Journal of Computer Security 0 (2018) 148 1
IOS Press

Reasoning About Firewall Policies Through
Refinement and Composition

Ultan Neville **, Simon N. Foley "

& Department of Computer Science, University College Cork, Ireland
E-mail: u.neville@cs.ucc.ie

b IMT Atlantique, Rennes, France

E-mail: simon.foley @imt-atlantique.fr

Abstract. Network and host-based access controls, for example, firewall systems, are important points of security-demarcation,
operating as a front-line defence for networks and networked systems. A firewall policy is conventionally defined as a sequence
of order-dependant rules, and when a network packet matches with two or more policy rules, the policy is anomalous. Policies
for access-control mechanisms may consist of thousands of access-control rules, and correct management is complex and error-
prone. We argue that a firewall policy should be anomaly-free by construction, and as such, there is a need for a firewall policy
language that allows for constructing, comparing, and composing anomaly-free policies. In this paper, an algebra is proposed
for constructing and reasoning about anomaly-free firewall policies. Based on the notion of refinement as safe replacement, the
algebra provides operators for sequential composition, union and intersection of policies. The effectiveness of the algebra is
demonstrated by its application to anomaly detection, and standards compliance. The effectiveness of the approach in practice
is evaluated through a mapping to/from iptables. The algebra is used to specify and reason about iptables firewall policy
configurations. A prototype policy management toolkit has been implemented.

Keywords: Firewalls, Algebra, iptables, Anomalies, Policy-composition

1. Introduction

Firewall policy management is complex and error-prone. A misconfigured policy may permit accesses
that were intended to be denied and/or vice-versa. We regard the specification of a firewall policy as
a process that evolves, as threats to, and access requirements for, resources behind a firewall do not
usually remain static, and over time, a policy or distributed policy configuration may be updated on an
ad-hoc basis, possibly by multiple specifiers/administrators. This can be problematic and may introduce
anomalies; whereby the intended semantics of the specified access controls become ambiguous.

A firewall policy is conventionally defined as a sequence of order-dependent rules. A rule is com-
posed of filter conditions and a target action. Filter conditions usually consist of fields/attributes from
IP, TCP/UDP headers; with the most commonly used attributes being source/destination IP/port, and
network protocol. Target actions are usually allow or deny. When a network packet matches with two or
more policy rules, the policy is anomalous [2, 10].

A firewall policy may be developed as a collection of independent or related specifications that an
administrator will need to replace by a policy that adequately captures the requirements of the individual
specifications. A configuration may need to be updated with additional policy specifications when a new

*Corresponding author. E-mail: u.neville@cs.ucc.ie.

0926-227X/18/$35.00 (©) 2018 — I0S Press and the authors. All rights reserved

mailto:u.neville@cs.ucc.ie

2 U. Neville and S.N. Foley / Reasoning About Firewall Policies Through Refinement and Composition

threat is identified, or when a new permissible access is required. Therefore, having a consistent means
of composing these specifications is desirable. The objective of this paper is to develop a theory about
composing anomaly-free firewall policies. When a policy is anomaly-free, there is no ambiguity as to
whether a given network packet is allowed or denied by the firewall. Our goal is to provide an algebra
where policies are anomaly-free by construction.

Example 1. When configuring the rules that define a firewall policy, the specifier must understand the
relationship of each rule to every other rule in the policy. Consider, as a running example, a company
that employs a team of administrators and a team of developers. There are two network security policy
requirements, whereby network traffic destined to the IP range [1 .. 3] on ports [1 .. 3] is to be allowed
from the administrators, and traffic destined to the IP range [2 .. 4] on ports [2.. 4] is to be allowed from
the developers. For ease of exposition, we give the IPs as natural numbers, and the IP and port ranges
as intervals of N. For simplicity, we do not consider the source IP ranges for the administrators and
the developers.

Specifying The Requirements. System Administrator Bob manages the network access controls for the
administration and development teams. He specifies the network security policy requirement for the
administration team as: Polagmin == ((1,[1 .. 3],[1 .. 3], allow)), whereby 1 is the position of the rule in
the policy, the first instance of [1 .. 3] is the required destination IP range, the second instance of [1 .. 3]
is the required destination port range, and allow, means that network traffic matching this pattern is
permitted traversal of the firewall. Similarly, for the development team, he specifies: Polpey, == ((1,[2 ..
4],[2 .. 4], allow)). Bob needs to combine Polagmin and Polpe, into a single firewall policy, and security
requirements may change. He requires a consistent means of composing firewall policies, whereby the
result is anomaly-free and upholds the enforcements of each policy involved in the composition.

Sequential Composition. To specify the firewall policy for the company, he tries sequentially compos-

ing Polagmin and Polpey as follows: Polagmin ™~ Polpey = ((1, [1..3], [1..3], allow), (2, [2. .4], [2. .4], allow)).
This approach, however, does not does yield the desired result. That is, in the above specification

(Polagmin ~ Polpey), the rule at position 1 allows some of the IP/port pairs allowed by the rule at po-
sition 2 and vice-versa. Therefore, the policy is anomalous. From this, we have that the naive sequential
composition of rules is not a consistent operation when specifying an anomaly-free policy.

A Flattening Approach. To specify the firewall policy, Bob considers the approach whereby for each
IP/port pair allowed by the company’s network security policy requirements, there is a rule to allow
each IP/port pair. He specifies: ((1,[1..1],[1.. 1],allow),(2,[1..1],[2.. 2],allow) .. (14,[4..4],[4 ..
4], allow)). This policy does provide the desired result, in that it is both anomaly-free and consistent with
the two network security policy requirements involved in the composition. We observe however, that
this approach is tedious, error-prone and not practical for large numbers of IPs/ports or large numbers of
policy rules.

A Different Approach. Bob is required to specify the firewall policy whereby policy rules allow the
IP/port-range pairs from either Polagmin Or Polpey. To specify the policy for the company, he decides to
compose the two requirements into a single requirement as follows: ((1,[1 .. 4],[1 .. 4], allow)). This
approach, however, is inconsistent with the two network security policy requirements outlined by the
company. That is, the result of composition is an overly-permissive firewall policy, whereby network
traffic is permitted to IP 1 on port 4, and to IP 4 on port 1. Conversely, this approach would result in an
overly-restrictive policy if the rules had a target action of deny.

U. Neville and S.N. Foley / Reasoning About Firewall Policies Through Refinement and Composition 3

A Better Approach. Bob is required to specify the firewall policy whereby the desired result is the
smallest number of anomaly-free rules that allow all the IP/port pairs from either Polagmin or Polpe,. He
specifies the policy: ((1,[1..4],[2..3],allow), (2,[1..3],[1..1],allow), (3,[2..4],[4.. 4],allow)). In
this case, the result is as desired, as it is the smallest number of anomaly-free rules that allow all the
IP/port pairs from either Polagmin or Polpey.

Mutual Policy Enforcements. Bob receives a request to configure the policy that allows the IP/port pairs
from both Polagmin and Polpe,. He specifies: ((1,[2 .. 3],[2 .. 3],allow)). In this case, the specification
provides the desired result, and defines the smallest number of anomaly-free rules that allow all the
IP/port pairs from both Polagmin and Polpe,. We observe that the resulting policy upholds the restrictions
of both POIAdmin and Po'Dev-

Conflicting Policy Decisions. Suppose, for example, the policy rules specified were: ((1,[1..3],[1 ..
3], allow), (2,2 ..4],[2..4],deny)). Then this policy is anomalous, as rule 2 denies packets already al-
lowed by rule 1. As such, then a semantically-equivalent interpretation of the policy, defining the smallest
number of anomaly-free rules, may be specified by Bob as follows: ((1,[1..3],[1.. 3],allow), (2,[2 ..
4],[4..4],deny), (3,[4..4],[2.. 3], deny)). A

For an administrator, it may be relatively straightforward to understand policy composition where only
a small number of rules are involved, however, this does not scale. We argue that to reason confidently a
policy or distributed policy configuration is anomaly-free and adequately mitigates the identified threats;
a common framework is required, whereby knowledge related to detailed access control configurations
and standards-based firewall policies can be represented and reasoned about.

In this paper, we present a firewall policy algebra FW; for constructing and reasoning over anomaly-
free policies. The algebra allows policies to be composed in such a way, that the result upholds the
access requirements of each policy involved; and permits one to reason as to whether some policy is a
safe (secure) replacement for another policy in the sense of [19, 20, 28]. In this paper, when one policy is
considered a safe (secure) replacement for another, then this means that the former is no less restrictive
than the latter. The proposed algebra is used to reason about ipfables firewall policy configurations. We
derive a filter condition specification for FWW; from a collection of attributes expressible in firewall
rules from the iptables filter table. iptables is a command line utility used to define policies for the Linux
kernel firewall Netfilter [43]. We focus on stateful and stateless firewall policies that are defined in terms
of constraints on source and destination IP and port ranges, the TCP, UDP and ICMP protocols, and
additional filter condition attributes. Note, the notion of state in iptables is an abstraction, where given
literals signify user-land ‘states’ that packets within tracked connections can be related to.

The primary contribution of this paper is an algebra F)V, that can be used to reason about firewall
policies using refinement and composition operators. The effectiveness of the algebra is demonstrated by
using it to characterise anomalies in firewall policies and to define standards compliance. The effective-
ness of the approach in practice is evaluated through a mapping to/from iptables. The evaluation shows
that the approach is practical for large policies. This paper is a revised and extended version of the work
in [37]. In the sequel, we encode additional filtering specifications in F W1, in particular, for OSI Layer
2 packet-types and MAC addresses, OSI Layer 7 Linux UIDs and GIDs, and Application layer proto-
cols recognisable by iptables. We also develop a definition for time-based filtering rules. We include
new definitions for anomaly detection through policy composition, and describe how to incorporate an
additional target action of ‘log’ for firewall rules in the algebra. An extended definition for firewall rule
(duplet datatype) ordering, as well as implementation definitions for duplet join and difference are given.

4 U. Neville and S.N. Foley / Reasoning About Firewall Policies Through Refinement and Composition

The paper is organised as follows. In Section 2, we specify the core filter condition specification for
rules in the FWW; algebra. The specification is derived from filter condition attributes expressible in
firewall rules for the iptables filter table. Section 3 introduces the notion of adjacency, which is at the
heart of reasoning about/composing firewall rules that involve IP/port ranges. In Section 4 we define
datatypes for firewall rule attributes, such as IP/port ranges. Section 5 defines the firewall policy algebra
FWi. In Section 6, we use F VW, to reason about firewall policies in practice. Section 7 describes a
prototype policy management toolkit for iptables and presents some preliminary results. Related work
is outlined in Section 8 and Section 9 concludes the paper. The Z notation [42] is used to provide a
consistent syntax for structuring and presenting the definitions and examples in this paper. We use only
those parts of Z that can be intuitively understood and Appendix A gives a brief overview of the notation
used. Mathematical definitions have been syntax- and type-checked using the fUZzZ tool.

2. Attributes of a Linux-based Firewall

In this section, the core filter condition attributes used to define firewall rules in the FWW; firewall
algebra are formally specified. Attributes are derived from the Data Link, Network, Transport and Ap-
plication Layers of the OSI model. Additional filter condition attributes are also defined. Attribute defi-
nitions are extended in Section 4 to specify range-based filter conditions used to define firewall rules in
the FWW; policy algebra. The attributes defined in this paper are based on the expressiveness on the ipt-
ables firewall. The following example demonstrates the specification of a firewall rule using the iptables
command-line syntax.

Example 2. The following iptables access-control rule specifies that inbound (INPUT) TCP packets
(-p tcp) originating from the IP address 0.0.0.1 (—s 0.0.0.1) destined to the IP address 0.0.0.2 (-d
0.0.0.2) will be permitted traversal of the firewall (-5 ACCEPT).

iptables -t filter -A INPUT -p tcp -s 0.0.0.1 -d 0.0.0.2-j ACCEPT

Note, the filter table is the default table for iptables, therefore it is not necessary to include the (-t
filter) option when specifying a firewall rule. A

2.1. Data Link Layer Filtering

Packet-type. iptables allows for the specification of firewall rules that filter the type of packet at the
Data Link layer of the OSI model. Let PktTpe be the set of Data Link-layer packet types, whereby:

PktTpe ::= unicast | broadcast | multicast
Media Access Control (MAC) Addresses. iptables allows for constructing firewall rules that filter the
MAC address of a Ethernet device at the Data Link layer of the OSI model. Filtering is applied to source
MAC addresses entering the FORWARD or INPUT chains of the filter table [43]. Let basic type MAC be
the set of all MAC addresses. We define:

[MAC)

U. Neville and S.N. Foley / Reasoning About Firewall Policies Through Refinement and Composition 5

For simplicity, we do not consider how the values of MAC may be constructed, other than to assume
that the usual human-readable notation can be used, such as 00:0F:EA:91:04:08 and 00:0F:EA:91:04:09
€ MAC.

2.2. Network Layer Filtering

IP Addresses. iptables allows the specification of firewall rules that filter the source/destination IP
address of a network packet. For simplicity, we consider only the IPv4 address range, as a firewall rule
with an IPv6 address filter condition attribute must be specified using ip6tables; the equivalent IPv6
firewall [25]. In this paper, IP addresses as encoded using natural numbers, as there is a logical mapping
from IPs to natural numbers, and a logical mapping from IP ranges and CIDR blocks to intervals of
N. This is done for ease of exposition, and to exploit the natural ordering of < over N. We define the
constant maxIP, whereby:

maxIP == 232 — 1

ICMP. iptables allows for filtering by ICMP Type and Code. Let TypesCodes be the set of all valid
ICMP Type/Code pairs, as detailed in [40]. Most Type/Code pairs i,j € N are given as (i,j) €
TypesCodes, for example, (8,0) is an ICMP Echo Request, however, some ICMP Types i € N; for
example, Type 19 (reserved for security), have no ICMP Code, and are given as (i, —1) € TypesCodes.
Note, for ease of exposition we use syntactic sugar in the definition of TypesCodes as a free-type.

TypesCodes ::= (0,0) | (3,0) | 3,1) (3:2) | (3.3) | (3,4) | (35) | (36) | (3,7 |
(3.8) | (39) | (3.10)| (3,11) [(3,12) | (3,13) | (3,14) | (3,15) | (4.0) | (5.0) |
(5,1)](5.2)] (53) | (6,0) | (8,0)](9,0) | (9,16) | (10,0) | (11,0) | (11,1) |
(12,0) | (12,1) | (122) | (13,0) | (14,0) | (15,0) | (16,0) | (17,0) | (18,0) |
(19, -1) \ (20, -1)] (21, -1) \ (22, -1) \ (23, -1)] (24, -1) \ (25, -1) \ (26, -1)]
(27, -1) \ (28, -1)] (29, -1) \ (30, -1) \ (31, -1)] (32, -1) \ (33, -1) \ (34, -1)]
(35, -1) \ (36, -1)] (37, -1) \ (38, -1) \ (39, -1)] (40,0) | (40,1) \ (40,2) \
(40,3) \ (40,4)] (40,5)] (41, -1) \ (253, -1) \ (254, -1)

2.3. Transport Layer Filtering

Network Ports. A network port is a communication end-point used by the Transport layer protocols

(for example, TCP/UDP) of the OSI model. iptables allows for constructing firewall rules that filter by

source/destination ports. A port is a 16-bit unsigned integer. We define the constant maxPrt, where:
maxPrt == 216 — 1

UDP. iptables allows the specification of firewall rules that filter UDP traffic. Let UDP define the set

of packet values for the UDP protocol; whereby 1 signifies that a packet is using UDP or 0 signifies it is
not. We define:

UDP:=1|0

6 U. Neville and S.N. Foley / Reasoning About Firewall Policies Through Refinement and Composition

TCP. iptables allows for TCP firewall rules to be constructed using a pair of TCP flags specifications.
The first, specifies the flags that are to be examined in a packet-header, and the second specifies the flags
that are to be set in a packet-header, these are the mask and comp values for a TCP packet [25]. Let Flags
be the set of TCP flags filterable in an iptables rule (as a mask or a comp specification), whereby:

Flags ::= syn | ack | fin | psh | rst | urg

and let Flags,.. be the set of all (mask, comp) pairs, we define:
Flags,ec == P Flags x P Flags

2.4. Application Layer Filtering

Layer 7 Protocol Filtering. iptables allows for constructing firewall rules that filter certain protocols
at the Application Layer of the OSI model. Let Protok be the set of all OSI Application-layer protocols
recognised by iptables [33]. Note, for ease of exposition we use syntactic sugar in the definition of Proto%
as a free-type. We define:

Protok ::= 100bao | aim | aimwebcontent | applejuice | ares | armagetron |
audiogalaxy | battlefield1942 | battlefield2 | battlefield2142 | bgp | biff |
bittorrent | chikka | cimd | ciscovpn | citrix | counterstrike-source | cvs |
dayofdefeat-source | dazhihui | dhcp | directconnect | dns | doom3 | edonkey |
fasttrack | finger | freenet | ftp | gkrellm | gnucleuslan | gnutella | goboogy |
gopher | gtalk | guildwars | h323 | halflife2-deathmatch | hddtemp | hotline |
http | http-rtsp | http-dap | http-freshdownload | http-itunes | httpaudio |
httpcachehit | httpcachemiss | httpvideo | ident | imap | imesh | ipp | irc |
jabber | kugoo | live365 | liveforspeed | Ipd | mohaa | msn-filetransfer |
msnmessenger | mute | napster | nbns | ncp | netbios | nntp | ntp | opentt |
pcanywhere | poco | pop3 | pplive | pressplay | qq | quicktime | quake-halfiife |
quake1 | radmin | rdp | replaytv-ivs | rlogin | rtp | rtsp | runesofmagic |
shoutcast | sip | skypeout | skypetoskype | smb | smtp | snmp | snmp-mon |
snmp-trap | socks | soribada | soulseek | ssdp | ssh | ssl | stun | subspace |
subversion | teamfortress2 | teamspeak | telnet | tesla | tftp | thecircle |
tonghuashun | tor | tsp | uucp | validcertssl | ventrilo | vnc | whois |
worldofwarcraft | x11 | xboxlive | xunlei | yahoo | zmaap

The Layer 7 protocol definitions specify how these protocol names correspond to regular expressions
that are matched by Netfilter on the packet application layer data. For example, the following regular
expression [32]:

2220 [\x09-\x0d —~]*ftp

is used by the Netfilter firewall to match packets that are part of FTP traffic.

U. Neville and S.N. Foley / Reasoning About Firewall Policies Through Refinement and Composition 7

Packet-owner/creator Filtering. For locally generated packets; iptables allows filtering by various char-
acteristics of the packet creator through the owner module. Filtering is applied to the OUTPUT chain of
the filter table [43]. We define the constant maxUID for 32-Bit Linux UIDs, where:

maxUID == 232 — 1
Similarly, the constant maxGID for 32-Bit Linux GIDs is defined as:
maxGID == 232 — 1
2.5. Additional Filtering Specifications

State. The iptables conntrack module defines the state extension [43]. The state extension allows access
to the connection tracking state for a packet. Let State be the set of connection tracking states for a
packet/connection.

State ::= new | established | related | invalid | untracked

Time-based Filtering. iptables allows for a filtering decision to be made if the packet arrival time/date
is within a given range. The possible time range expressible in a rule is 1970-01-01T00:00:00 to 2038-01-
19T04:17:07 [16], and is specified in ISO 8601 “T” notation. We define the constant maxTime, whereby
7T (date) is a function that converts a date specified in “T” notation to a Unix timestamp:

maxTime == 7 (2038-01-19T04:17:07)

Network Interfaces and Direction-oriented Filtering. iptables allows for a filtering decision to be made
with respect to the interface the packet is arriving at/leaving through. Let basic type IFACE be the set
of all interfaces on a machine, where for simplicity, we assume elements of /FACE resemble lo, ethO,
wlan0, tun0, etc. We define:

[IFACE]

Network traffic can be inbound or outbound on an interface. Direction-oriented filtering is defined as
Dir, whereby:

Dir ::= ingress | egress
iptables Chains. Let Chain be the set of chains for the iptables filter table, we define:

Chain ::= input | output | forward

8 U. Neville and S.N. Foley / Reasoning About Firewall Policies Through Refinement and Composition
3. A Theory of Adjacency

Range-based filter condition attributes (for example, IPs/ports) have logical mappings to intervals
of N. For example, the port range that includes all ports from SSH upto and including HTTP can be
written as the interval [22 .. 80].

Example 3. Consider, as part of a running example, a system that is capable of enforcing firewall rules
whereby the filter condition attribute for the rules is a destination port range only. A rule that allowed
all ports from SSH to HTTP would be: (i,[22 .. 80], allow), where i is the index of the rule in the
policy, [22 .. 80] is the required port range, and allow means that network traffic matching this pattern
is permitted. Suppose we had a second rule, that specifies allow everything from Quote Of The Day
(QOTD) up to and including FTP Control, then (j, [17 .. 21], allow) specifies that for the rule at index
J; the required port range [17 .. 21] is allowed. Intuitively we can see that the port ranges for the rules
at index i and index j are adjacent, and we may want to join rule i and rule j into a single rule that
looks like (k, [17 .. 80],allow). This notion of adjacency becomes more complex when we consider
comparing/composing firewall rules comprising two or more filter condition attributes. A

3.1. The Adjacency Specification

In this section we define the filter condition attribute relationships of adjacency, disjointness and
subsumption. These can be applied to any ordered set, not just number intervals. These relationships are
at the heart of adjacency, and ultimately the 7V algebra.

Let ZV[min, max| be the set of all intervals on the natural numbers, from min up to and including max.
Intervals are defined by their corresponding sets.

IV [min,max) == {S: PN |3 L, T:SeVx:Semin < L <x< T < max}

Example 4. For ease of exposition and when no ambiguity arises, we may write an interval as a pair
[L .. T], rather than by the set it defines. For example, ZV[1,3] = {[1..1],[1..2],[1..3],[2..2],]2..
3),[3..3]} A

Let /Pv4 define the set of all possible IPv4 address ranges, whereby:
IPv4 == TV[0, maxIP]

Similarly, let Port define the set of all possible network port ranges, whereby:
Port == ZV|[0, maxPrt]|

Adjacency. The relation (___) defines adjacency over any ordered set. Adjacency is a general notion
that is not limited to N. We generalize adjacency to any attribute of generic type X, whereby fora, b € X,
if alx b, then a and b are adjacent in the set X. The property of reflexivity is required as any a € X should
be adjacent to itself, that is; if for any a, that a x a did not hold, then an inconsistency would exist.
Symmetry follows from a similar requirement, where for a,b € X, if a is adjacent to b in X, then b
must also be adjacent to a in X. The following schema defines a generic adjacency relation that can be
instantiated for adjacency over different datatypes.

U. Neville and S.N. Foley / Reasoning About Firewall Policies Through Refinement and Composition 9

= [X]
L PX» (X< X)
VYa,b:X e
alxya N
(alxb=bixa)

Given a set S € P X, then the transitive closure of the adjacency relation for elements in S is defined
as follows.

= [X]
U _iPX - (X & X)
VS:PXe
+

() =<aCu)>s8)"

Interval Adjacency. 'Two intervals on the set of natural numbers are adjacent if their union defines a
single interval. For a given maximum value max € N, we define:

vVI,J: IV[O, max] o] 2IV[O,max] JeIUJ e IV[O, max]

Example 5. Interval [1 .. 2] is adjacent to interval [3.. 3] since [1..2]U[3..3] = [1.. 3], thus [1 .. 2]
2]Pv4 [3 .. 3] A

Number Adjacency. 'Two numbers are adjacent if they are the same or if they are different by a value
of one. We define:

Va,b:Nealwb< (a=bVa+1=bVb+1=a)

Set Adjacency. For a generic type X, and sets S,T € PX, then S and T are adjacent,as SUT € P X.
We define:

VS, T:PXeSpxT

Disjointness. The relation (_ |_ _) is used to define the notion of disjointness over any ordered set.
Given a,b € X, a |x b denotes a and b are disjoint in X. The property of irreflexivity is required, as a
cannot be disjoint from itself, that is; if for any a, that = (a |x a) did not hold, then an inconsistency
would exist. Symmetry is also required for consistency, as if a and b are disjoint in X, then b and @ must
be disjoint in X also. The following schema defines a generic disjointness relation that can be instantiated
for disjointness over different datatypes.

=X
L PX+ (X< X)
Ya,b:X e

= (alx a) A
(Cl|xb:>b|xd)

10 U. Neville and S.N. Foley / Reasoning About Firewall Policies Through Refinement and Composition

Interval Disjointness. 'Two intervals are disjoint if they don’t intersect. For a given maximum value
max € N, we define:

VI,J : IV[O, maX] o]/ ‘IV[O,max] JeINng = @

Example 6. The interval [1 .. 2] and interval [3 .. 3] are disjoint, since [1..2] N [3..3] = 0, thus
[1..2] |pva [3..3]. A

Number Disjointness. Two numbers are disjoint if they are different. We define:
Va,b:Nea|yb<a#b

Set Disjointness. 'Two sets are disjoint if they don’t intersect. We define:
VS, T:PXeS|pxT=SNT =1

Subsumption. The relation (_ < _) is used to define subsumption over any ordered set. For a,b € X,

ifa & b, then b covers a in X. Reflexivity is required, as any a must cover itself. Transitivity follows
from a similar requirement, where for a,b,c € X, if a covers b and b covers ¢, then a must cover c.
Antisymmetry follows from the assumption of irredundant elements, where if a covers b and b covers a
then one of them is unnecessary [13]. The properties of reflexivity, transitivity and antisymmetry define

X
& as a non-strict partial order over X [5]. The following schema defines a generic subsumption relation
that can be instantiated for subsumption over different datatypes.

= [X]
i PX» (X< X)
Va,b,c: X e

alan
(a(ib/\béc:aéc)/\
(aéb/\b(iaﬁa:b)

Some subsumption orderings (for example, subset) may form a lattice with greatest lower bound (glb)
_ Ny _ and least upper bound (lub) _ Uy _ operators for values in X.

Interval Subsumption. An interval I subsumes (covers) an interval J, if J/ C [. For a given maximum
value max € N, we define:

IV[((Enax] J

VI,J:ZIV[0,max] e J sJCI

Example 7. Interval [1 .. 3] covers interval [3 .. 3], since [3.. 3] C [1.. 3], thus: [3.. 3] pie 1..3]. A

U. Neville and S.N. Foley / Reasoning About Firewall Policies Through Refinement and Composition 11

Number Subsumption. For a,b € N then b covers a if a equals b. We define:

Vab:Nead beoa=bh

The equality relation is both symmetric and antisymmetric, and defines both an equivalence relation and
. . N
a non-strict partial order. Thus, a <~ b denotes that b subsumes/covers a.

Set Subsumption. The definition for set subsumption is as expected, we define:

VS.T:PXeS“ToSCT

For a generic type X, and § € P X, then the flattening function [S]| gives the cover-set for the elements
of S, whereby the cover-set of S has no subsumption. We define:

X
[_]:PX +»PX
VS:PXe
(S]:S\{a,a’:S|a<£a’/\a7éa’oa}

Example 8. Given the set of all intervals on the natural numbers from 1 .. 3, then we have:

1..2),[1..3],[2..2],[2..3],[3..3]}
1..1,01..2,[2..2L[2..3,3..3]}

A

We define a difference operator for S, T € P X, where S \px T gives the relative compliment of 7 in S.
That is, everything that is of type X that is covered in S, but not in 7. We define this as:

=[X]
___:P(PX) » PXxPX —PX
VS,T:PXe
S\exT=[{a:S;c:X|c&an(Vb:Te=(c&b)ec}

Example 9. Given the cover-set for the set of all intervals on the natural numbers from 1 .. 3, and the
set {[1..1],[3..3]}, we have [ZV[1,3]] \spva {[1 .. 1],[3..3]} ={[2..2]}. A

3.2. The Adjacency Datatype

For a generic type X, the Adjacency datatype a[X], is the set of all closed subsets of X partitioned
by adjacency.

aX]=={S:PX|(Va,b:S|a#be—-(alxh))}

12 U. Neville and S.N. Foley / Reasoning About Firewall Policies Through Refinement and Composition

Example 10. We can use this to define all ways that an interval can be partitioned into sets of non-
adjacent intervals.

a[ZV[L 3] = {{[1.. 1L A{[1.. 2] {[1.. 3]}, {[2.- 2]}, {[2.- 3] }1.{[3-- 3]}, {[1..1),[3..3]}}
A
Let IPg),.. define the set of all closed subsets for the intervals of the IPv4 address range, partitioned by

adjacency, and similarly, let Prtgy,.. define the set of all closed subsets for the intervals of the network
port range, partitioned by adjacency. We define:

IPgpec == a[IPv4]
Prtgpe. == a[Port]

Adjacency Datatype Ordering. An ordering can be defined over Adjacency-sets of a generic type X
as follows:

Y

L=0AT=[X]
VS, T:a[X]e
notS:T\Q[X]S/\
SST@(Va:Spo:T.aéb)/\
SRT=[U{U:alX]|Vc:Ue®3a:S, b:Tocéa/\céb}]/\
S&T=({U:e[X]|Vc:Ue3Ja:s; b:TocHic\/béc}

Lemma 3.1. The ordering relation < is a non-strict partial order over a[X].

Proof For S,T € «a[X], then S < T means that T covers S, that is, every a € S is covered by some
b € T. The ordering relation <, is defined as a subsumption ordering/an antisymmetric preorder, where
the properties of reflexivity, transitivity and antisymmetry hold for < over «[X] as (— £ _) is a non-strict
partial order for elements of type X. We have:

VS, T,U : a[X] e
S<SA
SKTATKU=S<U)A
SKTATLS=S=T)

U. Neville and S.N. Foley / Reasoning About Firewall Policies Through Refinement and Composition 13

-
[1Pspec]

ranges; @ ranges;
{[1..4],]6..8],[10..10]}

rangesi ranges;
{[1..3].[6..6].[5..8]} {[2..4,[7..7).[10..10]}

ranges; ® ranges,

{[2..3]}

=--»

Fig. 1. IPgp,. ordering fragment

The elements L, T € «[X] define the least and greatest bounds, respectively, on @[X], where L is
the unique minimal element that is covered by all elements, and T is the unique maximal element that
covers all other elements. We have:

VS:aX]e L<SKT

Example 11. Given rangesy, ranges; € IPs,,.., where:

ranges; == {[1..3],[6..6],[8..8]}
ranges, == {[2..4],[7..7],[10..10]}

then Figure 1 depicts a partial Hasse diagram, for the composition of ranges; and ranges, under the
relative ordering of < over IPg,.. A

Adjacency Datatype Union. The join of S,T € «[X] is defined using subsumption, as the generalized
intersection of all Adjacency-sets, where each element of (S @ T') covers an element in either S or T.
Intuitively, this means that the values of the join are exactly a union of the elements from both S and 7.

Lemma 3.2. The operator @ is a least upper bound operator on a[X].

14 U. Neville and S.N. Foley / Reasoning About Firewall Policies Through Refinement and Composition

Proof The generalized intersection in the join operation for some S,7 € «[X] defines the smallest
collection of x € X that cover all of the elements from both S and 7 by subsumption. If we take some
UcaX],suchthat U< (S®T)and S UAT < U, then (S&T)=U.

Thus, Adjacency join provides a lowest upper bound operator. Since ¢ provides a lub operator we
have S< (S®T)and T < (S T). |

Adjacency Datatype Intersection. Under this ordering, the meet, or intersection S® T of S, T € a[X] is
defined using subsumption, as the cover-set for the generalized union of all Adjacency-sets, where each
element of (S ® T) is covered by an element in both S and T. Intuitively, this means that the values of
the meet are all non-empty intersections of each value in S with each value in 7.

Corollary 3.3. The operator ® is a greatest lower bound operator on a[X].

Proof It follows from Lemma 3.2 by an analogous argument that Corollary 3.3 holds. |

Since ® provides the glb operator, then for S, 7 € [X] we have S ® T is covered by both S and 7, that
is(S®T)<Sand (S®T) <T.

Adjacency Datatype Negation. Given S € «[X], then notS defines a complement operator in «[X],
where notS is the cover-set for all elements of type X that are not covered by some member of S.
We have:

VS:alX]e
(S®notS)=TA(S®notS) =1

Theorem 3.4. The poset (a[X], <) forms a lattice with lowest-upper, and greatest lower bound opera-
tors, @ and ® respectively, and complement operator not.

Proof This follows from the definition of < as a subsumption ordering/an antisymmetric preorder, the
properties of not, the definition of the meet as the cover-set for the generalized union of all Adjacency-
sets, where for S, T € a[X], each element of (S ® T) is covered by an element in both S and T, and the
definition of the join as the generalized intersection of all Adjacency-sets, where each element of (S®T)
covers an element in either S or T. |

3.3. The Duplet Datatype

The notion of adjacency becomes more complex when we consider comparing/composing firewall
rules comprising two or more filter condition attributes. When joining adjacent firewall rules, in some
cases the rules may coalesce and in other cases they may partition into a number of disjoint rules.

Example 12. Recall from Example 3 in this section, the firewall system that supports only destination
port range filter conditions. Suppose we want to extend the expressiveness of the policy rules for this
system to include a definition for destination IP range. Consider, two policy requirements; whereby
network traffic is to be allowed to the IP range [1 .. 3] on ports [1 .. 3], and to the IP range [2 .. 4] on
ports [2 .. 4]. Then modelling this using adjacency-free IP/port range pairs, we have p1,ps € (IPspec X
Prtgpe.), whereby:

pr == ({[1.. 3]} {[1..3]})
pe == ({[2.. 4]} {[2.. 4]})

>

U. Neville and S.N. Foley / Reasoning About Firewall Policies Through Refinement and Composition 15

A A
))

U s [30 Mg (23] [[30 o 24y 1 e

{31 {131 \prige {2413 {131} ey {1241} | {013}
{24} {1241} \prige {[1--3]} {1241} \ipg, {1231} [{12.- 41}

Table 1 Table 2

A two-attribute rule join, 1*' attribute major ordering A two-attribute rule join, 2" attribute major ordering

If we consider the attributes separately, we observe that the IP range in p; is adjacent to the IP range in
p2, and the port ranges in p; and p, are also adjacent. However, in composing p; and p, under a lowest-
upper-bound style operation one cannot simply take a union of the sets of intervals to be the IP/port
range pair: ({[1..4]},{[1..4]}), as this results in an overly permissive policy, given that network traffic
is permitted to IP 1 on port 4, and to IP 4 on port 1 as a result of composition. Conversely, this would
result in an overly restrictive policy if we were composing deny rules.

When we consider how the join of p; and p, may be defined, whereby the desired result is the smallest
number of non-adjacent rules that cover both p; and p,, then we can apply an adjacency-precedence to
the IP ranges in py and p,, and observe that the port ranges in p; and p, are not disjoint. We refer to this
as the 1 attribute major ordering, and the cover for p; and p, is given as:

{45231, (- 3 AT - 103, ({12 413, {4 41D}

In this case, the result is a set of disjoint rules that exactly cover the IP/port-range pair constraints from p;
and p.. We note, however, that instead, the adjacency-precedence may be applied to the second attribute,
where in this case we observe that the port ranges in p; and p, are adjacent, and the IP ranges in p; and
p, are not disjoint. We refer to this as a 2" attribute major ordering, and would therefore expect the set
of disjoint rules that exactly cover the IP/port-range pair constraints from p and p, to be:

{23 AR -4, (- 3 AT - 313, ({4 413, {2 41D}

The resulting operations for the 1% attribute major ordering are illustrated in Table 1, whereby the
label R signifies the new rule, and the label A means filter condition attribute. In Table 2, the operations
for the 2" attribute major ordering the are encoded.

For the remainder of this paper, we consider firewall rule join in terms of the 1* attribute major
ordering. However, we also consider the join of rules where there is an adjacency in other than the first
attribute, we refer to this type of adjacency as forward adjacency. A

Duplets. A duplet is an ordered pair, where the set of all duplets for generic types X, Y, is defined as
8[X, Y], whereby:

SX, Y] ==X x Y
Example 13. For ZV[1, 1] and ZV[1, 2], we have:

SITVILAL VL) = {([L.. 1, [1.. 1] (L. 1. 1. 2], (.. 1, [2.. 2])}

16 U. Neville and S.N. Foley / Reasoning About Firewall Policies Through Refinement and Composition

and 6[IPspec, Prtspec| gives the set of all duplets for adjacency-free IP/port-range pairs. A

Lemma 3.5. If the ordering over X is a lattice and the ordering over Y is a lattice, then the ordering
over §[X, Y] is also a lattice.

Proof Given the definition of 6[X, Y] as the Cartesian product of X and Y, then if the ordering over X is

a lattice and the ordering over Y is a lattice; it follows that §[X, Y] forms a lattice under the product order
of Xand Y. |

Forward Adjacency. A pair of duplets are forward adjacent to each other if the attributes in the first
coordinate are equal and the attributes in the second coordinate are adjacent. For (ai,b1), (az,b2) €
8[X, Y], we define forward adjacency, whereby:

(a1 =as ANb1ly b2)

Example 14. Given duplets ({[1..3]},{[2..3]}), ({[1..3]},{[1..1]}) € 6[IPspec, Prtspec], then these
duplets are forward adjacent, as: ({[1..3]} = {[1..3]}) A ({[2.. 3]} Wrgpee L[L .- 1]}). A

Duplet Adjacency. A pair of duplets a, b € §[X, Y] are adjacent, if the attributes in the first coordinate
are adjacent, and the attributes in the second coordinate are not disjoint, or a and b are forward adjacent.
For (a1, b1), (az,b2) € 6[X, Y], we define:

(a1,by1) Us[x.Y] (a2,b2) < ((a1xaa A= (b1 |y b2)) V (a1 = a2 A b1 ly b2))

Example 15. We have that p, US[1Pspec.Prispec] P2> since the IP ranges are adjacent and the port ranges are
not disjoint and we have {[1.. 3]} Upg,, {[2..4]} A = ({[1..3]} |prgee {[2--4]}). A

Duplet Disjointness. A pair of duplets are disjoint if the attributes in the first coordinate are disjoint,
and/or the attributes in the second coordinate are disjoint. For (ay, b1), (a2, b2) € §[X, Y|, we define:

(a1,b1) |sixy) (a2,b2) < (a1 |x az V by |y ba)
Example 16. We have — (p; |5[,Pspg(_’,grtspa,] P2), since
({12 31} lrpge {122 413 AL 3]} [pnge {122 413)

A

Duplet Intersection. The definition for duplet intersection is defined as the intersection of the attributes
in each coordinate under their respective orderings. For (a1, b1), (az, b2) € 6[X, Y], we define:

(a1,b1) Nsix,y) (a2, b2) = ((a1 Nx az), (b1 Ny b2))

Example 17. For py and pa, we have p1 Nsipg,,. pris,) P2 = ({[2-- 3]}, {[2.. 3]}) AN

U. Neville and S.N. Foley / Reasoning About Firewall Policies Through Refinement and Composition 17

Duplet Merge. The definition for duplet merge is defined as the union of the attributes in each coordi-
nate under their respective orderings. For (a1,b1), (a2, b2) € 6[X, Y], we define:

(a1,b1) Usixy) (a2, b2) = ((a1 Ux az), (b1 Uy b2))
Example 18. Given py and pp, we have py Usjipg,. pris,e P2 = ({[1 - 4]}, {[1 .. 4]}). A

Duplet Subsumption. A duplet (a1, b1) covers a duplet (az, b2) in §[X, Y], if a; covers as in X, and b;
covers bs in Y. Thus, we define duplet subsumption as:

(ag,bQ) 6[)(@)/] (al,b1> = (ag <£ al) A (bg L bl)

6[IPSp€CsPrtSpE(‘}

Example 19. For p; and p,, we have ({[2..3]},{[2..3]}) < pr and
(5[IPS[)g(-gPrtS]JL’L‘}

({2..3[h412..3]}) = "= 7 p2 A

Precedence Subsumption. A precedence subsumption is defined for duplets, whereby we explicitly
define subsumption orderings separately in each coordinate. The relation (— — _) defines a general

. . X
format for precedence subsumption over any ordered set. For a,b € X, if a — b, then a covers b by

precedence in X. The properties of reflexivity, transitivity and antisymmetry define — as a non-strict
partial order over X [5]. The following schema defines a generic precedence subsumption relation that
can be instantiated for precedence subsumption over different datatypes.

= [X]
o5 PX+» (X< X)
Va,b,c: X e

aan
(aéb/\bicéaic)/\
(aib/\biaia:b)

A duplet (ay, by) covers a duplet (az, b2) by precedence in 6[X, Y], if a; covers ag in X, and bs covers
by in Y. Thus, we define precedence subsumption as:

(al,bl) 6[X—’>Y] (ag,bg) = (ag <£ ap N\ (bl <L bg)

Example 20. For p+, p, and duplets ({[1..4]},{[2..3]}), ({[1..3]},{[1..1]}) € 6[IPspec, Prtspec], then
we have:

6[IPS]7(’L‘ ,PrtSpec]

(. 3LA- 1) "= pr A

6[IPS]7(’L‘ ’PrtSpec]

([t 4{2..31) "= 7 pr A

6[IPS17(’L‘ ’PrtSpec]

(- 4{2..31) "= 7 pe

18 U. Neville and S.N. Foley / Reasoning About Firewall Policies Through Refinement and Composition

Precedence Cover. For a duplet a € §[X, Y] and a set of duplets S € P §[X, Y], then S covers a if
the duplet merge of all elements in S that each cover a by precedence subsumption, cover a by duplet
subsumption. We define:

Y
_ & 1P S[X, Y] - (6[X.Y] & P §[X,¥])
Va:6[X,Y]; S:Po[X,Y]e

s e @y s any A

oX,Y /
a [<—} (b U(g[x’y] b)

Example 21. For p, and duplets ({[1..3]},{[2..3]}), ({[1..3]},{[1..1]}) € 6[IPspec. Prtspec], we have:

oy e SR 3D ({1 3L) as
({[1..3]}.{[1..3]}) Pspag Prisec {({[1..3]},{[1..3]})} holds. A

Intersecting Elements. Fora € 6[X,Y] and S € P§[X, Y], then a|S] is the set of all non-empty inter-
sections of a with each value b € S. We define:

—[X,Y]
-] 6X, Y] x P §[X, Y] — P §[X, Y]
Va:6[X,Y]; S:Po[X,Y]e

alS| ={b: S| = (alsxy b) e (aNsxy b)}

Example 22. For pq, and duplets ({[1..4]},{[2..3]}), ({[1..3]},{[1..1]}),({[2..4]}.{[4..4]}) €
S[IPspec, Prtgpec), then:

pr L - 4]3 {12 303), ({[L - 313 {TL - 1), ({12 - 413, {4 - 4D} =
{31542 30 (- 3l AL 1)}

3.4. Duplet Adjacency Ordering

In this section, an ordering is defined for Adjacency-sets of duplets.

Duplet Adjacency Difference. Given S,T € a[d[X, Y]], then S\ jsx.y) T is the cover-set for the set of
all duplets covered in S by a duplet, or by a collection of duplets, and not covered in 7. Thus, we define
the difference of Adjacency-sets of duplets as:

ooy T = [{e 616 ¥) | e & sy A= (¢ B e

U. Neville and S.N. Foley / Reasoning About Firewall Policies Through Refinement and Composition 19

Example 23. Given Polf, Pol§ € @[6[IPspec, Prispec|], Where:

Polf == {({[1..3]},{[1..3]})}
Polf == {({[2.. 4]}.{[2.. 4]})}
then:
POl \afoitPgyec.Prispec] POl2 = {({[1 - 31}, {[1 .. 1}), ({11 .. 1]}, {[2.. 3]})}
The implementation definition for duplet difference is given in Section 7.2. A

Duplet Adjacency Ordering. An ordering can be defined over Adjacency-sets of duplets as follows:

1, T :a6X,Y]]
not : [6[X, Y]] — «[d6[X, Y]]
_< _:afd[X, Y]] ¢ a[6[X, Y]]

@: als[X, Y]] x al5[X, Y]] = e[6]X, Y]]

L=0AT=1[6XY]]
VS, T:a[6[X,Y] e
notS = T\a(j[xy] SA

S<T<& (Va: Sea®My LTJ))/\

SoT=[{ab:{U: IP’(X, Y])|(Vc:Ue3a:S;b:Te

PLL VI }b)}‘aé[xyboaué[xy b} A
SOT = [UU: ao[X, Y]] | Ve: U &0 els] ne & elr

Lemma 3.6. The ordering relation < is a non-strict partial order over a[6[X, Y]).

Proof For S,T € «[6]X, Y]], then S < T means that T covers S, that is, every a € S is covered under
duplet subsumption, either by a duplet, or by a collection of duplets in 7. The ordering relation <, is
defined as an antisymmetric preorder, where the properties of reflexivity, transitivity and antisymmetry
hold for < over «[6[X, Y]].

Reflexivity. For S € a[6[X, Y]], we have for a € S, then a covers itself under duplet subsumption. Since
S is adjacency-free, then every duplet in S covers only itself under a duplet subsumption in §. Since
duplet subsumption is reflexive, then < is reflexive; that is:

VS:ald[X,Y] e
(8,8) e (<)

20 U. Neville and S.N. Foley / Reasoning About Firewall Policies Through Refinement and Composition

Transitivity. For S,T € a[6[X, Y]], then S < T if all a € S are covered in T under duplet subsumption.
Then if we take some U € «[6[X, Y]], such that T < U, then all b € T are covered in U under duplet
subsumption. Therefore, all a € S are covered in U under duplet subsumption as duplet subsumption is
transitive. Then < is transitive; that is:

VS, T,U : a[6]X,Y]] e
ST e<HONTU)e(-<)=>(SUVU)e(-<)

Antisymmetry. ForS,T € a[d[X,Y]],then S < Tifalla € S are covered in T under duplet subsumption,
and if 7 < S then all b € T are covered in S under duplet subsumption. Therefore, from the definition
of duplet subsumption, if § < T and T < Sthen T = S. Then < is antisymmetric; that is:

VS, T:al6[X,Y]] e
S,T)eC<HON(T,Se(<)=8=T

The elements L, T € @[d[X, Y]] define the least and greatest bounds, respectively, on a[d[X, Y]], where
L is the unique minimal element that is covered by all elements, and T is the unique maximal element
that covers all other elements. We have:

VS :a[d[X,Y]] e
1<SET

Then we have:

VS, T,U : a|5[X, Y]] e
S<SA
(SSTATSU=S<U)A
(SKTATLS=S=T)

Thus, < is a non-strict partial order over a[d[X, Y]]. |

Example 24. Figure 2 depicts a partial Hasse diagram, for the composition of Pol} and Pol} from Ex-
ample 23 under the relative ordering of < over @[6[IPspec, Prispec)]. A

Adjacency Duplet Union. The join of S,T € a[6[X, Y]] is defined using subsumption, as the cover-set
for the duplet merge of the transitive closure of adjacent duplets, from the generalized intersection of all
sets of sets of duplets, whereby each element of the generalized intersection covers an element in either
S or T by duplet precedence subsumption. The generalized intersection defines the smallest collection
of duplets that cover all of the duplets from both S and T by precedence subsumption. Given that all
duplets in this set are now disjoint, the cover-set for the duplet merge of the transitive closure of adjacent
duplets merges any forward-adjacent duplets from S and 7. If we take some U € «[d[X, Y]], such that
UL (S®T)and S < UAT < U, then (S®T) = U. Thus, Adjacency join provides a lowest upper
bound operator, we have:

VS, T,U: a[5[X,Y]] e
SKEBT)ANTL(SHT) A
SKUANTL<U= (S&T)<U)

U. Neville and S.N. Foley / Reasoning About Firewall Policies Through Refinement and Composition 21

T
[6[IPSpec> PrtSpec]—I

+~
|

(a0)

Polﬁ’éPoIS
({44280, ([31 AT 1), ({12 413 {[4 - 41D}
Polf - h Polj
{351 311} {({2-- 45 {[2..4]})}
h Polf ® Polj :

{({2.-311412-- 311}

|
|
0
1L
Fig. 2. Duplet ordering fragment

The implementation definition for duplet adjacency-set join is given in Section 7.2.

Adjacency Duplet Intersection. Under this ordering, the meet (S® T) of S,T € «[d[X, Y]] is defined
using subsumption, as the cover-set for the generalized union of all Adjacency-sets, where each element
of (S®T) is covered by a duplet, or by a collection of duplets in both S and T. The meet is defined as the
largest set of adjacency-free duplets that is covered by both S and 7. Thus, ® provides the glb operator,
then for S, T € a[d[X, Y]] we have S® T is covered by both S and 7, thatis (S®7T) < Sand (S®T) < T.

Adjacency Duplet Negation. Given S € «a[6[X, Y]], then notS defines a complement operator in
a[6[X, Y]], where not S is the cover-set for all elements of type X that are not covered by some member
of S. We have:

VS:a[dX,Y]] e
(S @ mnotS) =T A (S ®@notS) =1L

Theorem 3.7. The poset (a[6[X, Y]], <) forms a lattice with complement operator not.

Proof This follows from the definition of < as an antisymmetric preorder, the properties of not, and the
definitions of ® and ®.

Commutative Laws. We observe that changing the order of the operands/Adjacency-sets does not
change the composition result.

22 U. Neville and S.N. Foley / Reasoning About Firewall Policies Through Refinement and Composition

VS, T:a[6]X,Y]] e
S&T=THSA
SRT=T®S

Associative Laws. We observe that the order in which the operations are performed does not change

the outcome of the operation.

VS, T,U : a|5[X, Y]] e
SOToU)=ESaT)®UA
ST QU)=(ST)oU

Absorption Laws. The following identities link & and ®.

VS, T:al6[X,Y]] e
S&S®T)=SA
SRESeT)=S$

Idempotent Laws. We observe that for all S € a[d[X, Y]], S is idempotent with respect to & and ®.

VS :a[d[X,Y]] e
S®&S=SA
SS=S

Identity Laws. We observe that (¢[6[X, Y]], ®,®, L, T) is a bounded lattice/algebraic structure, such
that (a[6[X, Y]], ®, ®) is a lattice, L is the identity element for the join operation b, and T is the identity

element for the meet operation ®.
VS:a[6X,Y]] e

SOL=SA
ST=S§

Distributivity Laws. The join operation distributes over the meet operation and vice-versa.

VS, T,U : a[5]X.,Y]] o
So(TeU)

=Sele(TeoU
SRMITaU)=(ST) o (

)
T®U)

Thus, (a[6[X, Y]], <, @, ®, L, T, not) is a lattice.

4. FW), Filter Conditions

In this section, the filter condition attribute datatypes for the FV; policy model are defined.

U. Neville and S.N. Foley / Reasoning About Firewall Policies Through Refinement and Composition 23

OSI Layer 2. Let Lo define the set of all additional filter condition attributes at the Data-Link Layer,
given as the set of all duplets over the set of all sets of packet-types (P PktTpe) and the set of all sets of
MAC addresses (IP MAC).

Lo == 6P PktTpe, P MAC]

From Lemma 3.5, we have that £ is a lattice.

Example 25. The following iptables rule specifies that inbound (INPUT) TCP broadcast packets (—p
tcp ——pkt-type broadcast) destined for the IP address 0.0.0.1 (-d 0.0.0.1) be denied (-3 DROP).

iptables —-A INPUT -p tcp —-pkt-type broadcast \
-d 0.0.0.1 —j DROP

The following iptables rule specifies that TCP packets being routed beyond the firewall (FORWARD
-p tcp) destined for the IP address 0.0.0.1 (—d 0.0.0.1) with source MAC address 00:0F:EA:91:04:08
(-m mac —--mac-source 00:0F:EA:91:04:08) be denied (-3 DROP).

iptables -A FORWARD -p tcp -d 0.0.0.1 \
-m mac —--mac-source 00:0F:EA:91:04:08 -3 DROP

A

OSI Layer 7. Let L7 define the set of all additional filter condition attributes at the OSI Application
Layer, given as the set of all duplets over the set of all sets of Layer 7 protocols (P Protok), the set of
all closed subsets for the ranges of all Linux UIDs partitioned by adjacency (UIDsp,.), and the set of all
closed subsets for the ranges of all Linux GIDs (GIDys),.) partitioned by adjacency.

UIDgpec == a[IV]0, maxUID]]
GIDspe. == a[IV|[0, maxGID]]

L7 == [P Protok, §|[UIDgpec, GIDspec)|

From Lemma 3.5, we have that £+ is a lattice.

Example 26. The following iptables rule specifies that outbound (OUTPUT) SSH packets (-m layer?
-—17proto ssh), originating from the Linux application UID 1001 (-m owner --uid-owner
1001), destined for the IP address 0.0.0.2 (—d 0.0.0.2) be allowed (-j ACCEPT).

iptables —-A OUTPUT -m layer7 —--17proto ssh \
-m owner -—--uid-owner 1001 -d0.0.0.2 -j ACCEPT

24 U. Neville and S.N. Foley / Reasoning About Firewall Policies Through Refinement and Composition

The Stateful/Protocol Datatype. Let Protocol define the set of all stateful protocols, given as the
set of all duplets over the TCP protocol (P Flags,..), the UDP protocol (UDP), the ICMP protocol
(P TypesCodes), and the set of all sets of connection tracking states for a packet/connection (PP State).

Protocol == §[P Flaggpe., S|{UDP, [P TypesCodes, P Statel]

UDP operators are (A, V, LBP). From Lemma 3.5, we have that Protocol is a lattice.

Stateful/Protocol Disjointness. A pair of stateful protocols are disjoint if the TCP, UDP and ICMP
attributes are disjoint, and/or their state is disjoint. For t1,t; € P Flagspe., Ui,Uu2 € UDP, iy,iy €
P TypesCodes and sq, s, € P State, we define:

(t1,U1,i1551) | Protocor (t2, Uz, i2,S2) <
((t1 ’]P’Flagspec t2 A U4 ’UDP Uz A i1 ’IP’TypesCodes i2> vV S1 ’IP’State 52)

Additional Filtering Specifications. Let AdditionalFC define the set of all additional filter condition
attributes of interest, given as the set of all duplets over the set of all closed subsets for the ranges of
all Unix timestamps, from 0 up to and including maxTime (Timeg),.), the set of all sets of all network
interfaces on a machine (P /FACE), the set of all sets of directions for direction-oriented filtering (P Dir)
and the set of all sets of iptables chains (P Chain).

Timegpec == a[ZV[0, maxTime]]|
AdditionalFC == §[Timegpe, 5|P IFACE, §[P Dir, P Chainl|]

From Lemma 3.5, we have that Additional FC is a lattice.

Example 27. The following iptables rule specifies that for all inbound (INPUT) packets arriving on
interface ethO (-1 eth0) from the IP address 0.0.0.1 (-s 0.0.0.1), attempting to traverse the firewall
between 8 a.m. January 1%t 2017 and 6 p.m. January 3™ 2017 (-m time --datestart 2017-01-
01T08:00:00 ——datestop 2017-01-03T18:00:00), are to be denied.

iptables —A INPUT -i eth0 -s 0.0.0.1 -m time --datestart \
2017-01-01T08:00:00 ——datestop 2017-01-03T18:00:00 —3j DROP

AN

Filter Conditions. A filter condition is a eight-tuple (s, sprt, d, dprt, p, ls, l7, a), representing network
traffic originating from source IP ranges s, with source port ranges sprt, destined for destination IP
ranges d, with destination port ranges dprt, using stateful-protocols p, with additional Layer 2 attributes
l2, additional Layer 7 attributes /7 and additional filtering specifications a. Let FC define the set of all
filter conditions, whereby:

FC == §[IPspec, 6[Prtspec, O[IPspec, 5| Prtspec, 5| Protocol, 5[La, 6[L7, Additional FC)]]]]]

From Lemma 3.5, we have that FC is a lattice.

U. Neville and S.N. Foley / Reasoning About Firewall Policies Through Refinement and Composition 25

Forward Adjacency. Recall, for (ay,by), (a2, b)) € 6[X,Y], we define forward adjacency, whereby:
(a1 = a2 A bilybs). A pair of filter conditions are forward adjacent if the attributes in the first coordinate
are equal, and there is one adjacent attribute in the second coordinate, while all other attributes in the
second coordinate are equal.

5. The FW; Firewall Algebra

In this section we define an algebra F)V1, for constructing and reasoning about anomaly-free firewall
policies. We focus on stateless and stateful firewall policies that are defined in terms of constraints on
source/destination IP/port ranges, the TCP, UDP and ICMP protocols, and additional filter condition
attributes. A firewall policy defines the filter conditions that may be allowed or denied by a firewall. Let
Policy define the set of all firewall policies, whereby:

Policy == {A,D : ¢[FC] |Va:A; d:Dea |rcd}

A firewall policy (A, D) € Policy defines a policy as a pair of adjacency-free sets of filter conditions
under the duplet adjacency ordering, whereby a filter condition f € A should be allowed by the firewall,
while a filter condition f € D should be denied. Given (A, D) € Policy then A and D are disjoint: this
avoids any contradiction in deciding whether a filter condition should be allowed or denied. The policy
destructor functions allow and deny are analogous to functions first and second for ordered pairs:

allow,
deny : Policy — a[FC]
VA,D:alFC| e
allow (A,D) = A N
deny (A,D) =D

Thus, we have for all P € Policy then P = (allow(P), deny(P)).
Lemma 5.1. Policy defines the set of anomaly-free policies.

Proof Given a policy (A,D) € Policy, as A and D are adjacency-free sets, then A has no redundancy
and D has no redundancy, as Adjacency-sets have no subsumption. Therefore, all packets matched in
filter conditions allowed by the policy are distinct, as are all packets matched in filter conditions that
are denied by the policy. Given a policy P € Policy, as allow(P) and deny(P) are disjoint, then P has
no shadowing.

VP : Policy e
allow(P) |q(pc) deny(P)

As P has no subsumption and P has no shadowing, then P has no generalised filter conditions and P has
no correlated filter conditions. Therefore, as P has no redundancy/shadowing/generalisation/correlation,
then Policy defines the set of anomaly-free policies. |

26 U. Neville and S.N. Foley / Reasoning About Firewall Policies Through Refinement and Composition

Note that (A, D) € Policy need not partition [FC]: the allow and deny sets define the filter conditions
to which the policy explicitly applies, and an implicit default decision is applied for those filter conditions
in [FC| \o[rc) (A @ D). For the purposes of modelling iptables firewalls it is sufficient to assume default
deny, though we observe that F)VV; can also be used to reason about default allow firewall policies.

Policy Refinement. An ordering can be defined over firewall policies, whereby given P, Q € Policy
then P C Q means that P is no less restrictive than Q, that is, any filter condition that is denied by Q
is denied by P. Intuitively, policy P is considered to be a safe replacement for policy Q, in the sense
of [19, 20, 28] and any firewall that enforces policy Q can be reconfigured to enforce policy P without
any loss of security. The set Policy forms a lattice under the safe replacement ordering and is defined
as follows.

— FW1
1, T : Policy
_C _: Policy <+ Policy
Mn,

U: Policy x Policy — Policy

1L =(0,[FC)) AT = ([FC,0)
VP,Q: Policy e
PC Q< ((allowP < allow Q) A
(deny Q < deny P)) A
P11 Q = (allow P ® allow Q,
deny P @ deny Q) A
P U Q = (allow P @ allow Q,
deny P ® deny Q)

Formally, P C Q iff every filter condition allowed by P is allowed by Q and that any filter conditions
explicitly denied by Q are also explicitly denied by P. Note that in this definition we distinguish between
filter conditions explicitly denied in the policy versus those implicitly denied by default. This means
that, everything else being equal, a policy that explicitly denies a filter condition is considered more
restrictive than a policy that relies on the implicit default-deny for the same network traffic pattern. Safe
replacement is defined as the Cartesian product of Adjacency orderings over allow and deny sets and
it therefore follows that (Policy,C) is a poset. L and T define the most restrictive and least restrictive
policies, that is, for any P € Policy we have L. C P C T. Thus, for example, any firewall enforcing a
policy P can be safely reconfigured to enforce the (not very useful) firewall policy L.

Theorem 5.2. The set of all policies Policy forms a lattice under safe replacement, with greatest lower
bound (M) and lowest upper bound (1) operators in FWW1.

Proof The ordering of adjacency-free filter condition/duplets is a lattice under subsumption, the Carte-
sian product is a lattice under the definitions of glb and lub, therefore, FWWV; is a lattice. |

Policy Intersection. Under this ordering, the meet P 'l O, of two firewall policies P and Q is defined
as the policy that denies any filter condition that is explicitly denied by either P or Q, but allows filter
conditions that are allowed by both P and Q. Intuitively, this means that if a firewall is required to enforce

U. Neville and S.N. Foley / Reasoning About Firewall Policies Through Refinement and Composition 27

both policies P and Q, it can be configured to enforce the policy (P1Q) since PrQ is a safe replacement
for both P and Q, thatis; (PN Q) C P and (PN Q) C Q. Given the definition of safe replacement as a
product of two Adjacency lattices, it follows that the policy meet provides the glb operator. Thus, P 1 Q
provides the ‘best’/least restrictive safe replacement (under C) for both P and Q.

Policy Union. The join of two firewall policies P and Q is defined as the policy that allows any filter
condition allowed by either P or Q, but denies filter conditions that are explicitly denied by both P and
Q. Intuitively, this means that a firewall that is required to enforce either policy P or Q can be safely
configured to enforce the policy (P U Q). Since LI provides a lub operator we have P C (P L Q) and

QC (PUQ).
5.1. Constructing Firewall Policies

The lattice of policies FW; provides us with an algebra for constructing and interpreting firewall po-
lices. The following constructor functions are used to build primitive policies. Given a set of adjacency-
free filter conditions A, then (Allow A) is a policy that allows filter conditions in A, and (Deny D) is a
policy that explicitly denies filter conditions in D.

Allow,
Deny : «[FC| — Policy

VS :a[FC|e
Allow S = (S,0) A
Deny S = (0, 5)

This provides what we refer to as a weak interpretation of allow and deny. Network traffic patterns that
are not explicitly mentioned in parameter S are default-deny and therefore are not specified in the deny
set of the policy. The following provides us with a strong interpretation for these constructors:

Allow™,
Deny* : a[FC] — Policy
VS:a[FC|e
Allow™ S = (S,notS) A
Deny™ S = (not S, S)

In this case (Allow™ A) allows filter conditions specified in A, while explicitly denying all other filter
conditions, and (Deny™ D) denies filter conditions specified in D while allowing all other filter condi-
tions.

A firewall policy P € Policy can be decomposed into its corresponding allow and deny sets, and
re-constructed using the algebra; for any (A, D) € Policy, since A and D are disjoint then:

Lemma 5.3. Given A,D € «[FC|, then:
(Allow™ A) LI (Deny D) = (A, [FC| \qrc) A) U (0, D)

Proof Follows since (Allow™ A) U (Deny D) = (AllowA) 11 (Deny™ D) = (A, D) |

28 U. Neville and S.N. Foley / Reasoning About Firewall Policies Through Refinement and Composition

Corollary 5.4. Given A,D € «a[FC], then it follows that

(Deny* D) 1 (AllowA) = (A,) M ([FCT \rc) D, D)

6. Reasoning About Policies in Practice

Sequential Composition. A firewall policy is conventionally constructed as a sequence of rules,
whereby for a given network packet, the decision to allow or deny the packet is checked against each
policy rule, starting from the first, in sequence, and the first rule that matches gives the result that is
returned. The algebra 7)1V, can be extended to include a similar form of sequential composition of poli-
cies. The policy constructions in Section 5.1 can be regarded as representing the individual rules of a
conventional firewall policy.

Let (AllowA) g Q denote a sequential composition of an allow rule (AllowA) with policy Q with the
interpretation that a given network packet matched in A is allowed; if it does not match in A then pol-
icy Q is enforced. The resulting policy either: allows filter conditions in A (and denies all other filter
conditions), or allows/denies filter conditions in accordance with policy Q. We define:

(AllowA) g Q = (Allow™ A) L Q
= (A @ allow(Q)), (([FC] \o[rc) A) @ deny(Q)))
= ((A @ allOW(Q)>’ (deny(Q) \(x[FC] A))

which is as expected. A similar definition can be provided for the sequential composition (Deny D) s O,
whereby a given network packet that is matched in D is denied; if it does not match in D then policy O
is enforced. We define:

(DenyD) 3 Q = (Denyt D) Q
= ((([FC] \ajre) D) ® allow(Q)), deny(Q) & D)
= (allow(Q) \qrc) D, deny(Q) @ D)

While in practice its usual to write a firewall policy in terms of many constructions of allow and
deny rules, in principle, any firewall policy P € Policy can be defined in terms of one allow policy
(Allow allow(P)) and one deny policy (Deny deny(P)) and since the allow and deny sets of P are disjoint
we have P 3§ Q = (Deny deny(P)) s (Allow allow(P)) 3 Q. We define this as:

g: Policy x Policy — Policy

VY FWi; P,Q : Policy e
P35 Q = (Deny™ (deny(P)))N
(Q U (Allow™ (allow(P))))

Let Rule define the set of all firewall rules, whereby:

Rule := allow {(FC)) | deny (FC))

U. Neville and S.N. Foley / Reasoning About Firewall Policies Through Refinement and Composition 29

We define a rule interpretation function as:

T : Rule — Policy

Vf:FCe
Z(allowf) = Allow({f}) A
Z(denyf) = Deny({f})

A firewall policy is defined as a sequence of rules (r1, ro, .., r,), for r; € Rule, and is encoded in the
policy algebra as Z(r1) s Z(r2) s .. 3 Z(r,). In practice, firewall policies are often anomalous [44], where
a policy’s deny rules are not disjoint from it’s allow rules, and a “first match” principle is applied to
filtered packets. Mapping a sequence of potentially anomalous firewall rules (ry, ra, . ., r,,) into the FIV;
algebra gives a semantically-equivalent anomaly-free P € Policy.

Policy Negation. The policy negation of P € Policy allows filter conditions explicitly denied by P and
explicitly denies filter conditions allowed by P. We define:

not : Policy — Policy

VY FWi; P: Policy e
not P = (Allow™ (deny (P)))U
(Deny (allow (P)))

From this definition it follows that (not P) is simply (deny (P),allow (P)) and thus not (Deny D) =
(Allow D) and not (AllowA) = (Deny A). Note however, that in general policy negation does not define
a complement operator in the algebra 7)1, that is, it not necessarily the case that (PLUnot P) = T and
(P M not P) = L. However, the sub-lattice of policies with allow and deny sets that exactly partition
the same set S < [FC| has policy negation as complement (allow (P) & deny (P) = S for all P in the
sub-lattice).

A Target Action of Log in FVV;. In this paper, the focus is on firewall rules with a target action of
either allow or deny. However, from a compliance perspective, it is considered best practice to log traffic
for auditing purposes [41]. Future work should extend the F)V; algebra to include a target action of
log for firewall rules. An approach may be taken, whereby we extend (A, D) € Policy to (A,D,L) €
Policy, where L € «[FC] and a filter condition f € L should be logged by the firewall. We give the
destructor function log for firewall policies; whereby log (A, D,L) = L. For policy composition, then
for P, Q € Policy, we have P 11 Q signifies the operation (log P @ log Q) for logged filter conditions.
Similarly, for P LI Q we have the logged filter conditions (log P ® log Q). From this, we have that the
ordering for logged filter conditions is defined similarly to the ordering for denied filter conditions. In
practice, a logged filter condition may be shadowed by a filter condition with a target action of allow
or deny. However, it is not the case that a filter condition with a target action of log can shadow a filter
condition with a target action of allow or deny. Therefore, for sequential composition, then we have P3Q
defines the logged filter conditions for the resulting policy as: (log P @ (log O\ (allow P & deny P))).
Encoding a definition for Network Address Translation in FWW; is also a topic for future research.

30 U. Neville and S.N. Foley / Reasoning About Firewall Policies Through Refinement and Composition

6.1. Detecting Anomalies in Firewall Policies

A firewall policy is conventionally constructed as a sequence of order-dependent rules, and when a
network packet matches with two or more policy rules, the policy is anomalous [2, 3, 10]. By definition,
the adjacency-free allow and deny sets of some P € Policy are disjoint, therefore P is anomaly-free by
construction. We can however define anomalies using the algebra; by considering how a policy changes
when composed with other policies.

Redundancy. A policy P is redundant given policy Q if their composition results in no difference
between the resulting policy and Q, in particular, if:

Ps0=0

Further definitions may be given for redundancy. For example, there are redundant packets with a
target action of allow in filter conditions between policy P and policy Q, if:

Allow(allow (P)) 1 Allow(allow (Q)) # (0, 0)
as:
Allow(allow (P)) 1 Allow(allow (Q)) = (allow (P) @ allow (Q), 0)

A similar interpretation follows for redundant packets with a target action of deny between filter
conditions in a policy P and filter conditions in a policy Q. In particular, we have redundant denies if:

Deny(deny (P)) LI Deny(deny (Q)) # (0,0)

as:

Deny(deny (P)) LI Deny(deny (Q)) = (0, deny (P) ® deny (Q))

Shadowing. Some part of policy Q is shadowed by the entire policy P in the composition P g Q if the
by filter condition constraints that are specified by P contradict the constraints that are specified by Q,
in particular, if:

(not P)3Q =Q

This is a very general definition for shadowing. Perhaps a more familiar interpretation of this definition
is one where the policy P is a specific allow/deny rule that shadows a part or all of the policy with which
it is composed. Recall that (not(AllowA)) = (Deny A) and, for example, in (AllowA) § Q all or part of
policy Q is shadowed by the rule/primitive policy (AllowA) if Q denies the filter conditions specified
in A, that is, (DenyA) s @ = Q. Similarly, in (Deny D) g Q part or all of policy Q is shadowed by the
rule/primitive policy (Deny D) if (not (Deny D)) s Q = Q.

Further definitions may also be given for shadowing. For example, we have that some of the packets
denied by filter conditions in a policy P shadow some of the packets allowed by filter conditions in a

policy Q if:

Deny(deny (P)) LI Deny(allow (Q)) # (0,0)

U. Neville and S.N. Foley / Reasoning About Firewall Policies Through Refinement and Composition 31

Deny(deny (P)) LI Deny(allow (Q)) = (0, deny (P) @ allow (Q))

Similarly, some of the packets allowed by filter conditions in a policy P shadow some of the packets
denied by filter conditions in a policy Q if:

Allow(allow (P)) M Allow(deny (Q)) # (0,0)
as:
Allow(allow (P)) M Allow(deny (Q)) = (allow (P) ® deny (Q), 0)

Generalisation. A generalisation anomaly exists between P and Q if some of the packets allowed by
filter conditions in P shadow some of the packets denied by filter conditions in Q, in particular, if:

Allow(allow (P)) M Allow(deny (Q)) # (0,0)

and, those packets shadowed by filter conditions in Q are subsumed by Q’s denies:
not (Allow(allow (P)) 1 Allow(deny (Q))) # Deny(deny (Q))

whereby:
not (Allow(allow (P)) M Allow(deny (Q))) = (0, allow (P) ® deny (Q))

Similarly, a generalisation anomaly exists between P and Q if some of the packets denied by filter
conditions in P shadow some of the packets allowed by filter conditions in Q, in particular, if:

Deny(deny (P)) L Deny(allow (Q)) # (,0)

and, those packets shadowed by filter conditions in Q are subsumed by Q’s allows:
not (Deny(deny (P)) L Deny(allow (Q))) # Allow(allow (Q))

as:
not (Deny(deny (P)) U Deny(allow (Q))) = (deny (P) ® allow (Q), 1)

Inter-policy Anomalies. We can also use the FVV; algebra to reason about anomalies between the
different policies of distributed firewall configurations. In the following, assume that P is a policy on an
upstream firewall and Q is a policy on a downstream firewall.

32 U. Neville and S.N. Foley / Reasoning About Firewall Policies Through Refinement and Composition

Redundancy. An inter-redundancy anomaly exists between policies P and Q if some part of Q is re-
dundant to some part of P, whereby the target action of the redundant filter conditions is deny. Given
some set of filter conditions A denied by P, and some set of filter conditions B denied by Q, then there
exists an inter-redundancy between P and Q, if:

(DenyA) s (Deny B) = (Deny A)

Further definitions may be given for inter-redundancy. For example, there are redundant packets with
a target action of deny in filter conditions between upstream policy P and downstream policy Q, if:

Deny(deny (P)) L Deny(deny (Q)) # (0,0)

Shadowing. An inter-shadowing anomaly exists between policies P and Q if some part of Q’s allows
are shadowed by some part of P’s denies. Given some set of filter conditions A denied by P, and some
set of filter conditions B allowed by Q, then there is an inter-shadowing anomaly between P and Q, if:

(DenyA) s (Allow B) = (Deny A)

Further definitions may also be given for inter-shadowing. For example, we have that some of the
packets denied by filter conditions in a policy P shadow some of the packets allowed by filter conditions
in a policy Q if:

Deny(deny (P)) L Deny(allow (Q)) # (0,0)

Spuriousness. An inter-spuriousness anomaly exists between policies P and Q if some part of Q’s
denies are shadowed by some part of P’s allows. Given some set of filter conditions A allowed by P, and
some set of filter conditions B denied by Q, then there exists an inter-spuriousness anomaly between P
and Q, if:

(AllowA) g (Deny B) = (Allow A)

Spuriousness may also be defined as follows, whereby some of the packets allowed by filter conditions
in a policy P shadow some of the packets denied by filter conditions in a policy Q. We have an inter-
spuriousness anomaly from an upstream policy P to a downstream policy Q, if:

Allow(allow (P)) 1 Allow(deny (Q)) # (0,0)

To apply the definitions presented in this section to the detection of anomalies in firewall policies in
practice, an approach may be taken, whereby an algorithm is constructed, that incorporates the anomaly
definitions into the sequential composition of policies/rules when mapping a potentially anomalous,
already deployed firewall policy into FW;. That is, given a sequence of firewall rules (ry,ro,..,r,),
then before each sequential composition, an anomaly check can be made using the definitions in this
section, the result of which can be used to alert an administrator to the presence of anomalies in the
policies/rules under question.

U. Neville and S.N. Foley / Reasoning About Firewall Policies Through Refinement and Composition 33
6.2. Standards Compliance

RFC 5735 [9], details fifteen IPv4 address blocks that have been assigned by IANA for special-
ized/global purposes. Some of these address spaces may appear on the Internet, and may be used le-
gitimately outside a single administrative domain, however, while the assigned values of the address
blocks do not directly raise security issues; unexpected use may indicate an attack [9]. For example,
packets with a source IP address from the private address space 172.16.0.0/12, arriving on the Wide
Area Network interface of a network router, may be considered spoofed, and may be part of a Denial of
Service (DoS), or Distributed DoS attack.

RFC 5735 Compliance. Best practice recommendations are implemented for each of the fifteen spe-
cialized IP address block ranges in [9], resulting in one hundred and twenty iptables deny rules. In [18],
we defined this deny ruleset for a firewall management tool. We define IP spoof-mitigation policies for
each iptables chain separately. For the INPUT chain, a compliance policy RFC5735' is defined, whereby
for each of the IP address block ranges, the following iptables rules are enforced.

iptables —-A INPUT -i $in\ -m iprange -src-range $min:$max —-j DROP
iptables —-A INPUT -i $in\ -m iprange -dst-range $min:$max —-j DROP

Similarly, for the OUTPUT chain, an IP spoof-mitigation compliance policy RFC5735° is defined,
whereby for each of the specialized IP address block ranges we have:

iptables —-A OUTPUT -o $out\ -m iprange —-src—-range $min:$max —j DROP
iptables —-A OUTPUT -o $out\ -m iprange —-dst-range $min:$max —j DROP

For the FORWARD chain, then RFC5735 enforces the following iptables rules for each of the IP
address block ranges.

iptables —-A FORWARD -i $in\ -m iprange —-src-range $min:$max —3j DROP
iptables —-A FORWARD -i $in\ -m iprange —-dst-range $min:$max —-3j DROP
iptables —-A FORWARD -o $out\ -m iprange —-src-range $min:$max —3j DROP
iptables —-A FORWARD -o $out\ -m iprange —-dst-range $min:$max —3j DROP

Each policy, RFC5735', RFC5735°, RFC5735F, terminates with a final iptables rule that specifies all
other traffic be permitted on the given iptables chain.

A Redefined Firewall Policy. 'We model these iptables rules in the algebra by redefining some policy-
model attributes, and provide more formal definitions of RFC5735', RFC5735° and RFC5735F. Let
Additional FCy be the set of all duplets for additional filter condition attributes of interest, where:
AdditionalFC; == [P Chain, §[P Dir, P IFACE]]
A revised definition for the set of all filter conditions FCz is given as:

FCz == 8[IPspec, 6[Prtspec, 8[IPspec, [Prtspec, 6| Protocol, Additional FCy)]]]

A revised definition for the set of all policies Policyr is given as:

34 U. Neville and S.N. Foley / Reasoning About Firewall Policies Through Refinement and Composition
Policyr == {A,D : a[FCz| |VYa:A; d:Dea |pc, d}

The compliance policies RFC5735', RFC5735°, RFC5735"7 € Policyz, define the minimum require-
ments for what it means for some perimeter network firewall policy to mitigate the threat of IP spoofing
for all traffic, in accordance with RFC 5735. Thus, we have for all P € Policyz if:

P C (RFC5735' M RFC5735° M RFC5735)

then P complies with the best practice recommendations outlined in [9] for IP address spoof-mitigation.

7. Encoding and Evaluating iptables Policies

A prototype policy management toolkit has been implemented in Python for iptables. The prototype
allows for parsing the system’s currently enforced iptables ruleset (r1, 2. .r,) by chain, using the Python-
iptables package [36], and then normalizing each rule to a primitive/singleton policy. The overall policy
for the chain being evaluated as Z(ry) § Z(r2) g .. s Z(r,). Once the sequential composition of the sys-
tem’s currently enforced iptables policy is computed, the prototype generates a semantically-equivalent
adjacency-free set of iptables rules and re-writes this new ruleset to the system.

We reason over Policyr policies using the g, L, and C policy operators. The test-bed for the experi-
ments was a 64-Bit Ubuntu 14.04 LTS OS, running on a Dell Latitude E6430, with a quad-core Intel
15-3320M processor and 4GB of RAM. Every experiment was conducted three times; the median re-
sult chosen for inclusion in this paper. Overall, the results are promising. In this section, the firewall
datatypes for the prototype are described.

Firewall Rules. An iptables rule is modelled as a list of generic filter conditions. The current imple-
mentation defines firewall rules with filter condition attributes for source/destination IP/port ranges, the
ICMP, UDP and TCP protocols, and additional filter condition attributes. The relationships of adjacency,
disjointness and subsumption have been encoded, as have composition operators for rule intersection and
rule join/combination.

Range-based Attributes. Filter condition attributes defined as ranges in the F)WW; framework, for ex-
ample, source/destination IP/port ranges, are implemented as interval sets, using the Pyinter Python
package [39]. The package was modified to include definitions for relative compliment operators and
adjacency over intervals and interval sets.

ICMP and UDP. The ICMP protocol is modelled as the set of all valid ICMP Type/Code pairs, given
in Section 4. UDP has been defined as a binary attribute. Boolean operators apply for the UDP filter
condition attributes.

TCP. The TCP protocol is encoded as a 2'2 bit array, whereby the position of each bit is mapped to an
index value in a table. This table is the implementation of the Flagg,.. object defined in Section 4, and is
encoded as the list of TCP (mask, comp) pairs, as pairs of six-bit arrays. A value of 1 at a given position
in the 2'2 bit array indicates that this particular arrangement of TCP flags are matched in the packets
specified by the firewall rule. Table 3 gives an overview of the FlagSpec lookup.

Additional Attributes. Attributes for direction-oriented filtering, network interface and iptables chains
have been encoded as sets for firewall rules.

U. Neville and S.N. Foley / Reasoning About Firewall Policies Through Refinement and Composition 35

Index| Mask Comp
1 ‘000000’ | 000000
2 ‘000000’ |“000001°

& 000000’ | ‘000111

4096 | ‘1111117 “111111°
Table 3
Partial TCP FlagSpec Lookup Table

Firewall Policies. A policy is implemented as a disjoint pair of adjacency-free sets of firewall rules.
The adjacency-free sets of rules have been modelled following the approach taken to model the interval-
sets in the Pyinter package [39].

Transitive Closure of Adjacent Rules. The transitive closure for the adjacency relation over rules in
firewall policies has been implemented recursively, following the approach used in the Pyinter package
to implement the transitive closure over adjacent intervals [39]. A set of firewall rules is adjacency-free
by construction. When a new rule is added to the ruleset, a check is made firstly to determine if there are
any rules in the set that are adjacent to the new rule. If there are none, the new rule is added. Otherwise,
the adjacent rules are removed from the ruleset, and rules resulting from the combination of the new rule
with the adjacent rules are added to the ruleset, starting again with a check to determine if there are any
rules in the set that are adjacent to the new rule.

7.1. Evaluating Policy Operators

Evaluating Sequential Policy Composition. The implementation parses the system’s currently enforced
iptables ruleset (ri,r2 .. r,) by chain, and then normalizes each rule to a primitive/singleton policy
(Z(r1),Z(r2) .. Z(ry)). The overall policy for the chain is evaluated as Z(r1) s Z(r2) .. s Z(r,). Two
datasets were generated for experimentation. Each dataset consists of iptables policies of size 2% .. 211,
One dataset contains policies where no rule is adjacent to any other rule (other than itself), and the other
dataset consists of policies where every new rule is adjacent to the previous rule; to ensure the maximum
number of possible rules are generated as a result of composition. The rules all have a target action of
allow. Table 4 details the results for the non-adjacent dataset, while the results for the adjacent dataset
are illustrated in Table 5.

We observe that as the number of rules increase, the cost of computing the sequential composition of
non-adjacent rules is relatively cheap, and we see that for the largest ruleset, 2!! the evaluation time is
approximately one minute. For the adjacent dataset, the cost of computing the sequential composition
of adjacent rules is expensive, but is also proportional to the number of rules used in the experiment.
However, the cost is by orders of magnitude more expensive than the cost for evaluating the sequential
composition of non-adjacent policies of the same size. For 29 rules, the time taken for the evaluation
of sequential composition is around three minutes, and the time taken for 2!! rules is approximately
forty six minutes.

Evaluating Policy Union. Experiments were conducted to test policy lub, whereby each policy in the
adjacent dataset used in the sequential composition experiments was split into two policies, whereby
the first policy contains the odd (index) rules from the original policy, and the second policy contains

36 U. Neville and S.N. Foley / Reasoning About Firewall Policies Through Refinement and Composition

Num| e | Ratio Num| e |Ratio
rules rules
24 Too7] - 27 1 080 | -
2° 10.13]1.85 2° | 2.02 [253
25 10291223 261 513 [2.98
27 10.67] 231 27 | 1532 [3.34
28 1173] 258 2% 1 51.18 | 3.58
27 1498 2.87 29 1183.42(3.85
210 116.09] 3.23 210170715 | 3.85
211 157.81] 3.59 2111279281 3.94
Table 4 Table 5
Sequential composition with no adjacent rules (in seconds) Sequential composition with adjacent rules (in seconds)
> 0 93 o4 95 96 o7 98 29 910

23 079 081 099 140 251 573 1693
24 | 0.79 209 232 291 450 883 22.19
2° | 081 2.09 545 678 917 1550 32.89
261099 232 545 1701 2193 3229 5747
27 | 140 291 678 17.01 5844 7694 11928

28 1251 450 9.17 2193 5844 [179.87| 217.34 294.56
29 1573 883 1550 3229 7694 21734 [699.11| 839.49
210 116,93 22.19 32.89 57.47 119.28 29456 839.49 [2722.63

Table 6
Time taken to compute P LI Q (in seconds)

the even (index) rules from the original policy. The odd (index) policies are adjacency-free, as are the
even (index) policies. Constructing the dataset from the odd-index and even-index policies allows us
to evaluate the cost, in terms of time, of composing policies of different sizes, whereby for the policy
union experiments, the maximum number of rules are generated as a result of composition. For each
P, QO € Policyz in this split dataset, the time taken for the operation P LI Q is given by Table 6.

A benefit of conducting the policy join experiments in this way, is that in practice, we may want to
update a policy P, comprising a large number of rules, with a smaller policy Q that permits some new
accesses. The time taken for composition of policies of equal size is approximately the same as (slightly
less than) the time necessary to sequentially compose the rules from both policies. That is; for example,
the time taken for the sequential composition of 29 rules is around three minutes, as is the join of the two
policies of size 28. This is highlighted through the diagonal in the matrix, and is as expected; given that
we used all allow rules, and the sequential composition of the rules used in these experiments results in
the eventual join of the rules.

Evaluating Policy Compliance. A dataset consisting of iptables policies of size 2°,26..2!! is generated
to test policy compliance. Each policy in this dataset is RFC 5735 compliant by construction, for TCP
traffic arriving on the iptables INPUT chain to/from each of the fifteen special-use IPv4 addresses [9].
Recall, the compliance policy RFC5735' defined in Section 6.2 for Policyr policies. Rules from the
previously defined non-adjacent dataset have been re-written with a target action of deny, and are used

U. Neville and S.N. Foley / Reasoning About Firewall Policies Through Refinement and Composition 37

Num Time | Ratio
rules

2° 1007 -
26 10.09]1.28
27 1015 1.66
28 10321213
27 1050 1.56
2101087] 1.74
21T 11,64 | 1.88

Table 7

Time taken to compute P C RFC5735' (in seconds)

to construct the remaining rules for each policy in the compliance dataset. For each P in the compliance
dataset, the time taken in seconds for the evaluation of P = RFC5735' is given in Table 7. We observe
that the compliance test has a cheap cost in terms time, and all evaluation times for 7 C RFC5735'
are negligible.

7.2. Implementing Duplet Join and Difference

In this section, the Python prototype implementations of duplet/rule join and duplet/rule difference
are defined. We demonstrate how Algorithm 1 (duplet join) and Algorithm 2 (duplet difference) relate
to firewall rule composition in W . For ease of exposition, we use colours in tables when illustrating
rule/duplet composition. The colours used are of no particular significance. The Python implementation
is expected to shortly be uploaded to an open-source repository.

Duplet Combination. For f,g € 6[X, Y], then the combination operation (f Wyy.y) g) defines a set of
adjacency-free duplets that exactly cover f and g.

—=X]
W _:PX+» (XxX)—PX
VYa,b:X e

Ve:(aWyb) e
X X
a—cVb&cA
/Hdi(aﬂﬂxb)o
cixd|c#d

The operation is described using three recursive functions; center C(f, g), left L(f, g) and right R(f, g),
and is defined as the set union of the duplets resulting from C(f, g), L(f,g) and R(f,g). For ease of
exposition, a duplet is given as a sequence of filter condition attributes. We assume f and g always have
the same number of attributes. The functions are defined as follows.

Center. Forf,g € §[X,Y], then C(f, g) defines the join of the adjacent and common attributes in f and
g. For duplets comprising two attributes, we define:

C({a1,b1), (a2, b2)) = (a1 Ux az, b1 Ny ba)

38 U. Neville and S.N. Foley / Reasoning About Firewall Policies Through Refinement and Composition

A A
N N
‘ a1 Uxay || b1 Ny ba ‘ aiUxai||b1Nyba||c1 Nyco

Table 8 Table 9
Center function for two-attribute duplets Center function for three-attribute duplets

A A
NIoEE PNIERERE

5 0 [v
Table 10 ‘blebQHC‘l\YCZ‘

Left function for two-attribute duplets Table 11

Left function for three-attribute duplets

Table 8 specifies the operations and duplet resulting from C(f, g) for two-attribute duplets. The label D
signifies duplet, while A means the attribute. For f and g of length greater than two, we define for each
additional attribute:

C(f(c1),87(c2)) =C(f,8) " {c1 Ny c2)

Table 9 specifies the operations and duplet resulting from C(f, g) for duplets with three attributes.

Left. Forf,g € 6[X,Y], then L(f, g) defines the remaining attribute constraints covered in f, that are
not covered in C(f, g). For duplets comprising two attributes, we define:

L({a1,b1), (a2, b2)) = {{a1,b1 \y b2) }

Table 10 specifies the operations and duplet resulting from L(f, g) for two-attribute duplets. For f and g
of length greater than two, we define for each additional attribute:

L(f(c1), 87(c2)) = {(head f) ™ tail (C(f,g)) ™ (c1 \y c2) } U
{t: L(f,8) o1 {c1)}

Table 11 specifies the operations and duplets resulting from L(f, g) for duplets comprising three at-
tributes.

Right. Forf,g € §[X, Y], then R(f, g) defines the remaining attribute constraints covered in g, that are
not covered in C(f, g). For duplets comprising two attributes, we define:

R({a1,b1), (az,b2)) = {{az,b2 \y b1)}

Table 12 specifies the operations and duplet resulting from R(f, g) for two-attribute duplets. For f and g
of length greater than two, we define for each additional attribute:

R(f{c1),87(ca)) = {(head g) " 1ail (C(f,g)) ™ {ca \y c1)} U
{t:R(f.8) @17 (c2)}

U. Neville and S.N. Foley / Reasoning About Firewall Policies Through Refinement and Composition 39

A A
oo No @ @

1 [[@] [pvn] [[ea] o2 \rin | [e]
Table 12 ba Ny b1 | |c2\y c1

Right function for two-attribute duplets Table 13

Right function for three-attribute duplets

A
a1 Uy ay b1 Ny b2

2] = [k

ay Uxay | | by Ny by]| * Ny x2

BEEE
SIEE| 3

DDHIi‘H

b1 \y b2 a bi\rb2|[7] | x1
b2 \y by a by\ybi|[-] | x2
Table 14]]] X1
A two-attribute duplet join]]] X2
(k+k—2) ay b1 Ny by | 777 | x1 \y x2
(k+k—1) as ba Ny by | 77 [x2 \y x1
Table 15

A k-attribute duplet join

Table 13 specifies the operations and duplets resulting from R(f, g) for duplets comprising three at-
tributes.

Thus, we define the combination operation for f and g as:

f@sxy & =1{C(f,8)} U L(f,8) UR(S. g)

Theorem 7.1. The duplet combination operation defines the adjacency-free combination for all f, g €
O[X,Y]; n € N, where (n=#f =#g) > 2.

Proof We will show that for f, g € §[X, Y], then f Ws[x,y) & defines the adjacency-free combination for
all n € N, where (n = #f = #g) > 2, using induction on n.

Base Case. Forn = 2, then for f Wsix y) g, the resulting operations and duplets for f and g as two-
attribute duplets are given in Table 14. From these results, we have that Theorem 7.1 holds when n = 2.

Inductive Hypothesis. Suppose Theorem 7.1 holds for k € N, where k > n, and k = #f = # g. Then
for f Ws[x.y) &, the resulting operations and duplets for f and g as k-attribute duplets are given in Table 15:

Inductive Step. Let n = k + 1. Then by the recursive definitions of C(f, g), L(f,g) and R(f, g), the
resulting operations and duplets for f and g as (k + 1)-attribute duplets in (f Wsx y]) are given in
Table 16. Therefore, from these results, we have that Theorem 7.1 holds for n = k + 1. By the principal
of mathematical induction, the theorem holds for all » € N, where n > 2.

Algorithm 1 summarises the duplet combination operation, whereby the input is a pair of duplets
(f, g), the number of attributes (len), and an empty list (ruleSet) to hold the result. The output is the list
(ruleSet), whereby ruleSet = (C(f, g), L(f, &), R(f,g))-

40 U. Neville and S.N. Foley / Reasoning About Firewall Policies Through Refinement and Composition

L
aiUxay || b1 Ny ba | [7] | x1 Ny x2

[EEE| S,

bi\rb2|[7] | x

ba\y b1 |[] | x2

= @

-] 1 [|x2
(k+k—2) a b1 Ny ba | 707 | x1 \y x2
(k+k—1) as bo Ny by | 77 | x2 \y x1
(

k+ k) by Ny bz |] | x1 Ny x2 | |y1 \r y2
kt+k+1) ba Ny by | =] [x2 Ny a1 | | y2 \r 1

Table 16
A (k + 1)-attribute duplet join

i

A Bottom-up Approach to Duplet Join. Recall, the definition for the join operation of S, T € a[6[X, Y]]

given in Section 3.3 is constructed following a top-down approach with respect to the ordering relation
<, whereby:

S&T = [{ab: (U PEXY) | (Ve: UsTa: S biTe
cé[x—}Y] aV cé[X—SY} D)} | aZ;r[X,y} b e aUs(xy) b}

Forall S,T € «[6]X, Y]], we define the implementation definition for sets of adjacency-free duplets as:

S&T=[{ab: [Hab: (SUT)|ag,mbe(@sxy b)}] |
a 2;—[}(’),] b [) Ud[X,Y] b}—‘

Adjacency Duplet Union Implementation. The implementation definition for the join of S,T €
«[6[X, Y]] is defined as the cover-set for the duplet merge of the transitive closure of adjacent duplets,
from the coverset for the generalized union of sets from the duplet combination operation (___), for all
transitively adjacent duplets in S and 7. The coverset for the the generalized union defines the smallest
collection of duplets that cover all of the duplets from both S and T by precedence subsumption. Given
that all duplets in this set are now disjoint, the cover-set for the duplet merge of the transitive closure
of adjacent duplets merges any forward-adjacent duplets from S and 7. If we take some U € «[§[X, Y]],
suchthat U < (S®T)and S < U AT < U, then (S® T) = U. Thus, the implementation definition for
duplet Adjacency-set join provides a lowest upper bound operator.

U. Neville and S.N. Foley / Reasoning About Firewall Policies Through Refinement and Composition 41

Algorithm 1 Duplet combination operation

1: function Combine(f, g, len, ruleSet)

2 if (len == 2) then

3 ruleSet(0) < (a1 Uy a2, b1 Ny ba)

4 ruleSet(1) < {(a1,b1 \y b2)}

5: ruleSet(2) < {(az,b2 \y b1)}

6 return ruleSet

7 else

8 len < len — 1

9: i < #ruleSet(0)
10: 1+ 7/ {(headf),tail (ruleSet(0)), (f(i) \y g(i)))
11: r < " /{{head g), tail (ruleSet(0)), (g(i) \y f(i)))
12: ruleSet(0) < ruleSet(0) " (f(i) y 8(7))
13: ruleSet(1) <— {t : ruleSet(1) ® t ~ (f(i))} U {l}
14: ruleSet(2) <— {t : ruleSet(2) o t " (g(i))} U {r}
15: return Combine(f, g, len, ruleSet)

16: end function

Theorem 7.2. The two given definitions for joining sets of adjacency-free duplets are equivalent.

VS, T : alsX, Y]] e
SoT=[{ab:{U: P([Y) | (WVe:UeJa:S;b:Te
5 av By an s b ® @ Ui bY]
:Hab [U{ab (SUT)|a?SUT)b'(a&J5[x,y] b)}] |

(5[X Y} b e a U(s[x Y b}-l

Proof Given that both definitions define the cover-set for the duplet merge of the transitive closure of
forward adjacent duplets from the smallest collection of disjoint adjacency-free duplets that cover all of
the duplets from both S and T by precedence subsumption, then Theorem 7.2 holds. |

Duplet Difference. Forf, g € 6X, Y], the operation (f \;x y| g) defines a set of adjacency-free duplets
that are covered by f but not by g. The operation is described using two recursive functions; center
CU(f,g), and the left L(f,g) function given previously. The function (f \sixy) &) is defined as the set
union of the duplets resulting from C%0 (f, g) and L(f, g).

Center. Forf, g € 6[X, Y], then for duplets comprising two attributes; cdit (f,g) is defined as follows:
CU ((a1,b1), {az, ba)) = (a1 \x az,b1 Ny ba)

The operations and duplet resulting from C%/ (f, g) for two-attribute duplets are given in Table 17. For f
and g of length greater than two, we define for each additional attribute:

CU (£ {e1), g (e2)) = CHT (£,) ™ (ex (7 e2)

42 U. Neville and S.N. Foley / Reasoning About Firewall Policies Through Refinement and Composition

oo N
. Hal\xal‘ ‘blebQ‘ Hal\XalelelQ‘ €1 Ny €2

Table 17 Table 18
Center difference function for two-attribute duplets Center difference function for three-attribute duplets

A
1]

‘al\Xal‘ ‘blﬂybz‘
b1 \y b2

i 2] &

‘al\XalelﬂYbZ‘E x1 Ny X2

bi\yb2|[1] |[x
L]

~ BIE |3/

Table 19 L1 [X1
A two-attribute duplet difference ay biNyba |7 x1 \y x2
Table 20

A k-attribute duplet difference

] k k+1

‘al\xalelﬂybﬂE x1 Ny X2
bi\vb2|[] |xm

[EE| 3,

= = om
(k) ay biNyba |) | x1 \y x2
(k+1) b1 Ny by |) | x1 Ny x2 | | 1 \y y2
Table 21

A (k + 1)-attribute duplet difference

The operations and duplet resulting from C%/ (f, g) for duplets with three attributes are given in Table 18.
Thus, we define the difference operation for f and g as:

f \6[X,Y] 8= {Cd'ﬂ(f, gIUL(f.g)

Theorem 7.3. The duplet difference operation defines the adjacency-free duplet-difference for allf, g €
O[X,Y]; n € N, where (n=#f =#g) > 2.

Proof We will show that for f, g € §[X, Y], then f \5[X,Y] g defines the adjacency-free duplet difference
forall n € N, where (n = #f = # g) > 2, using induction on n.

Base Case. For n = 2, then for f \5[&” g, the resulting operations and duplets for f and g as two-
attribute duplets are given in Table 19. From these results, we have that Theorem 7.3 holds when n = 2.

Inductive Hypothesis. Suppose Theorem 7.3 holds for k € N, where k > n, and k = #f = # g. Then
for f \s[x,y] & the resulting operations and duplets for f and g as k-attribute duplets are given in Table 20.

U. Neville and S.N. Foley / Reasoning About Firewall Policies Through Refinement and Composition 43

Algorithm 2 Duplet difference operation

1: function Difference(f, g, len, ruleSet)

2 if (len == 2) then

3 ruleSet < <<a1 \X as, b1 Ny b2>,{<a1,b1 \Y b2>}>
4 return ruleSet

5: else

6: len < len — 1

7 i < FruleSet(0)

8 1 < "/ {(head), tail (ruleSet(0)), (f (i) \y g(i)))
9: ruleSet(0) < ruleSet(0) ™ (f (i) Ny g(i))

10: ruleSet(1) < {t : ruleSet(1) @ t ™ (f(i))} U {l}
11: return Difference(f, g, len, ruleSet)

12: end function

Inductive Step. Letn = k + 1. Then by the recursive definitions of C¥/ (f, g) and L(f, g), the resulting
operations and duplets for f and g as (k + 1)-attribute duplets in (f \5[X,Y] g) are given in Table 21.
Therefore, from the results we observe that Theorem 7.3 holds for n = k + 1. By the principal of
mathematical induction, the theorem holds for all n € N, where n > 2. |

Algorithm 2 summarises the duplet difference operation, whereby the input is a pair of duplets (f, g),
the number of attributes (len), and an empty list (ruleSet) to hold the result. The output is the list
(ruleSet), whereby ruleSet = (CU (f,g), L(f, g))-

8. Related Work

There is a rich literature of work on managing firewall policy configurations. For example, The goal
of [2, 3, 8, 10, 23, 45] is to provide an administrator with the means to detect/resolve anomalies, and work
such as [15, 17, 34, 35] allows for querying a policy configuration with regard to the filtering of specific
network traffic. High-level specification languages such as [1, 4, 12, 26, 31] allow an administrator to
abstractly specify what would otherwise be low-level rules. However, in general, the literature for policy
management is focused on the conventional five-tuple firewall rule with a binary target action of allow
or deny, and few have considered stateful firewall configurations.

Hari et al. [27] report some of the earliest research on conflict detection and resolution in policies
for packet-filters, and model rule relations within a policy in a directed graph. Al-Shaer et al. [2, 3]
provide definitions for firewall policy anomalies. The authors use a form of Binary Decision Diagram
(BDD) to represent a firewall policy, and define relationships between pairwise rules. The Firewall Pol-
icy Advisor [2] tool implements algorithms used to identify firewall rule anomalies using set theory.
In this paper, we use a subset of the classifications from [2, 3] when reasoning about firewall pol-
icy anomalies. Cuppens et al. [10] and Garcia-Alfaro et al. [24], present MIRAGE (MIsconfiguR Ation
manaGEr), and provide definitions alternative to [2, 3] for intra- and inter-firewall policy anomalies.
Given a firewall configuration, MIRAGE will automatically detect and remove intra-redundant [10, 24]
and intra-shadowed [10, 24] rules, and generate a semantically-equivalent order-independent set of dis-
joint rules that are anomaly-free. In contrast to [27], the approach incorporates the automatic re-writing

44 U. Neville and S.N. Foley / Reasoning About Firewall Policies Through Refinement and Composition

of anomalous rules. Yuan et al. [45] present the FIREMAN (FIREwall Modelling ANalysis) tool. Pol-
icy configurations are analysed for inconsistencies that consider intra-shadowing, intra-generalisation,
intra-correlation and inter-shadowing anomalies [2, 3]. Firewall inefficiency in packet classification and
memory consumption is also considered as a result of intra-redundant rules, and ‘verbosities’, whereby
a set of rules may be summarized into a smaller number of rules without changing the filtering semantics
of the policy. Chomsiri and Pornavalai [8] propose a method of firewall policy analysis using relational
algebra. The definitions provided for intra-redundant and intra-shadowed rules are analogous to [10],
and upon detection, such rules are removed in order to reduce the size of the policy. The definitions
given for intra-generalization and intra-correlation are analogous to [2]. Similar to the notion of ver-
bosities in [45], Chomsiri and Pornavalai propose combining rules that may be ‘summarized’ without
changing the filtering semantics of the policy. Buttyan et al. [7] propose a tool based on FIREMAN [45]
for managing anomalies in stateful firewall policies. The authors argue that verifying a stateful firewall
for inconsistencies can be reduced to the problem of verifying a stateless firewall for inconsistencies.
A limitation of the approach is that their model does not distinguish rules with different state informa-
tion, that is, for example, there is no differentiation between the establishment and termination phase
of a given stateful protocol, and as a consequence, they do not consider more complex anomalies that
may occur specifically in the stateful case. Cuppens et al. [11] and Garcia-Alfaro et al. [23] propose an
algorithmic approach to detect and resolve anomalies in a stateful firewall policy. A connection-oriented
protocol is modelled using general automata, whereby the permitted protocol states and transitions are
encoded. Intra-redundant and intra-shadowed rules [10] are considered for the stateful firewall policy.
Further definitions are proposed, whereby an intra-state anomaly occurs in a stateful firewall policy if
there are policy rules that partially match (complete) the paths of the protocol automata. In the case of
missing rules, then covering-rules are suggested to the administrator as a means of completing the path
of the protocol automata. Their work also considers invalid protocol states, and inter-state anomalies
that may occur in a firewall policy that filters packets against both stateful and stateless rules. The work
in [11, 23] also extends the MIRAGE [24] tool. To consider the types of stateful anomalies from [23] in
the proposed model 7)1, then it would be necessary to apply additional constraints when constructing
and composing anomaly-free firewall policies. For example, a policy that specifies a firewall rule that
enables the establishment of a TCP connection from host X to host Y, should also include rules that
allow for the various other permissible transitions of the TCP protocol.

Firewall query analysis allows an administrator to pose questions of a policy configuration, such as, for
example, “does the policy permit SSH traffic from system X to system Y?”. Mayer et al. [35], present Fang
(Firewall ANalysis enGine). Based on graph algorithms and a rule-base simulator, Fang parses vendor-
specific firewall policy and configuration files, and constructs a model of the network topology and a
global firewall policy for the network. Fang interacts with the administrator through a query-and-answer
session, and queries are constructed as triples, consisting of source IPs, destination IPs and endpoint
services/ports. Eronen and Zitting [15] propose an expert system for query analysis, implemented in
constraint programming logic. A query is constructed as a six-tuple, consisting of source and destination
IP and port, network protocol, and flags. The flags attribute is for TCP connections, however, only
the SYN and ACK flags are considered. Eronen and Zitting argue that in comparison to Fang [35], the
expert system is a more natural solution for query analysis. Liu et al. [34] present the Structured Firewall
Query Language (SFQL), an SQL-like query language. Liu et al. state that constructing an expert system
such as [15] “just for analysing a firewall is overwrought and impractical” [34], however, they do not
give their reasoning for this assertion. SFQL queries can be constructed over allow and deny rules for
an arbitrary number of filter fields. While query analysis provides an administrator with a means of

U. Neville and S.N. Foley / Reasoning About Firewall Policies Through Refinement and Composition 45

asking questions of a firewall policy, what can actually be queried is restricted by the collection of filter
condition attributes and target actions expressible in the query language. Effective query analysis may
be further hampered by the complexity of the query language, or through an administrators inability to
construct useful queries. A consequence of the F)V; algebra proposed in this paper, is that it enables
an administrator to perform effective query analysis of a firewall policy configuration. While we do not
construct individual high-level queries, we do however demonstrate how policies in the algebra may be
tested/queried for compliance with best practice standards and recommendations.

High-level specification languages provide an administrator with the means to reduce the complexity
of constructing a firewall policy configuration. Guttman [26] reported some of the earliest research in
this area. Bartal et al. [4] present the Firmato toolkit. The proposed specification language allows an
administrator to specify the network security policy and the topology for the network in terms of an
entity-relationship (ER) model. Subsequently, a policy configuration is synthesised from the ER model.
A limitation of the work is that it only applies to packet-filter policy configurations. The High Level Fire-
wall Language (HLFL) [31] translates high-level firewall rules into usable rulesets for iptables, Cisco
ACLs, IPFW and others. However, the generated rulesets are order-dependant and may contain anoma-
lies, and the approach does not provide support for incorporating knowledge about a network topol-
ogy when specifying the high-level rules. Fitzgerald and Foley [17] propose using ontologies to repre-
sent knowledge about firewall policy configurations. Policies are specified using Description Logic and
SWRL. Semantic Threat Graphs [21] are used to encode catalogues of best practice firewall rules, and
an automated synthesis of standards-compliant rules for a policy configuration is considered. However,
the administrator must manually construct the rulesets for the catalogues then populate the Semantic
Threat Graphs, and this process is error-prone. The proposed model in [17] can also be used for firewall
policy query analysis. Adao et al. [1] propose a declarative policy specification language, and present
Mignis, a tool that translates high-level access control specifications into low-level policy configurations
for Netfilter. An abstract model of the Netfilter firewall is proposed, and definitions for Network Address
Translation and stateful filtering are encoded. The synthesised policies consist of order-independent ipt-
ables firewall rules. However, the proposed approach is tightly coupled with Netfilter. Brucker et al. [6]
present a formal model of both stateless and stateful firewalls, including Network Address Translation.
The authors follow a theorem-proving approach to reason about firewall policies, and provide formal and
machine-verifiable proof of correctness using the Isabelle theorem prover. Diekmann et al. [14] present
a fully verified firewall ruleset analysis framework for iptables, that similar to Brucker et al. [6], also
provides proof of correctness using Isabelle. In this paper, we use the Z notation to provide a consis-
tent syntax for systematically presenting the proposed model F)}V;. Mathematical definitions have been
syntax- and type-checked, however the proofs in this paper are of the conventional pen-and-paper variety.

We model a firewall policy as an ordered pair of disjoint adjacency-free sets, where the set of policies
Policy forms a lattice under C, and each P € Policy is anomaly-free by construction. In [2, 3, 10, 27,
45] an algorithmic approach is taken to detect/resolve anomalies. In contrast, we follow an algebraic
approach towards modelling anomalies in a single policy, and across a distributed policy configuration
through policy composition. In [46], a firewall policy algebra is proposed. However, the authors note
that an anomaly-free composition is not guaranteed as a result of using their algebraic operators. Our
work differs, in that policy composition under the M, LI and g operators defined in this paper all result in
anomaly-free policies. In earlier work [22], we developed the algebra F W, and used it to reason over
host-based and network access controls in OpenStack. In the F)WW, algebra, we focused on stateless
firewall policies that are defined in terms of constraints on individual IPs, ports and protocols. In this
paper, the algebra FW; is defined over stateful firewall policies constructed in terms of constraints on

46 U. Neville and S.N. Foley / Reasoning About Firewall Policies Through Refinement and Composition

source/destination IP/port ranges, the TCP, UDP and ICMP protocols, and additional filter condition
attributes. We argue that 7V, gives a more expressive means for reasoning over OpenStack security
group and perimeter firewall configurations. In [30], cloud calculus is used to capture the topology of
cloud computing systems and the global firewall policy for a given configuration. This paper could
extend the work in [30], given that 7}V may be used in conjunction with cloud calculus to guarantee
anomaly-free dynamic firewall policy reconfiguration, whereby the ordering relation C may give a viable
alternative for the given equivalence relation defined over ‘cloud’ terms for the formal verification of
firewall policy preservation after a live migration. The proposed algebra FWV; is used to reason about
and compose anomaly-free policies and therefore we do not have to worry about dealing with conflicts
that may arise. Anomaly conflicts are dealt with in composition by computing anomaly-free policies,
rather than using techniques such as [29] to resolve conflicts in policy decisions.

9. Conclusion

A policy algebra FW; is defined in which firewall policies can be specified and reasoned about.
At the heart of this algebra is the notion of safe replacement, that is, whether it is secure to replace
one firewall policy by another. The set of policies form a lattice under safe replacement and this en-
ables consistent operators for safe composition to be defined. Policies in this lattice are anomaly-free by
construction, and thus, composition under glb and lub operators preserves anomaly-freedom. A policy
sequential composition operator is also proposed that can be used to interpret firewall policies defined
more conventionally as sequences of rules. The algebra can be used to characterize anomalies, such as
shadowing and redundancy, that arise from sequential composition. Best practice policy compliance may
be defined using C. The algebra F)WW; provides a formal interpretation of the network access controls
for a partial mapping to the iptables filter table.

FWi is a generic algebra and can also be used to model other firewall systems. The results in this
paper are described in terms of the algebra /W1, for stateful firewall policies that are defined in terms
of constraints on source/destination IP/port ranges, the TCP, UDP and ICMP protocols, and additional
filter condition attributes.

Acknowledgments

The authors would like to thank the anonymous reviewers for their valuable feedback. This work
was supported, in part, by Science Foundation Ireland under grant SFI 10/CE/11853 and Irish Research
Council/Chist-ERA. This manuscript is a pre-print version, the final publication [38] is available at [OS
Press through http://dx.doi.org/10.3233/JCS-17971.

References

[1] P. Addo, C. Bozzato, G. Dei Rossi, R. Focardi, and F.L.. Luccio. Mignis: A semantic based tool for firewall configuration.
In Computer Security Foundations Symposium (CSF), 2014 IEEE 27th, pages 351-365. IEEE, 2014.

[2] E. Al-Shaer and H. Hamed. Firewall Policy Advisor for Anomaly Discovery and Rule Editing. 8tk IFIP/IEEE International
Symposium on Integrated Network Management, Colorado Springs, USA, March 2003.

[3] E. Al-Shaer, H. Hamed, R. Boutaba, and M. Hasan. Conflict Classification and Analysis of Distributed Firewall Policies.
IEEE Journal on Selected Areas in Communications, Issue: 10, Volume: 23, Pages: 2069 - 2084, October 2005.

U. Neville and S.N. Foley / Reasoning About Firewall Policies Through Refinement and Composition 47

[4] Y. Bartal, A. Mayer, K. Nissim, and A. Wool. Firmato: A Novel Firewall Management Toolkit. 20th I[EEE Symposium on
Security and Privacy, Oakland, CA, USA, May 1999.

[5] G.Birkhoff. Lattice Theory. Volume XXV of American Mathemical Society Colloquium Publications. American Mathemical
Society, 3rd edition, 1967.

[6] A.D. Brucker, L. Briigger, and B. Wolff. Formal firewall conformance testing: An application of test and proof techniques.
Softw. Test. Verif. Reliab., 25(1):34-71, January 2015.

[7] L. Buttyan, G. Pék, and T. Vinh Thong. Consistency verification of stateful firewalls is not harder than the stateless case.
Infocommunications Journal, 64(1):2-8, 2009.

[8] T. Chomsiri and C. Pornavalai. Firewall Rules Analysis. International Conference on Security and Management (SAM),
Las Vegas, Nevada, USA, June 2006.

[9] M. Cotton and L. Vegoda. Special Use IPv4 Addresses. RFC 5735, January 2010.

[10] E. Cuppens, N. Cuppens-Boulahia, and J. Garcia-Alfaro. Detection and Removal of Firewall Misconfiguration. IJASTED
International Conference on Communication, Network and Information Security (CNIS), November 2005.

[11] E. Cuppens, N. Cuppens-Boulahia, J. Garcia-Alfaro, T. Moataz, and X. Rimasson. Handling stateful firewall anomalies.
In Information Security and Privacy Research - 27th IFIP TC 11 Information Security and Privacy Conference, SEC 2012,
Heraklion, Crete, Greece, June 4-6, 2012. Proceedings, pages 174-186, 2012.

[12] F. Cuppens, N. Cuppens-Boulahia, T. Sans, and A. Miege. A Formal Approach to Specify and Deploy a Network Security
Policy. 2nd Workshop on Formal Aspects in Security and Trust (FAST), August 2004.

[13] D.E. Denning. A lattice model of secure information flow. Commun. ACM, 19(5):236-243, May 1976.

[14] C. Diekmann, J. Michaelis, M.P.L. Haslbeck, and G. Carle. Verified iptables firewall analysis. In 2016 IFIP Networking
Conference, Networking 2016 and Workshops, Vienna, Austria, May 17-19, 2016, pages 252-260. IEEE, 2016.

[15] P. Eronen and J. Zitting. An Expert System for Analyzing Firewall Rules. 6th Nordic Workshop on Secure IT Systems
(NordSec), Copenhagen, Denmark, pages 100—107, November 2001.

[16] M. Fabrice. iptables Extensions - Time module. http://ipset.netfilter.org/iptables-extensions.man.html. [Online; accessed
February-2017].

[17] W.M. Fitzgerald and S.N. Foley. Management of heterogeneous security access control configuration using an ontology
engineering approach. In 3rd ACM Workshop on Assurable and Usable Security Configuration, SafeConfig 2010, Chicago,
1L, USA, October 4, 2010, pages 27-36, 2010.

[18] W.M. Fitzgerald, U. Neville, and S.N. Foley. MASON: Mobile Autonomic Security for Network Access Controls. Journal
of Information Security and Applications (JISA), 18(1):14-29, 2013.

[19] S.N. Foley. Reasoning about confidentiality requirements. In Seventh IEEE Computer Security Foundations Workshop -
CSFW’94, Franconia, New Hampshire, USA, June 14-16, 1994, Proceedings, pages 150-160, 1994.

[20] S.N. Foley. The specification and implementation of commercial security requirements including dynamic segregation of
duties. In ACM Conference on Computer and Communications Security, pages 125-134, 1997.

[21] S.N. Foley and W.M. Fitzgerald. An approach to security policy configuration using semantic threat graphs. In 23rd
Annual IFIP WG 11.3 Working Conference on Data and Applications Security (DBSec), pages 33—48. Springer LNCS,
2009.

[22] S.N. Foley and U. Neville. A firewall algebra for openstack. In 2015 IEEE Conference on Communications and Network
Security, CNS 2015, Florence, Italy, September 28-30, 2015, pages 541-549, 2015.

[23] J. Garcia-Alfaro, F. Cuppens, N. Cuppens-Boulahia, S. Martinez Perez, and J. Cabot. Management of stateful firewall
misconfiguration. Computers & Security, 39:64-85, 2013.

[24] J. Garcia-Alfaro, F. Cuppens, N. Cuppens-Boulahia, and S. Preda. MIRAGE: A management tool for the analysis and
deployment of network security policies. In Data Privacy Management and Autonomous Spontaneous Security - 5th
International Workshop, DPM 2010 and 3rd International Workshop, SETOP 2010, Athens, Greece, September 23, 2010,
Revised Selected Papers, pages 203-215, 2010.

[25] L. Gheorghe. Designing and Implementing Linux Firewalls with QoS using netfilter, iproute2, NAT and 17-filter. PACKT
Publishing, October 2006.

[26] J.D. Guttman. Filtering Postures: Local Enforcement for Global Policies. IEEE Symposium on Security and Privacy,
pages 120-129, May 1997.

[27] A. Hari, S. Suri, and G. Parulkar. Detecting and Resolving Packet Filter Conflicts. 19th Annual Joint Conference of the
IEEE Computer and Communications Societies, INFOCOM, 3:1203-1212, March 2000.

[28] J.L. Jacob. The varieties of refinement. In J.M. Morris and R.C. Shaw, editors, Proceedings of the 4th Refinement
Workshop, pages 441-455. Springer, Heidelberg, 1991.

[29] S.Jajodia, P. Samarati, M.L. Sapino, and V.S. Subrahmanian. Flexible support for multiple access control policies. ACM
Trans. Database Syst., 26(2):214-260, 2001.

[30] Y. Jarraya, A. Eghtesadi, M. Debbabi, Y. Zhang, and M. Pourzandi. Cloud calculus: Security verification in elastic cloud
computing platform. In Collaboration Technologies and Systems (CTS), 2012 International Conference on, pages 447—454.
IEEE, 2012.

http://ipset.netfilter.org/iptables-extensions.man.html

48 U. Neville and S.N. Foley / Reasoning About Firewall Policies Through Refinement and Composition

[31] A.Launay. High Level Firewall Language. https://www.cusae.com/hlfl/, 2003. [Online; accessed August-2016].

[32] J. Levandoski et al. iptables L7-filter Pattern Writing. http://17-filter.sourceforge.net/Pattern-HOWTO, April 2008. [On-
line; accessed February-2017].

[33] J. Levandoski et al. iptables L7-filter Supported Protocols. http://17-filter.sourceforge.net/protocols, August 2008. [Online;
accessed February-2017].

[34] A. Liu, M. Gouda, H. Ma, and A. Hgu. Firewall Queries. 8th International Conference, On Principles of Distributed
Systems (OPODIS), Grenoble, France, pages 197-212, December 2004.

[35] A. Mayer, A. Wool, and E. Ziskind. Fang: A Firewall Analysis Engine. 2/st IEEE Symposium on Security and Privacy,
Oakland, CA, USA, May 2000.

[36] V. Nebehaj. python-iptables - Python bindings for iptables. https://pypi.python.org/pypi/python-iptables. [Online; ac-
cessed August-2016].

[37] U. Neville and S.N. Foley. Reasoning About Firewall Policies Through Refinement and Composition. In Data and
Applications Security and Privacy XXX - 30th Annual IFIP WG 11.3 Conference, DBSec 2016, Trento, Italy, July 18-20,
2016. Proceedings, pages 268-284, 2016.

[38] U. Neville and S.N. Foley. Reasoning about firewall policies through refinement and composition. Journal of Computer
Security, 26(2):207-254, 2018.

[39] I Ocean. Pyinter - a small and simple library written in Python for performing interval and discontinous range arithmetic.
https://pypi.python.org/pypi/pyinter/, August 2015. [Online; accessed August-2016].

[40] J. Postel, D. Johnson, T. Markson, B. Simpson, and Z. Su. Internet Control Message Protocol (ICMP) Parameters. https:
/Iwww.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml, April 2013. [Online; accessed February-2017].
[41] K. Scarfone and P. Hoffman. Guidelines on Firewalls and Firewall Policy: Recommendations of the National Institute of

Standards and Technology. NIST Special Publication 800-41, Revision 1, September 2009.

[42] J.M. Spivey. The Z Notation: A Reference Manual. Series in Computer Science. Prentice Hall International, second
edition, 1992.

[43] Netfilter Core Team. Linux iptables - CLI for configuring the Linux kernel firewall, Netfilter. http://www.netfilter.org/
projects/iptables/index.html. [Online; accessed February-2017].

[44] A. Wool. Trends in firewall configuration errors: Measuring the holes in swiss cheese. [EEE Internet Computing,
14(4):58-65, 2010.

[45] L. Yuan, H. Chen, J. Mai, C. Chuah, Z. Su, and P. Mohapatra. Fireman: A toolkit for firewall modeling and analysis. In
Security and Privacy, 2006 IEEE Symposium on, pages 15—pp. IEEE, 2006.

[46] H. Zhao and S.M. Bellovin. Policy algebras for hybrid firewalls. Number CUCS-017-07, March 2007.

Appendix A. The Z Notation

A set may be defined in Z using set specification in comprehension. This is of the form {D | P e E },
where D represents declarations, P is a predicate and E an expression. The components of {D | P e E }
are the values taken by expression E when the variables introduced by D take all possible values that
make the predicate P true. For example, the set of squares of all even natural numbers is defined as
{n:N| (nmod2) = 0 e n?}. When there is only one variable in the declaration and the expression
consists of just that variable, then the expression may be dropped if desired. For example, the set of all
even numbers may be written as {n : N | (n mod 2) = 0 }. Sets may also be defined in display form
such as {1, 2}.

In Z, relations and functions are represented as sets of pairs. A (binary) relation R, declared as having
type A <> B, is a component of P(A x B), where P X is the powerset of X. For a € A and b € B, then the
pair (a, b) is written as @ — b, and a — b € R means that a is related to b under relation R. Functions are
treated as special forms of relations. The schema notation is used to structure specifications. A schema
such as FW; defines a collection of variables (limited to the scope of the schema) and specifies how
they are related. The variables can be introduced via schema inclusion, as done, for example, in the
definition of sequential composition.

https://www.cusae.com/hlfl/
http://l7-filter.sourceforge.net/Pattern-HOWTO
http://l7-filter.sourceforge.net/protocols
https://pypi.python.org/pypi/python-iptables
https://pypi.python.org/pypi/pyinter/
https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml
https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml
http://www.netfilter.org/projects/iptables/index.html
http://www.netfilter.org/projects/iptables/index.html

	Introduction
	Attributes of a Linux-based Firewall
	Data Link Layer Filtering
	Network Layer Filtering
	Transport Layer Filtering
	Application Layer Filtering
	Additional Filtering Specifications

	A Theory of Adjacency
	The Adjacency Specification
	The Adjacency Datatype
	The Duplet Datatype
	Duplet Adjacency Ordering

	FW1 Filter Conditions
	The FW1 Firewall Algebra
	Constructing Firewall Policies

	Reasoning About Policies in Practice
	Detecting Anomalies in Firewall Policies
	Standards Compliance

	Encoding and Evaluating iptables Policies
	Evaluating Policy Operators
	Implementing Duplet Join and Difference

	Related Work
	Conclusion
	Acknowledgments
	References
	Appendix A. The Z Notation

