(r′). If the first role is ⊥, then

the given permission is simply added to the given role pol′.rolePerms(r′) and no

changes are made to the pol′.userRoles. In all cases the new permission must be

compatible with the existing permissions and policies for the target role using ψr.
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This transformation is somewhat more difficult because the assignment can affect

the set of permissions assigned to a user. The trick here is to give any user that

was allowed access to the old role, access to the new role as well. So, we impose the

following condition whenever Ur is used:

∀u ∈ USER, pol ∈ POLICY, r ∈ pol.userRoles(u) :

r ∈ Ur(pol, r, p, r
′).userRoles(u) (1)

Now we can show that the implementation relation is preserved by Ur.

Lemma 3 Given a policy, pol, then the Ur transformation preserves the implements

relation up to condition (1) above and as follows:

∀pol, r ∈ (pol.ROLE) ∪ {⊥}, p ∈ ℘(PERM), r′ ∈ ROLE : pol I Ur(pol, r, p, r
′)

Proof sketch. According to condition (1) above, a user in the new policy still has ac-

cess to the old set of permissions in the old policy, since roles are preserved across the

Ur transformation. Therefore, considering Definition 1 for the implements function,

it is possible to show that pol I Ur(pol, r, pset, r
′). �

5.5 The Reconfiguration Problem

The reconfiguration problem is concerned with finding a policy with minimum risk

that is an implementation of some initial high-risk policy using the transformations

of the previous sections over finite sets of mechanisms and permissions.

Definition 3 (Minimum Risk Policy Reconfiguration)

Given an initial policy, pol0, a finite set of mechanisms, MECHf , a finite set of

permissions, PERMf , a set of transformations,

T ∈ {Mc( , cont,mechset),Mr( , role,mechset),

Uc( , cont, perm, cont
′),Ur( , role

′, perm, role)}
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where,

cont ∈ pol0.CONTAINER,

cont′ ∈ pol0.CONTAINER ∪ {⊥},

role ∈ pol0.ROLE,

role′ ∈ pol0.ROLE ∪ {⊥},

perm ∈ PERMf ,

mechset ∈ ℘(MECHf )

then the minimum risk policy reconfiguration problem is concerned with finding a

new policy, polmin, such that:

1. polmin ∈ T ∗(pol0)
1

2. Rp(polmin) =
⊔

pol∈T ∗(pol0)

Rp(pol)

The following theorem shows that the minimum risk policy has indeed an improved

risk level compared to the initial policy, that the former implements that latter and

that it is unique up to the l equivalence.

Theorem 2 Given an initial policy, pol0, and a minimum risk policy, polmin, that is

a result of transforming pol0 according to Definition 3, then the following properties

hold true:

1. Rp(polmin) v Rp(pol0)

2. pol0 I polmin

3. ∀pol′min ∈ T ∗(pol0) : pol′min l polmin

Proof sketch. The proofs of 1. and 3. follow directly from the definition of a least

upper bound in a partially ordered set. On the other hand, 2. can be proven using

Lemmas 1,2 and 3. �

1T ∗ is the reflexive transitive closure of T .
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6 Example: A Risk-Based RBAC Model for Grid

Computing

Grid computing has emerged in recent years as an authoritative model of large-scale

resource sharing among virtual organisations ; collections of users/institutes grouped

together under a common policy/interest [6]. Like any other model of computation,

security is of paramount importance and issues of authentication, authorisation and

access control are mainly considered when designing/analysing the security of the

Grid. One solution to such issues, which has been adopted is to construct RBAC

models for grid computations [8, 15, 22]. This comes as no surprise since RBAC

models have been shown to be more flexible and cheaper to maintain compared to

the classical MAC and DAC models.

In this section, we demonstrate the applicability of our risk-based RBAC model

to Grid computing. For this purpose, we define a virtual organisation based on the

simplified architecture illustrated in Figure 2. According to this architecture, a vir-

tual organisation consists of a set of users, each assigned to a specific set of roles. The

organisation also owns a set of containers, within which permissions and mechanisms

are managed. The management of the overall organisation is performed through an

organisation manager, whose responsibilities include the following: First, it can ac-

cept requests from external users to join in and requests from internal users to leave.

Second, it configures and maintains the RBAC policy of the organisation according

to some acceptable level of risk. Finally, the organisation manager may query and

update the local policy database with data about the current users, containers, roles

and permissions of the organisation, as well as its current configuration.

Our main concern is with the issue of user mobility among different organisations

and how this mobility affects the current policy configuration of each organisation. A

user may either join a destination organisation and/or leave its home organisation.
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The procedure of joining an organisation with the request to use a permission is

initiated by the manager of the user’s home organisation (HomeManager), which

invokes the join(user,perm) operation on the manager of the destination organisation

(DestManager). We assume that HomeManager in invoking the join operation also

implicitly certifies the request. Once the join operation is invoked, DestManager

then queries the current policy of its organisation, pol, and redesigns pol to a new

policy, polnew, reflecting the presence of the new user and preserving the definition

of the implements relation:

join(user, perm) ≡

(polnew.USER = pol.USER ∪ {user}) ∧

(∃r ∈ polnew.ROLES : r ∈ polnew.userRoles(user) ∧ perm ∈ role.Perms(r)) ∧

(pol I polnew) (2)

Once (2) is satisfied, DestManager then seeks to find polmin ∈ T ∗(polnew); the

solution to the minimum risk reconfiguration problem (Definition 3), given a set of

transformations, T , currently held in the database of the destination organisation.

Finally, if such a solution exists, then DestManager informs HomeManager of the

success of the join operation, otherwise, it rejects the operation. HomeManager

then decides to invoke the leave(user) operation (which it may invoke at any other

time) and update its current policy, pol. The definition of leave(user) is delicate;

the operation simply results in computing a new policy, polnew, such that user now

has the following property:

leave(user) ≡

∀r ∈ polnew.ROLES :

r ∈ polnew.userRoles(user) ⇒ polnew.rolePerms(r) = {} (3)
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According to (3), user has no permissions in the new policy, polnew, and according

to Definition 2, we have that pol = polnew. Furthermore, according to Theorem 1,

polnew has a risk level that is equal to the risk level of pol.

7 Conclusion

In this paper, we presented a refined model for RBAC policies consisting of per-

missions, containers, roles and users and defined a measure of risk the model that

expresses elements of operational, combinatorial and conflict of interest risks. We

then defined implementation and equivalence relations over policies. These rela-

tions are then used to define transformations that produce policies implementing

the original policy. Based on these relations and the corresponding transformations,

we defined the problem of finding the minimal risk policy configuration. Finally, to

demonstrate the applicability of our theoretical framework, we presented an example

of the minimal risk policy configuration problem for the case of Grid computing.

For the future, we would like to extend the idea of transformations and measures

to handle other quantitative properties of security policies, such as complexity, prob-

ability, cost and performance, and then study the different tradeoffs among these

properties within different security policies. We are also planning to extend the

semantics to include other variations of RBAC models, mainly RBAC1 and RBAC2

with domain and role hierarchies.
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