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Abstract

An automatic security protocol generator is described that uses
logic-based heuristic rules to guide it in a backward search for suitable
protocols from protocol goals. The approach taken is unlike exist-
ing automatic protocol generators which typically carry out a forward
search for candidate protocols from the protocol assumptions. A pro-
totype generator has been built that performs well in the automatic
generation of authentication and key exchange protocols.

“In solving a problem of this sort, the grand thing is to be able
to reason backward.”

—Sir Arthur Conan Doyle (Sherlock Holmes),
A Study in Scarlet, 1887.

1 Introduction

Security protocols are widely used in distributed systems for authentication,
key exchange and other security requirements. Building security protocols
can be a challenge since it is relatively easy to introduce subtle design-flaws
that are difficult to find. While many approaches for analyzing security
protocols have been developed [7,13,14,28,31,36], relatively little work has
been carried out on systematic approaches to the design and implementation
of security protocols.

Abadi and Needham [4] set out ten principles to help designers avoid
classes of known protocol flaws. The principles represent best practice and,
however, are neither necessary nor sufficient: designers do not necessar-
ily design new protocols by obeying only these principles. Formal design
∗Corresponding Author
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approaches for security protocols have also been proposed. A weakest-
precondition-based approach is proposed in [5] that can be used to syn-
thesise protocols from authentication goals. The Simple (BSW) logic [8] is
a BAN-like logic that provides synthesis rules to guide the protocol designer
in the manual systematic calculation of a protocol from its goals.

Guttman [16] proposes a manual protocol design methodology that is
based on authentication tests [17]. For different goals, individual subproto-
cols are generated that are combined together to form the final protocol. It
is a manual design process and relies on the skill of the protocol designer.
Saidi [32] proposes a semi-automatic design tool based on BAN logic. It
provides several commands for human intervention during the generation
process. While it may simplify the protocol design process, it does not fully
automatically genereate protocols, and still relies on the skill of the protocol
designer.

We are interested in the automatic generation of security protocols from
their protocol goals and assumptions. Existing research on this topic in-
cludes Clark and Jacob’s evolutionary search [10, 12], Perrig and Song’s
Automatic Protocol Generator (APG) [30], and the authors’ Automatic Se-
curity Protocol Builder (ASPB) [38]. All the above approaches automati-
cally construct and search a large space of candidate protocols that is far
larger than could be considered via a manual design.

Starting from a set of assumptions, [12] uses the original inference rules
of the BAN logic to systematically test whether candidate protocols uphold
all protocol goals. A fitness function is used in their evolutionary approach
to guide the application of BAN inference rules in a forward manner until
a valid protocol is arrived. Their subsequent work [10] is based on the SVO
logic [35], on the basis that the SVO logic is more suitable for describing
and analysising key agreement protocols than the BAN logic.

Protocols that are generated using [10,12] are implicitly verified, within
their corresponding logic, to meet their goals. Perrig and Song’s Automatic
Protocol Generator (APG) [30] uses syntactic restriction rules to select ran-
dom candidate protocols that are in turn checked for validity using the
Athena [33] security protocol checker.

The above approaches can be regarded as generating candidate protocols
in a forward manner: protocol messages are generated in the same order
as their eventual execution in the protocol. Intuitively, a candidate first
message is selected, along with its resulting inferences, and a recursive search
for subsequent messages for the protocol. This forward search is bounded by
a predefined maximum number of protocol messages, and terminates when
the protocol goal is satisfied is met for the current sequence.
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When a protocol fragment (an incomplete protocol) is generated in a
forward manner, it is hard and potentially impractical, to determine whether
the protocol fragment may result in a validate protocol which meets all
protocol goals. Therefore, all generated protocol fragments should be kept
before they extend to complete candidate protocols for further verification.
It may be impractical to keep all generated protocol fragments especially
for protocols that have more than four messages due to the large number
of generated protocol fragments. For example, even with fitness functions
[10,12] or cost functions [30], these forward searching approaches must verify
a large number of unlikely protocols and may not meet all goals. Moreover,
providing an accurate fitness function for a protocol is very difficult, and in
some cases potentially impossible [10,12].

In this paper we consider the automatic generation of security protocols
from requirements. This paper is an extended and significantly revised ver-
sion of [38], and makes a number of contributions. A technique for efficient
protocol generation based on backward search is proposed. Heuristic rules—
based on an extended version of the BSW logic [8] to provide a ‘first cut’
definition of protocol security—are used to guide the search for potentially
secure protocols. Unlike the original BSW-logic, the BSW-ZF logic used
in this paper supports reasoning about message secrecy, fresh channels, and
component holding statements. The backward search approach results in an
efficient search of the protocol space since the heuristics—derived from the
logic axioms—guide the search and quickly eliminate regions of the search
space than could not be synthesized from the protocol goals.

These heuristic rules generate sub-protocol fragments based on indi-
vidual protocol goals and these are, in turn, composed into collections of
candidate protocols using a novel strategy based on shortest common sub-
sequence. The heuristics are also augmented by extending protocol selec-
tion/design strategies [16,21,22] in order to restrict the generated protocols
to a collection of candidate protocols that are likely to be secure. While the
collection of candidate protocols are secure under the BSW-ZF logic, the in-
tention is that more sophisticated protocol analysis tools, such as [20,23–25],
are then used to select appropriate protocols from the collection.

The paper is organized as follows. The BSW-ZF logic, a modified and
extended BSW logic, is outlined in Section 2. This section also describes how
the synthesis rules are used as heuristics to guide the automatic backward
search for protocols within the logic. The high-level architecture of ASPB
is outlined in Section 3. Section 4 describes how the BSW-ZF heuristics
are used to generate sub-protocols from single goals. The sub-protocols of
multiple goals are composed into candidate protocols using the algorithm
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described in Section 5. Section 6 outline a number of additional strategies
used by ASPB to further refine and the candidate protocols to a collection
of valid protocols. ASPB is evaluated and compared to other approaches in
Section 7. Appendix A provides a complete list of the BSW-ZF Heuristic
rules and Appendix B provides provides samples of generated protocol.

2 The BSW-ZF logic

The BSW-ZF logic improves and extends the BSW logic [8] to support
reasoning about message secrecy, fresh channels, and ‘holding’ statements.
While the inference rules of the BSW-ZF logic can be used to verify prop-
erties of security protocols [38], it is their corresponding heuristic rules that
are used in ASPB as the core technique to guide the automatic backward
search for candidate subprotocols from their goals. Therefore, for reasons
of space we do not provide the inference rules of BSW-ZF as they can be
inferred from the definitions of the heuristic rules, which are provided in
Appendix A.

2.1 Syntax

The BSW-ZF logic uses abstract channels that are similar to the Spi Calcu-
lus [3] in order to represent keyed communication between principals. The
capability to write into (for example, using the encryption key) and to read
from (e.g., using the decryption key) a channel C is denoted by w(C) and
r(C), respectively. The formula P 3 r(C) means that principal P has the ca-
pability to receive messages from channel C, and correspondingly, P 3 w(C)
means that principal P has the capability to send messages to channel C.

Let σ(X) denote the set of principals that share a secret X. The secret
X can be a temporary secret that is held during several protocol steps, or
a long term secret. We assume that the secret X is never leaked to any
principal outside σ(X), other than to those principals that are trusted by
the members of σ(X). For example, P |≡ (σ(X) = {P,Q}) means that
P believes X is a secret shared between P , Q, and any third parties who
(trusted by P and/or Q) may be privy to X. In this case, it is assumed that
a trusted principal will neither use X as a proof of identity nor as a channel
to communicate with. With this assumption, only two principals, P and
Q, may use X as a proof of identity or as a channel to communicate with.
When either of them receives X in a message, the principal may determine
whether the message was sent by itself or by the other party. Thus, the
message origin can be safely determined. Also note that this assumption
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implies that principals trusted by other protocol participants will not attack
the current protocol.

The set of principals that can receive and can send messages via a chan-
nel C is denoted by its reader set σ(r(C)) and its writer set σ(w(C)),
respectively. For example, if Ω represents the set of all principals, then
σ(r(C)) = Ω and σ(w(C)) = {P} represents an authentic channel, whereby
any principal can authenticate messages signed by the private key of prin-
cipal P .

In the following, P ,Q range over principals; C represents a channel; X
represents a message which can be data or formulae or both; φ represents
a formula. Data, such as principal identities, nonces, and read and write
channel properties, are atomic messages that may be held by principals. The
BSW-ZF logic uses the following basic formulae.

P / X: Principal P sees message X. Someone has sent X via a channel that
P can read.

P / C(X): P sees X on channel C. Someone has sent a message X via
channel C. If P can not read C then P can not discover the contents
of X.

P |∼ X: P once said X. P sent a message containing X at some point in
the past. We do not know exactly when the message was sent.

P ‖∼ X: P says X. P sent X in the current run of the protocol.

](X): Message X is fresh. X has never been said before the current run of
the protocol. This is usually true for messages containing fresh nonces
or messages sent using a fresh session key (channel).

P |≡ φ: P believes that φ is true. It does not mean that φ is actually true,
rather, P believes it.

P 3 X: P holds X, and therefore, may freely combine X with other mes-
sages and send the resulting combinations out to other principals. Un-
like P /X requires that X is obtained by P during a round of protocol,
P 3 X can be obtained as an assumption before a round of protocol.

P 7→ X: P generates X. This formula represents the origin of message X.
The message X is used to represent constants or the atomic messages
that are generated by the principal. Examples include nonces and
principal identifiers.
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Protocol steps, goals and assumptions are each expressed as formulae
within the logic in the usual way. The logic also uses the conventional logic
operators ∧ (conjunction), ∨ (disjunction) and→ (implication) from propo-
sitional logic and some basic notation from set theory, such as = (equality),
and ∪ (union).

2.2 Inference Rules

To verify a security protocol, an idealised protocol and initial principal as-
sumptions are initially given. The inference rules are used to guide the
search from initial assumptions to further beliefs in the order of protocol
execution. Belief logics verify whether expected protocol goals are covered
by initial assumptions and these further derived beliefs.

2.3 Heuristic Rules

To synthesise (design) a security protocol, only protocol goals and initial
principal assumptions are given beforehand. A number of well-ordered pro-
tocol steps are derived from given protocol goals and given assumptions
using a heuristic as template. Intuitively, the heuristic rules of the BSW-ZF
logic are a more prescriptive form of the synthesis rules of the BSW logic,
for the purposes of automation in ASPB.

While the inference rules of the BSW-ZF logic are used to verify security
protocols, the BSW-ZF logic can also be used for synthesising security proto-
cols. The heuristic rules can be used as synthesis rules to guide the backward
construction for candidate subprotocols from their goals. In this case, the
backward construction means that the protocol steps are constructed by the
backward order of protocol execution. The reason for this is that the last
required protocol step for a given protocol goal is naturally derived from
applying heuristic rules to the protocol goal.

Our heuristic rules take the general form of a rooted tree of temporally
ordered goals. A rooted tree is a directed acyclic graph (DAG) with a vertex
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that is singled out as the root.

GOO

C1

oo
``WW

//
//

//
//

//
//

//
//

//
G1

...

Gi+1 Gi

This is interpreted to mean that in order to reach the goal G, all sub-
goals G1, ..., Gi, have to be established without any conditions or in any
particular temporal order. Subgoal Gi+1 is an optional conditional subgoal
under condition C1, with the interpretation that if condition C1 is satisfied,
then Gi+1 has to be established before the goal G can be established. Oth-
erwise, Gi+1 does not need to be considered. Arcs indicate the temporal
relationship between a goal and its subgoals.

In some scenarios, subgoals have to be established in a particular tempo-
ral order. For example, before a principal receives a message via a channel,
there must be another principal who first sent the message in that channel.
Therefore, we use the following form to illustrate the ordered subgoals.

GOO

C1

oo G1OO
oo
aa

BB
BB

BB
BB

G5

G2 G3 G4

This is interpreted to mean that in order to establish the goal G, all
subgoals G1, ..., G5, have to be reached in a particular temporal order.
Here, G3, G4, and G5 must be established before G1. However, G3, G4, and
G5 do not need to be reached in any temporal order relative to each other.

The goals are expressed in the heuristic rules using a composed form
G′;G′′, as follows,

G′ ;
G′′OO

oo
__

??
??

??
??

G1

G3 G2

This is an abbreviated form of two heuristic rules and means that these rules
have the same subgoals but different goals. They can be rewritten as
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G′OO
oo
aa

BB
BB

BB
BB

G1

G3 G2

and
G′′OO

oo
aa

BB
BB

BB
BB

G1

G3 G2

Rules Heur1 and Heur11 illustrate the heuristic rules of the BSW-ZF logic.
Appendix A provides the full set of heuristic rules derived from the inference
rules of the BSW-ZF logic.

Heur1 To see message X, P must receive X on channel C and be able to
read C. Before P receives X from C, some principal Q should hold X
and may write in channel C. In addition, if the honesty assumption is
present, then Q is required to believe X before it can hold X.

P / XOO
oo P / C(X)

OO
oo Q 3 XOO

P |≡((Q‖∼X)→(Q|≡X))

P 3 r(C) Q 3 w(C) Q |≡ X
That P /X can be synthesised from P 3 r(C) and P /C(X) is justified
by the Seeing Axiom S1 of the BSW-ZF logic [38]:

P / C(X), P ∈ r(C)
P / X

For the purposes of this paper we do not consider the BSW-ZF Axioms,
other than to note that they were used to inform our selection of the
heuristic rules Heur1 through Heur16 (Appendix A).

Note that a heuristic (more general than Heur1) that is directly based
on the S1 rule—whereby P / X is synthesized from P 3 r(C) and
P /C(X)— is inadequate in practice. In particular, when there are no
given protocols, the origin of the message C(X) is unknown. There-
fore, we require that some principal Q holds X and that Q may write
in C before P may receive X from channel C, as reflected in Heuristic
Heur1. This is similar in intent to the ‘required precondition’ that is
used in [5].

Heur11 To believe φ1, P must believe φ2 and φ2 → φ1.

P |≡ φ1OO gg

OOOOOOOOOOOO

P |≡ φ2 P |≡ (φ2 → φ1)
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3 ASPB Architecture

Figure 1 outlines the architecture of the Automatic Security Protocol Builder
(ASBP). A protocol specification is parsed and decomposed into a series
of single goal protocol requirements using the Specification Parser. From
these single goal protocol requirements, a collection of subprotocols are syn-
thesised to satisfy the individual goals using the Single Goal Synthesiser
(Section 4). The Protocol Composer (Section 5) merges these subprotocols
to form complete candidate protocols. The Protocol Selector (Section 6.3)
selects what are considered the most suitable protocols from the candidate
protocols.

Requirement
Specification

// Specification
Parser

tttttttttt

JJJ
JJJ

JJJ
J

L[1]

zzttttttttt
L[i]

��

L[n]

$$IIIIIIIII

Single Goal
Synthesiser

RG[1]
LLLLLLLL

&&LLLLLLLL

. . . Single Goal
Synthesiser

RG[i]

��

. . . Single Goal
Synthesiser

RG[n]
rrrrrrrr

yyrrrrrrrr

Protocol
Composer

P

��
Protocol
Selector

// selected
protocols

initial state for goal i: L[i]
subprotocols for goal i: RG[i]
candidate protocol: P

Figure 1: Overview of Automatic Security Protocol Builder

When designing a protocol, the designer should understand the security
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context of the principals. It reflects the keys that principals know, the trust
relationships between principals, and any other assumptions that they may
hold. Our protocol requirement specification defines the terms that are used
in the specification, initial known assumptions, and goals for the protocol
to be designed. These are represented using the BSW-ZF logic.

Example 1 Figure 2 gives a complete requirement specification for a mu-
tual authentication protocol using symmetric keys with a Trusted Third
Party (TTP). Note that unreachable assumptions may also be included in
the requirement specification. These do not affect the logic, but are used to
direct the synthesis during pruning, and will be explained in Section 4.1. 4

The Requirement Specification Parser parses the specification and checks
whether all the formulae are valid based on the logic syntax and the types
defined in the ‘declarations’ section of the specification. For each goal to
be proven, the parser generates a single-node (root) formula tree (of that
goal) as an initial synthesis state. This single-node rooted tree is regarded
as a initial formula tree for synthesis, such as Figure 3(a). These provide
the inputs to the Single Goal Synthesiser.

4 The Single Goal Synthesiser

The Single Goal Synthesiser accepts an initial synthesis state from the Re-
quirement Specification Parser, automatically synthesises its goal using the
heuristic rules of the BSW-ZF logic, and builds complete formula trees from
the goal. The BSW-ZF heuristic rules define how this tree may be expanded,
and a snapshot of this tree (rooted at that goal), represents a synthesis state.
The single (root) node of an initial formula tree is the goal that any synthe-
sised protocol must uphold.

Since the heuristic rules of the BSW-ZF logic are also defined in terms
of rooted trees, the synthesis of a one-way authentication protocol can be
illustrated by tree grafting, whereby instantiations of suitable heuristic rules
are grafted into incomplete formula trees that are extended from the initial
formula tree until a complete formula tree is held. An incomplete formula
tree has one or more leaves that are not assumptions from the requirement
specification, such as (a), (b) and (c) in Figure 3. All the leaves of a complete
formula tree correspond to assumptions from the requirement specification,
such as Figure 3 (d).

If a protocol goal is not an assumption from the requirement specifica-
tion, then the corresponding initial formula tree is an incomplete formula
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declarations {
Channel Cas, Cbs, Cp;
Principal A, B, S;
Nonce Na, Nb;
Message X;
Formula φ;

}
assumptions {

A |≡ (σ(w(Cas)) = {A,S});
S |≡ (σ(w(Cas)) = {A,S});
B |≡ (σ(w(Cbs)) = {B,S});
S |≡ (σ(w(Cbs)) = {B,S});
A |≡ (σ(r(Cas)) = {A,S});
S |≡ (σ(r(Cas)) = {A,S});
B |≡ (σ(r(Cbs)) = {B,S});
S |≡ (σ(r(Cbs)) = {B,S});
A 3 r(Cas); A 3 w(Cas);
A 3 r(Cp); A 3 w(Cp);
B 3 r(Cbs); B 3 w(Cbs);
B 3 r(Cp); B 3 w(Cp);
S 3 r(Cbs); S 3 w(Cbs);
S 3 r(Cas); S 3 w(Cas);
S 3 r(Cp); S 3 w(Cp);
A |≡](Na); B |≡](Nb);
A 7→ Na; B 7→ Nb;
A 3 A; B 3 B;
A |≡ ((S ‖∼ φ)→ (S |≡ φ));
B |≡ ((S ‖∼ φ)→ (S |≡ φ));
A |≡ ((S |≡ (B |∼ X))→ (B |∼ X));
B |≡ ((S |≡ (A |∼ X))→ (A |∼ X));

}
unreachable assumptions{

A 3 r(Cbs); A 3 w(Cbs); B 3 r(Cas); B 3 r(Cas);
}
goals {

A |≡ (B ‖∼ A); /* G1 */
B |≡ (A ‖∼ B); /* G2 */

}

Figure 2: A complete requirement specification for mutual authentication
protocols using symmetric keys with TTP
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tree. If a protocol goal is an assumption from the requirement specifica-
tion, then the corresponding initial formula tree is a complete formula tree.
The fact that an initial formula tree can be a complete formula tree, re-
flects that complete formula trees may contain no protocol steps, since the
corresponding protocol goals do not require the cooperation of principals.

By distinguishing complete formula trees from incomplete complete for-
mula trees, the end-point of a synthesis process is determinable. More specif-
ically, the synthesis for the root of the complete formula tree is finished,
when a complete formula tree is generated. Figure 3(b) and (c) describe
two grafting steps from initial formula trees. Algorithm 1 describes this
process.

Algorithm 1 StateSet syn(State initState)
State s;
StateSet S′, R = φ;
StateSet L = {initState};
while ¬ empty(L) do
s = choose(L);
L = L \ s;
if hasGoal(s) then
S′ = subsyn(s);
L = add(L, S′);

else
R = add(R, s);

end if
end while
return R;

Operation choose(L) picks an arbitrary synthesis state s from the set of
current states L.

If the given state s is an incomplete formula tree, then operation subsyn(s)
selects a leaf node that is not an assumption, and applies the currently ap-
plicable heuristic rules to this leaf node. A number of new formula trees
are generated by appending the subgoals of the applicable heuristic rules to
the formula tree. Operation subsyn(s) returns these new formula trees as
a collection of synthesis states. For example, the different formula trees in
Figures 3(b) and (c) could be generated and returned by subsyn(s) for the
formula tree in Figure 3(a).

If no heuristic rule can be applied to a leaf node (terminal subgoal) then
the Single Goal Synthesiser tests whether this leaf matches an assumption.

12



G1

G6
1==

{{
{{

{{
{{

OO

A1 IG1

(a) (b)

G6
1<<

yy
yy

yy
yy

y OO

A1 IG11
1<<

xxxxxxxx OO

IG2 A15

G1<<

zz
zz

zz
zz

OO

IG1OO M1OO bb

DD
DD

DD
DD

A1 A2 IG2OO

M2<<

zz
zz

zz
zz

OO

A3 A4

(c) (d)

a protocol step a terminal subgoal an interim subgoal

Figure 3: Incomplete and Complete Formula Trees
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If so, then it is considered reachable. If all leaves of a tree are reachable,
then the tree is a complete formula tree, and represents a candidate protocol
for the goal. It is added to the set of complete formula trees R for the given
goal.

An automatic verification tool [26] for the original BSW Logic has been
implemented using Theory Generation [18]. This tool [26] also supports
(manually guided) synthesis of protocols using the synthesis rules described
in [8]. The Single Goal Synthesiser described in this section builds on and
extends this manual tool in [26] by automatically carrying out the synthesis
process for the BSW-ZF logic.

4.1 Improving Performance

To improve the performance of the Single Goal Synthesiser, a number of ad-
hoc strategies are used as part of the operation subsyn(s), including early
pruning, variable instantiation, and tree pruning.

Early Pruning. Having applied a heuristic rule, consider generated for-
mulae that are of the form of P 3 r(C), P 3 w(C), or P |≡](Y ).
To speed up the judgement process, the operation subsyn(s) checks
whether leaves of this form in generated formula trees match the initial
assumptions or specify unreachable assumptions of the requirement
specification. If a leaf matches an assumption, then the leaf is reach-
able and the search terminates at this point. For example, A 3 r(Cp)
and B 3 w(Cp) in Figure 4(d) match specified assumptions, then the
search terminates at this point. Only B 3 (A,Na) remains for further
synthesis. If any leaf matches a specified unreachable assumption, then
the corresponding formula tree is also unreachable, and the formula
tree is simply discarded. For example, if B 3 w(Cas) in Figure 4(b) or
A 3 r(Cbs) in Figure 4(c) match specified unreachable assumptions,
then the corresponding formula trees are simply discarded. Otherwise,
the formula tree is kept for further synthesis. The rationale for early
pruning is that formulae of this form are frequently generated using the
heuristic rules, such as Heur1, Heur5–10, and Heur12–14, and it is
straightforward to immediately determine whether they are reachable
by this approach.

Variable Instantiation. Some heuristic rules introduce new variables that
do not appear in the goal, but appear in the subgoals. For example,
Heur1, and Heur6–10. If the type of the variable is known (for exam-
ple, variable Q is a principal, and variable C is a channel in Heur1),
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A / (A,Na)
OO

oo A / C(A,Na)
OO

oo B 3 A,Na

A 3 r(C) B 3 w(C)

(a) Applying Heur1 on A / (A,Na) with variable Q instantiated as B

A / (A,Na)
OO

oo A / Cas(A,Na)
OO

oo B 3 A,Na

A 3 r(Cas) B 3 w(Cas)

(b) Instantiated variable C by Cas

A / (A,Na)
OO

oo A / Cbs(A,Na)
OO

oo B 3 A,Na

A 3 r(Cbs) B 3 w(Cbs)

(c) Instantiated variable C by Cbs

A / (A,Na)
OO

oo A / Cp(A,Na)
OO

oo B 3 A,Na

A 3 r(Cp) B 3 w(Cp)

(e) Instantiated variable C by Cp

A |≡ φ1OO
oo A |≡ (φ2 → φ1)

OO
oo A |≡ (φn → (. . .→ (φ2 → φ1)))

A |≡ φ2 A |≡ φn

(d) A Formula Tree for Recursively Applying Heur11 on A |≡ φ1

Figure 4: Examples for Early Pruning and Variable Instantiation
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then the heuristic rule is repeatedly applied for all possible instantia-
tions of the variable from the ‘declarations’ section of the requirement
specification. As a result of this, a number of independent states that
have no variables are generated. For example, Figure 4(a) introduces
channel variable C. Assuming channel declarations Cas,Cbc and Cp
and applying all possible instantiations of variable C in the example in
Figure 4 then variable-free independent states Figure 4(b), (c), and (d)
are generated. Operation subsyn(s) then applies the ‘early pruning’
strategy to these instantiated states.

Some heuristic rules introduce variables of unknown type. For exam-
ple, in theory, variable φ2 in Heur11 could be bound to any logical
formula, resulting in an infinite state space. In practice, we consider
that in order to reach Heur11’s goal, both of its two subgoals must
be reached beforehand. In order to determine whether Heur11 is ap-
plicable to P |≡ φ1, where φ1 has no unbound variables, a search is
made for a pattern P |≡ (φ2 → φ1) for some arbitrary φ2 in the as-
sumptions of the requirement specification. If matched, the heuristic
rule is applied. If no match occurs, then a search is done to test if it
is possible to synthesise a formula of the form P |≡ (φ2 → φ1), from
existing assumptions in the requirement specification. In practice, this
search is relatively straightforward as only Heur11 can be applied to
P |≡ (φ2 → φ1), whereupon it recursively searches for formulae of the
form P |≡ (...(... → φ1)) in assumptions, such as the formula tree in
Figure 4(d).

To further minimise the search space, Heur11 disregards higher order
belief formulae [7] of the form P |≡ (Q ‖∼ (Q ‖∼ X)) and P |≡
(Q |≡ (Q |≡ X)), etc., on the basis that they do not provide any
additional information than the first order beliefs P |≡ (Q ‖∼ X) and
P |≡ (Q |≡ X), etc.. With these strategies, we restrict the state search
space, and generate a wide range of useful protocols.

Tree Pruning. The Single Goal Synthesiser does not allow any formula
as its own direct or indirect parent in a formula tree. The reason
for this is that the Single Goal Synthesiser terminates the extension
for any branch of a formula tree as early as possible. If a goal can be
achieved, then the simplest subtree does not involve itself as a subgoal.
Otherwise it involves an infinite search for this goal, since any branch
for this goal in a formula tree requires itself as a subgoal, such as
the formula tree in Figure 5(c). For a goal to have itself as its own
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direct or indirect parent in a formula tree, the high level subtree for
this goal can be safely replaced by the low level subtree for the same
goal. The replacing formula tree is already in the state set since the
Single Goal Synthesiser extends a formula to all possible formula trees
without any formula as its own direct or indirect parent. For example,
formula trees in Figure 5(a), (b) can be simplified to the formula tree
in Figure 5(d).

Example 2 Two subprotocols are automatically synthesised from Goal G1

in the requirement specification of Figure 2. Subprotocol 1.1 corresponds to
the protocol messages from the search tree in Figure 4. Further synthesis
generates an additional search tree with corresponding Subprotocol 1.2.

Subprotocol 1.1 Subprotocol 1.2
A, A,
B / Cp(A,Na), S / Cas(A,Na),
S / Cbs(A,Na), B / Cbs(A,Na),
A / Cas(B |∼ (A,Na)). A / Cp(A,Na).

Note that the first line of a subprotocol indicates the subprotocol initiat-
ing principal (initiator) that generates the first message of the subprotocol.
The synthesis of the symmetrically similar goal G2 generates two similar
search trees from which symmetrically similar subprotocols 2.1 and 2.2 are
obtained.

Subprotocol 2.1 Subprotocol 2.2
B, B,
A / Cp(B,Nb), S / Cbs(B,Nb),
S / Cas(B,Nb), A / Cas(B,Nb),
B / Cbs(A |∼ (B,Nb)). B / Cp(B,Nb).

4

5 The Protocol Composer

The Single Goal Synthesiser is used to generate subprotocols from a single
goal. While not considered in the original paper [8], it is possible, in theory,
to use the original BSW synthesis rules to synthesise multiple goals. In the
same way, the heuristic rules of the BSW-ZF logic could be used to synthe-
size a protocol from multiple goals. However, in practice, building a search
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tree for multiple goals results in a potential state explosion as each step must
consider the application of all possible combinations of heuristic rules that
could be applied in the current state. ASPB avoids this problem by first
synthesising only single goal protocols and it then uses the Protocol Com-
poser to, in turn, merge these single goal protocols into a single candidate
protocol that meets the composition of goals.

A feasible candidate protocol for a requirement specification must achieve
all of the goals described in the requirement specification, otherwise the can-
didate protocol does not satisfy the requirement specification (within the
logic). For this reason, the Protocol Composer generates a feasible candi-
date protocol by composing a number of subprotocols. Each of these sub-
protocols is selected from the generated subprotocol set for each goal in the
requirement specification, and the composition of these subprotocols satis-
fies all the goals. There can be many possible ways to merge subprotocols.
The easiest way to merge two subprotocols is to append one to the end of
the other. However, this may lead to lengthy and inefficient protocols. In
addition, such protocols are certainly not fail-stop [15], since an attacker
may run part of the protocol (achieving one goal) without completing the
other subprotocol.

5.1 Merging Principal sequences

A security protocol is a sequence of messages exchanged between principals
in order to achieve a number of security goals. At an abstract level, these
message exchanges can be described just in terms of a principal sequence.
A principal sequence is a sequence of principal identities based on the order
of message exchanges between the principals in a protocol. For example,
Subprotocol 1.1 implementing goal G1 (Example 2) has principal sequence
A → B → S → A; Subprotocol 2.2 implementing goal G2 has principal
sequence B → S → A→ B.

Given principal sequences X and Y , then we say that sequence X covers
sequence Y if Y appears as a fragmented subsequence of X. For example,
Figure 6(a) illustrates that A → B → S → A → B covers A → S → A.
The Protocol Composer uses principal sequences to guide the construction
of new protocols when merging subprotocol messages.

Given a collection of subprotocols P1 . . .Pn that meet goals G1 . . . Gn of
a protocol specification, respectively, the Protocol Composer tests whether
a given principal sequence covers the principal sequences of the subproto-
cols P1 . . .Pn. This is done using a variation of the shortest subsequence
algorithm [19]. If the given principal sequence covers the principal se-
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Figure 6: Sequence Covering Examples

quences of the subprotocols P1 . . .Pn, then it is a possible principal sequence
of a candidate protocol. For example, in Figure 6(b), principal sequence
A → B → S → A → B covers both principal sequence A → B → S → A
for Subprotocol 1.1 and principal sequence B → S → A → B for Subpro-
tocol 2.2, then principal sequence A → B → S → A → B is a possible
principal sequence of a candidate protocol that satisfies both G1 and G2.
The candidate protocol is generated by merging the messages of the individ-
ual subprotocols according to the generated (covering) principal sequence.
The behaviour of the Protocol Composer is specified by Algorithm 2.

The Protocol Composer accepts two parameters: the protocol initiator
prin and an array RG. Each element RG[i] of RG is the state set for the ith
goal of the given requirement specification. The state sets are generated by
the Single Goal Synthesiser and correspond to the possible subprotocols for
a given goal. The Protocol Composer generates candidate protocols based
on the rule of shorter first, so that principal sequences (protocol patterns)
are generated from the shortest to the longest.

Operation sPattern(RG) returns the shortest length of all the possible
candidate protocols in RG. If a candidate protocol is composed of a num-
ber of subprotocols, then the principal sequencing of the candidate protocol
must cover all the principal sequences of these subprotocols. Thus, the can-
didate protocol is not shorter than the longest of these subprotocols. Note
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Algorithm 2 ProtocolSet compose(Principal prin, Array RG)
Array RS = φ;
ProtocolSet P′, P = φ;
PatternSet T ; Pattern t;
for i = sPattern(RG) to lPattern(RG) do
T = genPatterns(prin, i);
while ¬ empty(T ) do
t = choose(T );
T = T \ t;
RS = match(t, RG);
P′ = subCompose(t, RS);
P = add(P, P′);

end while
end for
return P ;

that the shortest pattern only guarantees that possible candidate protocols
are not shorter than the shortest pattern. It does not means that a can-
didate protocol as the length of given shortest pattern can be generated.
The reason for this is that the principal sequence of a candidate protocol
is a common principal sequence that covers the principal sequences of its
composing subprotocols. If the principal sequence of any subprotocol may
not cover all other subprotocols, then a common principal sequence should
be longer than all of its composing subsequences. For example, the length
of all subprotocol principal sequences in Example 2 is 4, then the principal
sequence length of a candidate protocol may not be shorter than 4. Oth-
erwise, the principal sequence of candidate protocols may not cover any
subprotocol. It follows that no protocol can be composed by given principal
sequence length and subprotocols. On the other hand, the length of the
shortest principal sequence that may cover subprotocols for all goals is 5.
Figure 6(b) presents a possible covering example. This principal sequence
length is longer than the length returned by operation sPattern(RG).

Operation lPattern(RG) returns the longest possible pattern length of
all the possible candidate protocols in RG. Given n goals, where li is the
length of the longest subprotocol for the ith goal, then the longest pattern
length is

∑n
i=0(li − 1) + 1. The motivation here is to generate a category

of protocols such that the message receiver of a protocol step is the mes-
sage sender of the next protocol step. Since the first line of a subprotocol
only indicates the subprotocol initiator that generates the first message of
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the subprotocol, when merging subprotocols into a candidate protocol, all
of the subprotocol initiators should be a receiver of the previous protocol
step, except for one initiator that is the candidate protocol initiator. The
length of the longest pattern of a candidate protocol should be the sum
of the number of steps of all the subprotocols plus the candidate protocol
initiator. Note that the number of steps in a subprotocol is the length of
the associated principal sequence minus one (which is used to indicate the
subprotocol initiator). For example, principal sequence of the given can-
didate protocol in Figure 6(c) is A → S → B → A → B. It covers its
subprotocol principal sequences A → S → B and A → B. If a candidate
protocol is composed as Figure 6(c) by the subprotocols corresponding to
the given subprotocol principal sequences. No message is sent at the step
B → A of the generated candidate protocol. Therefore the last step A→ B
of the generated candidate protocol can be executed without executing the
previous protocol steps. In this case, it is possible for an intruder to gen-
erate and send a message to B in this protocol step without participating
previous protocol steps of the same round.

Operation genPatterns(prin, i) generates all of the principal sequences,
that are initiated by principal prin and with length i, as possible protocol
patterns.

Operation match(t, RG) returns an array RS such that each element
RS[i] is a subset of the corresponding state set RG[i] that is covered by
the principal sequences of all RS[i]’s states that are, in turn, covered by
the given principal sequence t. This is done by using the longest common
subsequence algorithm [19].

Operation subCompose(t,RS) returns all possible candidate protocols
that follow principal sequence t, composed from the subprotocols of array
RS. A candidate protocol is generated by composing combinations of sub-
protocols from R[i] (i ∈ [0, . . . , n]).

If a goal G1 is a subgoal of another goal G2 in the same requirement
specification then G1 is considered relevant to G2. In this case, it is not nec-
essary to further synthesise G1 as doing so will simply generate subprotocols
that will also be generated as parts of the subprotocols for G2.

5.2 Merging Subprotocols

The Protocol Composer merges subprotocols according to the following
rules.

Merg1 (Early appearing rule) A message from a subprotocol Pi should
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appear in the candidate protocol P as early as possible, constrained
only by the principal sequencings.

Merg2 By the inference rule S2 of the BSW-ZF logic

P / (X,Y )
P / X,P / Y

we get the following rule

P / X,P / Y

P / (X,Y )

which means that the messages, that are received by P from the dif-
ferent subprotocols, may be composed by one message in the final
protocol.

Merg3 Messages on common channels in the subprotocols should be merged
in the candidate protocol, subject to the constraints of the princi-
pal sequences. For example, message C1(X1), C2(X2, Y1) and message
C1(X3), C2(X2, Y2) from two subprotocols merge into a resulting mes-
sage C1(X1, X3), C2(X2, X2, Y1, Y2).

Merg4 (Reducing rule) Any redundant message components should be re-
duced. For example, message C(X2, X2) should be reduced to C(X2).

Example 3 The synthesis of goals G1 and G2 generate subprotocols 1.1 and
1.2 and subprotocols 2.1 and 2.2, respectively (Example 2). Thus there are
2×2 possible combinations of the subprotocols to be considered for merging.
Furthermore, for each pair of subprotocols, we must find the shortest merge
of the two subprotocols. ASPB generates the following ‘best’ protocol that
corresponds to the merge of subprotocols 1.1 and 2.2 from Example 2 (in
3.1 seconds):

A ,

B / Cp(A,Na),
S / Cbs(A,B,Na,Nb),
A / Cas(B,Na,Nb,A),
B / Cp(Nb,B).

4
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6 Further Refining the Candidate Protocols

6.1 Realising Idealised protocols

The Single Goal Synthesiser generates messages expressed as formulae within
the BSW-ZF logic. The final implementation of these protocols is given
in terms of conventional protocol message steps. For example, both mes-
sage Cas(A |∼ Na) and Cas(A / Na) are expressed by the same notation
Cas(A,Na). To minimise the potential for replay attacks where ‘similar’
messages appear in different parts of a protocol, the messages are modified
to make them distinct from one another [6]. For example, Cas(A,Na, 0)
and Cas(A,Na, 1) or Cas(A,Na) and Cas(Na,A). In ASPB, we distin-
guish ’similar’ messages by the latter approach, that is, exchanging message
component order.

Since the message receiver of a protocol step is the message sender of
the next protocol step, the above protocol in Example 3 can be rewritten in
the following format:

A→ B : Cp(A,Na),
B → S : Cbs(A,B,Na,Nb),
S → A : Cas(B,Na,Nb,A),
A→ B : Cp(Nb,B)

Each protocol step means that a principal sends a message and another
principal receives this message. For example, the first step of the above
protocol A→ B : Cp(A,Na) means that A |∼ Cp(A,Na) and B/Cp(A,Na).

6.2 Removing Redundant Components

The Protocol Composer may use a redundancy removing strategy to further
remove redundant components of protocol messages. This is inspired by
Mao’s protocol idealisation process [22], that is used to transform protocol
messages into BAN-like formulae via a context-sensitive syntactic analysis of
the protocol syntax. Our redundancy removing process is used to transform
BSW-ZF formulae into protocol messages using a similar analysis of the
protocol syntax as follows.

Let the relevant principal set NP (N) represent a set of principals to
which principal P currently believes that the fresh nonce N is uttered as
a reference. P should remember this reference wherever P sees N . At the
beginning of a protocol, the relevant principal sets for all principals are
initialised to empty.
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The Protocol Composer uses the following relevancy rules to calculate
the relevant principal set for every principal at each protocol step.

RR1 If P believes that only P and Q may write in channel C, and P sees
nonce N together with principal R from C, then P believes that N is
uttered as a reference to the principals P , Q, and R.

P |≡ (s(w(C)) = {P,Q}), P 3 r(C), P / C(N, . . . , R)
NP (N) = NP (N) ∪ {P,Q,R}

RR2 If P believes that only Q may write in channel C, and P sees nonce
N with principal R from C, then P believes that N is uttered as a
reference to the principals Q and R.

P |≡ (s(w(C)) = {Q}), P 3 r(C), P / C(N, . . . , R)
NP (N) = NP (N) ∪ {Q,R}

RR3 If P believes that only P and Q may read from channel C, and P
writes nonce N with principal R in C, then then P believes that N is
uttered as a reference to the principals P , Q, and R.

P |≡ (s(r(C)) = {P,Q}), P 3 w(C), P |∼ C(N, . . . , R)
NP (N) = NP (N) ∪ {P,Q,R}

RR4 If P believes that only Q may read from channel C, and P writes
nonce N with principal R in C, then then P believes that N is uttered
as a reference to the principals Q and R.

P |≡ (s(r(C)) = {Q}), P 3 w(C), P |∼ C(N, . . . , R)
NP (N) = NP (N) ∪ {Q,R}

Generally, if NP (N) ∩ NQ(N) = ψ1 before a protocol step P → Q :
(N,ψ2), then the protocol step is rewritten by P → Q : C(N,ψ2/ψ1) This
is done in reverse order of protocol execution. If a message may not be dis-
tinguished from other messages after applying a relevancy rule, then further
principal identifiers from ψ2 are kept in that message, until the message can
be distinguished from other messages. In addition, if ψ2/ψ1 = {} in the
first encrypted message of a protocol, then at least one principal identity of
that message is kept to stop principals misusing that message. If we remove
all principal identities from the first encrypted message, the protocol may
subject to reflection/oracle attacks. The reason for this is that the message
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receiver may not judge who generates this message (another principal in the
current protocol run, or itself in a previous run). This is because it is not
practical for principals to keep messages from previous protocol runs. An
example that illustrates this problem is given in Appendix B.

Example 4 The messages in the generated protocol from Example 3 are
reduced and then simplified using above rules to give:

Message 1 A→ B : A,Na,

Message 2 B → S : {A,Na,Nb}Kbs
,

Message 3 S → A : {Na,Nb,B}Kas ,

Message 4 A→ B : Nb.

4

6.3 The Protocol Selector

In general, given subprotocols P1 and P2 that uphold goals G1 and G2,
respectively, then the monotonicity of the BSW-ZF logic ensures that the
resulting merged candidate protocol as outlined above also upholds the goals
G1 and G2 within the logic. Therefore, all the protocols generated by the
Protocol Composer are valid within our logic.

However, belief logics do have weaknesses. Regardless of whether we deal
with type flaw attacks by assuming that component types can be recognised
by principals, the logic is still vulnerable to other classes of attacks. For
example, the Protocol Composer generates the following simple mutual au-
thentication protocol.

Message 1 A→ B : A,Na,

Message 2 B → A : B,Nb, {A,Na}Kab

Message 3 A→ B : {B,Nb}Kab

While secure within the BSW-ZF and many other belief logics, this protocol
is subject to a reflection/oracle attack:

Message 1 A→ B : A,Na,
Message 2 B → I(A) : B,Nb, {A,Na}Kab,

Message 2′ I(B)→ A : B,Nb′, {A,Na}Kab,

Message 3 A→ B : {B,Nb′}Kab.
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Here, Nb′ is generated by the intruder. There are many examples of
secure protocols, which when composed are vulnerable to attack [37]. If
the unsuitable protocol is identifiable then it can be discarded following
verification by the Protocol Selector. For example, when a subprotocol P1

does not merge any message with any other subprotocols in the merging
process, we consider that the resulting candidate protocol is an unsuitable
protocol and discarded by the Protocol Selector. The reason for this is that
the subprotocol P1 could be executed independently. An intruder is possible
to participate the subprotocol without participating the rest protocol of the
same round.

It is useful to further consider verification of additional ad-hoc proper-
ties. For example, the non-injective agreement property [21]: “For certain
data items ds, if each time a principal B completes a run of the protocol
as responder using ds, apparently with A, then there is a unique run of the
protocol with the principal A as initiator using ds, apparently with B.” The
generated protocols could be re-analysed using more sophisticated protocol
analysis tools, such as the NRL Analyzer [23], the Interrogator model [24],
FDR [20], Murϕ [25], Athena [33]. In this case, the Protocol Selector of
ASPB would be used to narrow down the set of candidate protocols to be
verified. However, we point out that many existing protocol checkers are
also limited and also include ad-hoc strategies, they do not guarantee the
correctness of verified protocols.

We also suggest that practical techniques such as [6] may prove useful
in making candidate protocols robust against such attacks. For example,
by ensuring that the initiator challenge looks different to the respondent
challenge.

7 Discussion and Evaluation

In this section, we evaluate ASPB and compare it with existing approaches,
including, the Automatic Protocol Generator (APG) [30], and the Evolu-
tionary approach [10].

Table 1 provides a time performance comparison between ASPB and
APG [30]. The first three rows give the performance results for generating
the mutual authentication protocol without TTP described in Sec B (and
specified in Figures 7, 8, and 9 ). The fourth row gives the performance re-
sults for generating the mutual authentication protocol with TTP described
in Figure 2. The other experiment was for mutual authentication and key
agreement with TTP described in Figure 10. The fifth row gives the result
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Table 1: The time performance comparison between ASPB and APG
protocol purpose ASPB APGa

Stage 1b Stage 2c

mutual authentication signature keys 1.2 sec. 1.3 sec. N/A
without TTP public keys 1.2 sec. 1.3 sec. 23 sec.

symmetric keys 1.2 sec. 1.3 sec. 10 sec.
mutual authentication symmetric keys 3 sec. 4 sec. 10 min.
with TTP
mutual authentication (4 messages) 15 sec. 20 sec. 2 hr.
and key agreement (5 messages) 25 sec. 80 sec. N/A

aAPG timing is based on generating the best protocol result running on a 400MHz
Intel Pentium III [30].

bTime to synthesise, compose, and generate all candidate protocols running on a
1.8GHz Intel Pentium IV.

cEstimated time that the Athena [33] checker would take to further validate the
ASPB generated candidate protocols.

for four message protocols. The last row gives the result for five message
protocols. The results of similar experiments were reported in [30]. While
ASPB was tested on a faster computer than that used to test APG, given
the marked difference in speed, it is nevertheless reasonable to conclude that
ASPB runs significantly faster than APG.

ASPB generates approximately 500 valid five-message candidate proto-
cols in 25 seconds. However, on manual inspection, many of these protocols
are similar, containing minor textual and redundant variations. On man-
ual inspection, we estimate that in this set there are 24 reasonably distinct
four-message candidate protocols and 76 reasonably distinct five-message
protocols. We selected several protocols from each category to demonstrate
our results in Section B.

APG has not been tested for five message protocols; in this case we
conjecture that direct application of the forward search approach of APG
would result in a very large and potentially infeasible search space. Perrig
and Song’s estimate [30] is based on the average number of messages that a
principal can generate in a given round of the protocol and is explained as
follows. In a given principal sequence four-message three-party authentica-
tion and key agreement protocol (as the requirement described in Figure 10
and, for example, the given principal sequence is A→ B → S → B → A), A
generates over 100 different messages to B, then B in turn generates about
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500 different messages and sends them to S. S can generate 30,000 messages
and sends to B. B can generate around 500 messages in the final round.
The combination of this number of messages is on the order of 1012. If these
four-message protocols extend to five-message versions by one message that
is sent from A to B, there are around 500 different messages generated by
A when using Perrig and Song’s estimation approach in [30]. We conjecture
that the search space for a given principal sequence five-message three-party
authentication and key agreement protocol is over 500 × 1012 The search
space for all possible principal sequences is 500 × 1012 × 25 (based on the
limitation that one does not send messages to itself, and therefore there are
2 possible message receivers at each protocol step).

APG [30] generates the ‘best’ protocol for each protocol requirement in
the entire protocol search space with respect to its metric functions. The
metric function of APG [30] gives each message operation a cost value. For
example, the cost value of a message decryption/encryption is 3; the cost
value of generating a nonce is 1. The cost value of a protocol is the total
cost of all the protocol operations. The minimal cost protocol that meets
all of the protocol goals is APG’s ‘best’ protocol. Compared with APG, the
evolutionary approach [10] only searches a part of the entire protocol space.
Its goal is to find a ‘good’ solution for each protocol requirement in a given
protocol search space with respect to its fitness function. Unlike APG, the
evolutionary approach does not guarantee that the ‘best’ protocol in the
entire search space can be found in the selected part of the search space.
On the other hand, because the evolutionary approach searches a smaller
protocol search space than APG, it may find a ‘good’ protocol in a shorter
time than APG. For example, APG generates the ‘best’ protocol for mutual
authentication and key exchange protocol in two hours; Chen, Clark, and
Jacob generate a ’good’ protocol for the same set of protocol goals only in
3 minutes using an evolutionary approach [10] based on the SVO logic.

Since variable instantiation in ASPB’s single goal synthesiser disregards
higher order belief formulae, and it is possible to use these higher order
belief formulae to generate some protocols that are different to protocols
generated using the first order beliefs, then ASPB does not search the entire
protocol space to generate all possible protocols that satisfy requirement
specifications. When compared to the above approaches, ASPB generates
a number of ‘good’ protocols, including the ‘best’ protocol, in a shorter
period. For example, ASPB generates a number of four message mutual
authentication and key exchange protocols for the same set of protocol goals
and assumptions within 20 seconds. The reason for this is that the Single
Goal Synthesiser uses the heuristics to direct its backwards search for valid

29



protocols from a protocol goal. Unlike [12] and [30] which compose random
messages, our strategy ensures that all candidate protocols obtained from
the search tree are valid in that they uphold the goal within the logic. This
contrasts with the forward searching approaches that may process many
invalid candidate protocols before encountering a valid protocol.

Athena [33] is used to guarantee that APG generates correct protocols.
However, fine grained distinctions between honesty and dishonesty cannot be
made, since the underlying analysis model of APG, the strand space model,
does not consider the concepts of honesty and dishonesty. Sometimes, an
improper trust relationship may lead to some principals being cheated by
others. With the BSW-ZF Logic, it is possible to distinguish honest (and
competent) from dishonest (and incompetent) principals. This fine-grain
distinction is useful for a protocol designer.

Since the Single Goal Synthesiser is completely independent of the Pro-
tocol Composer, our approach does not depend on the BSW-ZF logic. In
future research, we could extend the logic (or change the basic logic to an-
other) to suit more complex requirements.

Finally, increased performance could be achieved by parallelising the
single goal synthesis and composition steps across separate processors.

8 Conclusion

In this paper we describe how the synthesis process of the BSW-ZF logic
can be used to guide the automatic generation of security protocols. It
uses a backward search approach: searching for suitable protocols from the
protocol goals. This is unlike existing approaches which typically search in
a forward manner from protocol assumptions for protocols that meet the
required goals. This backward search approach limits the size of the search
space and results described in this paper indicate a better performance than
existing forward search techniques.

This backwards search forms the heart of the ASPB protocol generating
tool. Single goals are synthesised to subprotocols, which are in turn com-
posed to form the final protocols. Various heuristics are used to guide the
selection and design of candidate protocols.

However, the approach does have some limitations. Firstly, by binding
free variables only to formulae from known assumptions, the set of potential
candidate protocols is reduced. Whether this is a significant constraint is a
topic for future research. Secondly, the BSW logic is based on a belief logic
and, as such, does have limitations when compared with other techniques
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such as [28, 31]. Nevertheless, ASPB could be used narrow down the set of
candidate protocols to be verified by a more sophisticated checker.
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A The BSW-ZF Heuristic Rules

The following heuristic rules have their origins in the synthesis rules of the
BSW logic.
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Heur1 (explained in main paper)

P / XOO
oo P / C(X)

OO
oo Q 3 XOO

P |≡((Q‖∼X)→(Q|≡X))

P 3 r(C) Q 3 w(C) Q |≡ X

Heur2 To hold a compound message (X,Y ), P may hold the message com-
ponents X and Y separately.

P 3 (X,Y )
OO ff

NNNNNNNNNN

P 3 X P 3 Y

Note that this rule does not require that P must hold the message
components X and Y separately. The reason for this is that P may
obtain the compound message (X,Y ) from the same message that he
received. For example, when principal B sees a compound message
(A,Na), it is not necessary for B to hold A and Na separately in
order to hold the compound message.

Heur3 To hold a message X, P may see X.

P 3 X oo P / X

Heur4 To hold a message X, P may generate X.

P 3 X oo P 7→ X

This rule is used to track the origin of all message components in a
protocol on the basis that even if a principal holds all components of
a message, he may not be willing to send out the message, unless he
receives some request to do so or as the protocol initiator.

Heur5 To believe Q says X, P may believe that Q said X and X is fresh.

P |≡ Q ‖∼ X
OO gg

OOOOOOOOOOO

P |≡ Q |∼ X P |≡](X)
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Sometimes a principal may believe another principal says something
when it was once said with something fresh. This is reflected by Heur6.

Heur6 To believe Q says X, P may believe that Q said (X,Y ) and Y is
fresh.

P |≡ Q ‖∼ X
OO hh

QQQQQQQQQQQQ

P |≡ Q |∼ (X,Y ) P |≡](Y )

When the subgoal P |≡](Y ) is reached, by F2 then P |≡](X,Y ) is also
reached. Thus, together with P |≡ Q |∼ (X,Y ), and by rules F1 and
F4, P |≡ Q ‖∼ (X,Y ) and P |≡ Q ‖∼ X are reached.

Heur7 To believe Q says X, P may believe that Q said X on C and w(C)
is fresh.

P |≡ Q ‖∼ X
OO hh

RRRRRRRRRRRRR

P |≡ Q |∼ C(X) P |≡](w(C))

Heur8 To believe that Q said X, Q said X on channel C, and Q holds
w(C), P has to receive X via a channel C that he can read and that
he believes that it can be written to only by Q. Furthermore, Q must
hold X and w(C). If X is a formula and P believes that Q is honest,
then Q must also believe X.

P |≡ Q |∼ X;
P |≡ Q |∼ C(X);
P |≡ Q 3 w(C)

OO hh

QQQQQQQQQQQQQQ

oo P |≡ (σ(w(C)) = {Q})

P 3 r(C) P / C(X) oo
OO

Q 3 XOO

P |≡((Q‖∼X)→(Q|≡X))

Q 3 w(C) Q |≡ X
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Heur9 To believe that Q said X, Q said X on channel C, and Q holds
w(C), P has to receive X via a channel C that he can read and that
he believes it can be written to only by P and Q. Furthermore, Q
must hold X and w(C). If X is a formula and P believes that Q is
honest, then Q must also believe X.

P |≡ Q |∼ X;
P |≡ Q |∼ C(X);
P |≡ Q 3 w(C)

OO hh

RRRRRRRRRRRRRRR

oo P |≡ (σ(w(C)) = {P,Q})

P 3 r(C) P / C(X) oo
OO

Q 3 XOO

P |≡((Q‖∼X)→(Q|≡X))

Q 3 w(C) Q |≡ X

Heur10 To believe that Q said X, P has to receive X via a channel C that
he can read and that he believes X is a secret between Q and himself
before he sees it. Furthermore, P must believe that Q is able to write
to C, and that Q must believe that he sees X.

P |≡ Q |∼ X;
P |≡ Q |∼ C(X);
P |≡ Q 3 w(C);

OO hh

QQQQQQQQQQQQQQ

P |≡ (σ(X) = {P,Q})

��
P 3 r(C) P / C(X) oo

OO
Q 3 XOO

P |≡((Q‖∼X)→(Q|≡X))

Q 3 w(C) Q |≡ X

Heur11 (explained in main paper)

P |≡ φ1OO gg

OOOOOOOOOOOO

P |≡ φ2 P |≡ (φ2 → φ1)
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Heur12 To believe a compound message X is fresh, P must believe some
part X ′ of X is fresh.

P |≡](X) oo P |≡](X ′)

Heur13 To believe w(C) is fresh, P must believe r(C) is fresh.

P |≡](w(C)) oo P |≡](r(C))

Heur14 To believe r(C) is fresh, P must believe w(C) is fresh.

P |≡](r(C)) oo P |≡](w(C))

Heur15 To believe a message X is a shared secret only between P and
Q, P must believe some part of the message is a shared secret only
between P and Q.

P |≡ (σ(X) = {P,Q}) oo P |≡ (σ(X ′) = {P,Q})

Heur16 To see a compound message (X,Y ), P may see the message com-
ponents X and Y separately.

P / (X,Y )
OO ff

MMMMMMMMMM

P / X P / Y

Proposition (Provable Synthesis) A protocol synthesised using the
BSW-ZF heuristic rules can be proven to uphold its protocol goal using
the BSW-ZF inference rules.

Proof Outline The validity of the heuristic rules is justified by their cor-
responding inference rules, except for Heur1, 8, 9, 10. The heuristic rules
Heur1, 8, 9, 10 require additional subgoals to ensure valid temporal or-
dering of the subgoals of generated protocols, as discussed in Heur1.

These heuristic rules require that necessary subgoals are satisfied before
a protocol goal is achieved. Any protocol synthesised using these heuristic
rules guarantees that all of the subgoals for the protocol goals are satisfied.
To verify a protocol, its subgoals serve as the premises of the inference
rules. It is sufficient to deduce protocol goals from these subgoals using the
corresponding inference rules.

38



B Protocol Examples

ASPB generates a large number of protocols for different requirements. For
the sake of illustration, only a small number of generated protocols are
explored in this section. Note that we do not consider type-flaw attacks [11]
in our prototype. However, this could be done by using other protocol
checkers, such as the NRL Analyzer [23], the Interrogator model [24], FDR
[20], Murϕ [25], Athena [33], during protocol selection.

B.1. Mutual Authentication with TTP

Figure 2 illustrates a protocol requirement specification of a simple mutual
authentication protocol that uses a trusted third party. ASPB generates
Protocol 1.1 that was described in Example 4.

Protocol 1.1. (Perrig and Song’s real optimal protocol [30])

Message 1 A→ B : A,Na,

Message 2 B → S : {A,Na,Nb}Kbs
,

Message 3 S → A : {Na,Nb,B}Kas ,

Message 4 A→ B : Nb.

Protocol 1(a). (Perrig and Song’s optimal protocol 1 [30])

Message 1 A→ B : A,Na,

Message 2 B → S : {Na,Nb,A}Kbs
,

Message 3 S → A : {Na,Nb,A,B}Kas ,

Message 4 A→ B : Nb.

Protocol 1(b). (Perrig and Song’s optimal protocol 2 [30])

Message 1 A→ B : A,Na,

Message 2 B → S : {A,B,Na,Nb}Kbs
,

Message 3 S → A : {Na,Nb,B}Kas ,

Message 4 A→ B : Nb.

Protocol 1(a) and Protocol 1(b) were generated by Perrig and Song’s
APG [30]. While ASPB also generates these two protocols, it considers
them as interim protocols with redundant components. For example, the
redundant components in Protocol 1(a) is A in Message 3. Before S sends
out Message 3, NA(Na) = NS(Na) = {A,S} is obtained by using RR1 and
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RR3. Therefore, NA(Na)∩NS(Na) = {A,S}. Since {A,B}/{A,S} = {B},
A is safely removed from Message 3. The protocol properties do not change
after the redundant components are removed. The redundant components
in Protocol 1(b) is B in Message 2. Similar redundant removing process
can be applied on Protocol 1(b).

B.2. Mutual Authentication without TTP

Figure 2 illustrates a requirement specification of a simple mutual authen-
tication protocol that uses a trusted third party. If the assumptions are
changed to reflect the absence of this third party (all of the assumptions
using S, Cas, and Cab are replaced by proper assumptions) then the syn-
thesised protocols include the following.

B.2.1. Using symmetric keys

In this case, principals A and B share a symmetric key Kab. The follow-
ing assumptions about channel Cab are used in the modified requirement
specification that is illustrated in Figure 7. For this modified requirement
specification, ASPB generates following six correct protocols, Protocol 2.1–
2.6.

Protocol 2.1. (Perrig and Song’s Optimal Minimum Cost Protocol [29])

Message 1 A→ B : {A,Na}Kab
,

Message 2 B → A : {Na,Nb}Kab
,

Message 3 A→ B : Nb.

Protocol 2.2. (Perrig and Song’s Minimum Cost Protocol 2 [29])

Message 1 A→ B : A,Na,

Message 2 B → A : {B,Na,Nb}Kab
,

Message 3 A→ B : Nb.

Protocol 2.3. (Perrig and Song’s Minimum Cost Protocol 1 [29])

Message 1 A→ B : A,Na,

Message 2 B → A : {A,Na,Nb}Kab
,

Message 3 A→ B : Nb.

The above three protocols were first generated by APG [29]. Compare
with Protocol 2.2 and Protocol 2.3, Protocol 2.1 has an encrypted first
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declarations {
Channel Cab, Cp;
Principal A, B;
Nonce Na, Nb;

}
assumptions {

A |≡ (σ(w(Cab)) = {A,B});
B |≡ (σ(w(Cab)) = {A,B});
A |≡ (σ(r(Cab)) = {A,B});
B |≡ (σ(r(Cab)) = {A,B});
A 3 r(Cab); A 3 w(Cab);
A 3 r(Cp); A 3 w(Cp);
B 3 r(Cab); B 3 w(Cab);
B 3 r(Cp); B 3 w(Cp);
A |≡](Na); B |≡](Nb);
A 7→ Na; B 7→ Nb;
A 3 A; B 3 B;

}
goals {

A |≡ (B ‖∼ A); /* G1 */
B |≡ (A ‖∼ B); /* G2 */

}

Figure 7: A Requirement Specification for Mutual Authentication without
TTP using Symmetric Keys

message, and a shorter second message. Perrig and Song consider that
Protocol 2.1 can be used in environments that perform fast encryption and
decryption operations, but using slow links for data transitions. Protocol 2.2
and Protocol 2.3 may be used in regular environments, that the cost of data
transitions is lower than encryption and decryption operations.

Note that Protocol 2.1 also satisfies the secrecy requirement that is de-
scribed as goal Ga1 : A |≡ (σ(Na) = {A,B}) and goal Ga2 : B |≡ (σ(Na) =
{A,B}). By satisfying Ga1 and Ga2 after a round of these protocols, it is
possible for A and B to use Na as a secret shared only between them for
further communication. Protocol 2.2 and Protocol 2.3 do not satisfy goal
Ga1 and Ga2.

Before obtaining Protocol 2.2 and Protocol 2.3, ASPB generates the fol-
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lowing interim Protocol 2(a) that has a redundant component in the second
message.

Message 1 A→ B : A,Na,

Message 2 B → A : {A,B,Na,Nb}Kab
,

Message 3 A→ B : Nb.

In the redundancy removing process, either protocol initiator’s identifier A
or protocol responder’s identifier B can be removed from Message 2. This
does not change the properties of Protocol 2(a). After removing one of the
message components A and B, Protocol 2.2 and Protocol 2.3 are obtained
individually. On the other hand, according to the redundancy removing
rules, message components A and B may not be removed at the same time
to obtain Protocol 2(b).

Protocol 2(b).

Message 1 A→ B : A,Na,

Message 2 B → A : {Na,Nb}Kab
,

Message 3 A→ B : Nb.

The reason for this is that Protocol 2(b) is subject to the following
reflection/oracle attack. When EB intercepts message 1, EB may start
another round of Protocol 2(b) by forwarding all of A’s messages to A.
After message 3, A believes that A finished two rounds of the protocol with
B, but B does not participate in any round of the protocol.

Message 1 A→ EB : A,Na,

Message 1′ EB → A : B,Na,

Message 2′ A→ EB : {Na,Na′}Kab
,

Message 2 EB → A : {Na,Na′}Kab
,

Message 3 A→ EB : Na′.

Message 3′ EB → A : Na′.

Protocol 2.4.

Message 1 A→ B : {A,Na}Kab
,

Message 2 B → A : {Na,Nb}Kab
,

Message 3 A→ B : {Nb}Kab
.
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Protocol 2.5.

Message 1 A→ B : A,Na,

Message 2 B → A : {B,Na,Nb}Kab
,

Message 3 A→ B : {Nb}Kab
.

Protocol 2.6.

Message 1 A→ B : A,Na,

Message 2 B → A : {A,Na,Nb}Kab
,

Message 3 A→ B : {Nb}Kab
.

Protocol 2.4–2.6 are similar to Protocol 2.1–2.3, but each of them has
an encrypted third message. Comparing with Protocol 2.1–2.3, we con-
sider that Protocol 2.4–2.6 also satisfy the secrecy requirement, that are
described as additional protocol goals, Ga3 : B |≡ (σ(Nb) = {A,B}) and
Ga4 : A |≡ (σ(Nb) = {A,B}). By satisfying Ga3 and Ga4 after a round of
these protocols, A and B can use Nb as a secret shared only between them
for further communication.

ISO/IEC 9798-2 [1] proposes the ISO/IEC Symmetric-Key Three-Pass
Mutual Authentication Protocol, as follows:

Message 1 A→ B : A,Na,

Message 2 B → A : {Na,Nb,A}Kab
,

Message 3 A→ B : {Na,Nb}Kab
.

Clearly, Protocols 2.1–2.6, generated by ASPB, are simpler than the ISO
standard protocol, yet achieve the same mutual authentication goals. There-
fore, it is reasonable to consider that component Na in Message 3 of the
standard ISO protocol is redundant component for the purposes of mutual
authentication.

B.2.2. Using signature keys

In this case, both principals can verify each others signature key SKa and
SKb. Assumptions are adapted to represent the corresponding authentic
channel Ca and Cb. The modified requirement specification is represented
in Figure 8. For this modified requirement specification, ASPB generated
two correct protocols.
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declarations {
Channel Cab, Cp;
Principal A, B;
Nonce Na, Nb;

}
assumptions {

A |≡ (σ(w(Ca)) = {A});
B |≡ (σ(w(Ca)) = {A});
A |≡ (σ(w(Cb)) = {B});
B |≡ (σ(w(Cb)) = {B});
A 3 r(Ca); A 3 w(Ca); A 3 r(Cb);
A 3 r(Cp); A 3 w(Cp);
B 3 r(Cb); B 3 w(Cb); B 3 r(Ca);
B 3 r(Cp); B 3 w(Cp);
A |≡](Na); B |≡](Nb);
A 7→ Na; B 7→ Nb;
A 3 A; B 3 B;

}
goals {

A |≡ (B ‖∼ A); /* G1 */
B |≡ (A ‖∼ B); /* G2 */

}

Figure 8: A requirement specification for Mutual Authentication without
TTP using signature keys

Protocol 2.7.

Message 1 A→ B : A,Na,

Message 2 B → A : {A,Na,Nb}SKb
,

Message 3 A→ B : {Nb,B}SKa .

Protocol 2.8.

Message 1 A→ B : {A,Na}SKa ,

Message 2 B → A : {A,Na,Nb}SKb
,

Message 3 A→ B : {Nb,B}SKa .

The only difference between Protocol 2.7 and Protocol 2.8 is whether
the first message is signed by A’s signature key. ASPB generates these
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two different protocols because ASPB’s Single Goal Synthesiser instantiates
typed variable with all possible instantiations that are defined in requirement
specification. Since both Protocol 2.7 and Protocol 2.8 satisfy given mutual
authentication goals, the above difference does not influence the authenti-
cation properties of these protocols. Therefore, it is reasonable to consider
that the signature in Message 1 of Protocol 2.8 is redundant component for
the purposes of mutual authentication.

ISO/IEC 9798-3 [2] proposes the ISO/IEC Signature-Key Three-Pass
Mutual Authentication Protocol, as follows:

Message 1 A→ B : A,Na,

Message 2 B → A : {A,Na,Nb}SKb
,

Message 3 A→ B : {Na,Nb,B}SKa .

Clearly, Protocol 2.7, a protocol generated by ASPB, is simpler than the
ISO standard protocol, yet achieves the same mutual authentication goals.
Therefore, it is reasonable to consider that component Na in Message 3
of the standard ISO protocol is redundant component for the purposes of
mutual authentication.

B.2.3. Using Public Keys

In this case, both principals know each others’ public keys. The following
assumptions about channel Ca and Cb are used in the modified require-
ment specification. The modified requirement specification is represented
in Figure 9. For this modified requirement specification, the following two
protocols were generated by ASPB.

Protocol 2.9. (Corresponds to Needham-Schroeder-Lowe protocol [20])

Message 1 A→ B : {A,Na}Kb
,

Message 2 B → A : {Na,Nb,B}Ka ,

Message 3 A→ B : {Nb}Kb
.

Protocol 2.10. (Perrig and Song’s Minimum Cost Protocol 3 [29])

Message 1 A→ B : {A,Na}Kb
,

Message 2 B → A : {Na,Nb,B}Ka ,

Message 3 A→ B : Nb.

The difference of Protocol 2.9 and Protocol 2.10 is whether the last mes-
sage is encrypted. Consequently, Protocol 2.9 achieves the secrecy require-
ment, that is described as additional protocol goals Ga3 : B |≡ (σ(Nb) =
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declarations {
Channel Cab, Cp;
Principal A, B;
Nonce Na, Nb;

}
assumptions {

A |≡ (σ(r(Ca)) = {A});
B |≡ (σ(r(Ca)) = {A});
A |≡ (σ(r(Cb)) = {B});
B |≡ (σ(r(Cb)) = {B});
A 3 r(Ca); A 3 w(Ca); A 3 w(Cb);
A 3 r(Cp); A 3 w(Cp);
B 3 r(Cb); B 3 w(Cb); B 3 w(Ca);
B 3 r(Cp); B 3 w(Cp);
A |≡](Na); B |≡](Nb);
A 7→ Na; B 7→ Nb;
A 3 A; B 3 B;

}
goals {

A |≡ (B ‖∼ A); /* G1 */
B |≡ (A ‖∼ B); /* G2 */

}

Figure 9: A requirement specification for Mutual Authentication without
TTP using Public Keys

{A,B}) and Ga4 : A |≡ (σ(Nb) = {A,B}), while Protocol 2.10 does not
satisfy these secrecy requirements.

B.3. Mutual Authentication and Key Agreement Protocol

Figure 10 gives a complete requirement specification for a mutual authen-
tication and key agreement protocol that involves a Trusted Third Party.

B.3.1. Four Message Protocols

ASPB synthesises a number of four-message mutual authentication proto-
cols. For the purpose of illustration, we describe and discuss the following
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declarations {
Channel Cas, Cbs, Cab, Cp;
Principal A, B, S;
Nonce Na, Nb;
Message X;
Formula φ;

}
assumptions {

A |≡ (σ(w(Cas)) = {A,S}); A |≡ (σ(r(Cas)) = {A,S});
S |≡ (σ(w(Cas)) = {A,S}); S |≡ (σ(r(Cas)) = {A,S});
B |≡ (σ(w(Cbs)) = {B,S}); B |≡ (σ(r(Cbs)) = {B,S});
S |≡ (σ(w(Cbs)) = {B,S}); S |≡ (σ(r(Cbs)) = {B,S});
S |≡ (σ(w(Cab)) = {A,B}); S |≡ (σ(r(Cab)) = {A,B});
A 3 r(Cas); A 3 w(Cas); A 3 r(Cp); A 3 w(Cp);
B 3 r(Cbs); B 3 w(Cbs); B 3 r(Cp); B 3 w(Cp);
S 3 r(Cas); S 3 w(Cas); S 3 r(Cp); S 3 w(Cp);
S 3 r(Cbs); S 3 w(Cbs);
A |≡](Na); B |≡](Nb); S |≡](w(Cab));
A 7→ Na; B 7→ Nb; S 7→ r(Cab); S 7→ w(Cab);
A 3 A; B 3 B; S 3 S;
A |≡ ((S ‖∼ φ)→ (S |≡ φ));
B |≡ ((S ‖∼ φ)→ (S |≡ φ));
A |≡ ((S |≡ (B |∼ X))→ (B |∼ X));
B |≡ ((S |≡ (A |∼ X))→ (A |∼ X));
A |≡ ((S |≡ (σ(w(Cab)) = {A,B})→ (σ(w(Cab)) = {A,B})));
B |≡ ((S |≡ (σ(w(Cab)) = {A,B})→ (σ(w(Cab)) = {A,B})));
A |≡ (S ‖∼ w(Cab)→](w(Cab)));
B |≡ (S ‖∼ w(Cab)→](w(Cab)));

}
goals {

A |≡ (B ‖∼ A); /* G1 */
B |≡ (A ‖∼ B); /* G2 */
A |≡ (σ(w(Cab)) = {A,B}); /* G3 */
B |≡ (σ(w(Cab)) = {A,B}); /* G4 */

}

Figure 10: The requirement specification for the mutual authentication and
key agreement protocol using Trusted Third Party.
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generated protocols, Protocols 3.1–3.7, that satisfy the requirement specifi-
cation in Figure 10.

Protocol 3.1. (Perrig and Song’s protocol 1 in Protocol-Set S1 [30])

Message 1 A→ B : A,Na,

Message 2 B → S : B, {A,Na,Nb}Kbs
,

Message 3 S → A : {Nb,Kab}Kbs
, {B,Na,Nb,Kab}Kas

Message 4 A→ B : {Nb}Kab
, {Nb,Kab}Kbs

.

Protocol 3.2. (Perrig and Song’s protocol in Protocol-Set S3 [30])

Message 1 A→ B : A,Na,

Message 2 B → S : B, {A,Na,Nb}Kbs
,

Message 3 S → A : {Nb,Kab}Kbs
, {B,Na,Nb,Kab}Kas

Message 4 A→ B : Nb, {Nb,Kab}Kbs
.

In Protocol 3.1 B believes that A receives Kab from S. However, this is
not the case in Protocol 3.2 since A does not use the key Kab (to encrypt
the nonce). Protocols 3.1 and 3.2 also appear in Protocol-Sets S1 and S3
from [30]. In addition, Protocol 3(a) was generated by APG in Protocol-Set
S1 [30], as follows:

Protocol 3(a). (Perrig and Song’s protocol 2 in Protocol-Set S1 [30])

Message 1 A→ B : A,Na,

Message 2 B → S : B, {A,Na,Nb}Kbs
,

Message 3 S → A : {Nb,Kab}Kbs
, {B,Na,Nb,Kab}Kas

Message 4 A→ B : {{Nb,Kab}Kbs
}Kab

, {Nb,Kab}Kbs
.

ASPB does not generate Protocol 3(a). The reason for this is that ASPB
does not allow a message to be sent into multiple channels at the same pro-
tocol step (as {{Nb,Kab}Kbs

}Kab
in Message 4). Instead, ASPB generates

Protocol 3.3 that is similar to Protocol 3(a). Compare to Protocol 3(a),
Protocol 3.3 has a simpler message component {B}Kab

in Message 4. Since
both of message components {{Nb,Kab}Kbs

}Kab
and {B}Kab

are used to
prove that principal A holds session key Kab, and the use of session key Kab

may prove the freshness of the current message component, the content en-
crypted by Kab is only required to be recognisable by B, but is not required
to be fresh.
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Protocol 3.3.

Message 1 A→ B : A,Na,

Message 2 B → S : B, {A,Na,Nb}Kbs
,

Message 3 S → A : {Nb,Kab}Kbs
, {B,Na,Nb,Kab}Kas

Message 4 A→ B : {B}Kab
, {Nb,Kab}Kbs

.

However, for the requirement specification in Figure 9, ASPB does not
generate protocols in the Protocol-Set S2 for authentication and key agree-
ment from [30] (this includes the original Yahalom protocol). The reason is
that the protocols in Protocol-Set S2 have an assumption that B believes
that A is honest. If B believes A accepts a session key then B will ac-
cept it. Otherwise, A is possible to make B to accept an old session key in
the current round of protocol. For example, Protocol 3(b) is Protocol 1 in
Protocol-Set S2 [30].

Protocol 3(b).

Message 1 A→ B : A,Na,

Message 2 B → S : B, {A,Na,Nb}Kbs
,

Message 3 S → A : {Kab}Kbs
, {B,Na,Nb,Kab}Kas

Message 4 A→ B : {Nb}Kab
, {Kab}Kbs

.

When assumption, that B believes that A is honest, is not made, A is able
to generate and send message

Message 4′ A→ B : {Nb}K′ab
, {K ′ab}Kbs

where K ′ab is an old (expired) session key between A and B.
For the sake of illustration, this assumption was not made in the require-

ment specification in Figure 10 which was used to conduct our experiments.
Protocol 3.4.

Message 1 A→ B : A,Na, {B,Na}Kas ,

Message 2 B → S : B, {B,Na}Kas , {A,Na,Nb}Kbs
,

Message 3 S → A : {Nb,Kab}Kbs
, {Na,Nb,Kab}Kas

Message 4 A→ B : {Nb}Kab
, {Nb,Kab}Kbs

.

In the new Protocol 3.4, when the TTP S receives Message 2, S may
check whether two principals know who the other party is in the current
round. If S finds that one principal attempts to cheat the other, then it
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can stop the current round as early as possible. While Protocol 3.4 has a
higher cost (in terms of message size) than the other protocols, it provides
a more powerful TTP. Two new protocols, that are similar to Protocol 3.4,
are generated by ASPB as Protocol 3.5 and 3.6.

Protocol 3.5.

Message 1 A→ B : A,Na,

Message 2 B → S : B,Nb, {A,Na}Kbs
,

Message 3 S → A : {A,Nb,Kab}Kbs
, {B,Na,Nb,Kab}Kas

Message 4 A→ B : {Nb}Kab
, {A,Nb,Kab}Kbs

.

Protocol 3.6.

Message 1 A→ B : A,Na,

Message 2 B → S : B, {A,Na,Nb}Kbs
,

Message 3 S → A : Nb, {Nb,Kab}Kbs
, {B,Na,Kab}Kas

Message 4 A→ B : {Nb}Kab
, {Nb,Kab}Kbs

.

Protocol 3.7.(BAN optimized Yahalom protocol [7])

Message 1 A→ B : A,Na,

Message 2 B → S : B,Nb, {A,Na}Kbs
,

Message 3 S → A : Nb, {A,Nb,Kab}Kbs
, {Na,Kab, B}Kas

Message 4 A→ B : {Nb}Kab
, {A,Nb,Kab}Kbs

.

Syverson [34] describes a flaw in Protocol 3.7 (when B is not able to
distinguish the format of different components) as follows.

Message 1(α) A→ B : A,Na,

Message 2(α) B → S : B,Nb, {A,Na}Kbs
,

Message 1(β) I(A)→ B : A, (Na,Nb)
Message 2(β) B → I(S) : B,Nb′, {A,Na,Nb}Kbs

,

Message 3(α) omitted,

Message 4(α) I(A)→ B : {Nb}Kab
, {A,Na(= Kab), Nb}Kbs

.

However, ASPB uses the following assumptions.

• A principal can recognise his own nonces of the running rounds, and
refuse to use them as other principal’s nonces.
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• If a principal may understand a message context, the principal may
distinguish the format of different components, such as principal name,
nonce, key, etc.

By these assumptions, Protocol 3.7 is also a correct protocol.
ASPB generates Paulson amended Yahalom Protocol [27], but considers

it as an interim protocol. After removing the redundant message compo-
nents, Protocol 3.7 is obtained.

Protocol 3(c).(Paulson amended Yahalom Protocol [27])

Message 1 A→ B : A,Na,

Message 2 B → S : B,Nb, {A,Na}Kbs
,

Message 3 S → A : Nb, {A,B,Nb,Kab}Kbs
, {B,Na,Kab}Kas

Message 4 A→ B : {Nb}Kab
, {A,B,Nb,Kab}Kbs

.

B.3.2. Five Message Protocols

The ISO/IEC Symmetric-Key Five-Pass Mutual Authentication Protocol
proposed in ISO/IEC 9798-2 [1].

Message 1 A→ B : A,Na,

Message 2 B → S : A,B,Na,Nb,

Message 3 S → B : {Na,Kab, B}Kas , {Nb,Kab, A}Kbs
,

Message 4 B → A : {Na,Kab, B}Kas , {Na,Nb′}Kab
,

Message 5 A→ B : {Nb′, Na}Kab
.

Carlsen also describes a five message protocol, the Secret Key Initiator
Protocol [9], as follows:

Message 1 A→ B : A,Na,

Message 2 B → S : A,B,Na,Nb,

Message 3 S → B : {Na,B,Kab}Kas , {A,Nb,Kab}Kbs
,

Message 4 B → A : {Na,B,Kab}Kas , {Na}Kab
, Nb′,

Message 5 A→ B : {Nb′}Kab
.

In these protocols, principal B uses two nonces. The protocol requirement
specification in Figure 10 that formed the basis of our experiments specified
that principal B uses one nonce. A consequence of this is that the exact
ISO/IEC Symmetric-Key Five-Pass Mutual Authentication Protocol and
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Carlsen protocol are not generated for our given requirement specification
in Figure 10. However, ASPB generates the Carlson protocol when the
protocol specification is extended to include B’s use of two nonces.

The remainder of this section discuss a number of five-message mutual
authentication protocols generated by ASPB, that satisfy the requirement
specification in Figure 10. For the purpose of illustration, we describe and
discuss the following generated protocols, Protocol 4.1–4.8.

Protocol 4.1.

Message 1 A→ B : A,Na,

Message 2 B → S : A,B,Na,Nb,

Message 3 S → B : {A,Nb,Kab}Kbs
, {Na,Nb,Kab, B}Kas ,

Message 4 B → A : {Na,Nb,Kab, B}Kas , {Na}Kab
,

Message 5 A→ B : {Nb}Kab
.

Protocol 4.1 is similar to Carlsen’s Secret Key Initiator Protocol. While
B generates only one nonce Nb in Protocol 4.1, it achieves the same result
as Carlsen’s protocol. Once B receives Message 3, he can check whether S
believes that B needs a session key with A, and S believes Nb is B’s nonce.
When A receives Message 4, she may believe that Nb is generated by B
(otherwise, B may not generate {Na}Kab

).
Protocol 4.2.

Message 1 A→ B : A,Na,

Message 2 B → S : B, {A,Na,Nb}Kbs
,

Message 3 S → A : {Nb,Kab}Kbs
, {B,Na,Nb,Kab}Kas ,

Message 4 A→ B : {Nb}Kab
, {Nb,Kab}Kbs

,

Message 5 B → A : {Na}Kab
.

The first four messages of Protocol 4.2 are the same as Protocol 3.1.
From the additional message Message 5, Protocol 4.2 meets an additional
goal that A believes B has received the session key Kab.

Protocol 4.3.

Message 1 A→ B : A,Na,

Message 2 B → A : B,Nb, {A,Na}Kbs
,

Message 3 A→ S : A, {Nb,B}Kas , {A,Na}Kbs
,

Message 4 S → A : {Na,Nb,Kab}Kas , {A,Nb,Kab}Kbs
,

Message 5 A→ B : {A,Nb,Kab}Kbs
, {Nb}Kab

.
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Protocol 4.3 is a novel protocol. When S receives Message 3, he may
check whether the components have been generated by A and B. If this is
the case then S sends Message 4. Further five-message protocols that were
generated by ASPB include the following.

Protocol 4.4.

Message 1 A→ B : A,Na, {A,Na}Kas ,

Message 2 B → S : B, {A,Na,Nb}Kbs
, {A,Na}Kas ,

Message 3 S → A : {Na,Nb,Kab}Kbs
, {B,Na,Nb,Kab}Kas ,

Message 4 A→ B : {Nb}Kab
, {Na,Nb,Kab}Kbs

,

Message 5 B → A : {Na}Kab
.

Protocol 4.5.

Message 1 A→ B : A, {B,Na}Kas ,

Message 2 B → S : B, {B,Na}Kas , {Nb,A}Kbs
,

Message 3 S → B : {Na,Nb,Kab}Kas , {Na,Nb,Kab}Kbs
,

Message 4 B → A : Na, {Na,Nb,Kab}Kas ,

Message 5 A→ B : Nb.

Protocol 4.6.

Message 1 A→ B : A, {B,Na}Kas ,

Message 2 B → S : B, {B,Na}Kas , {Nb,A}Kbs
,

Message 3 S → A : {Na,Nb,Kab}Kas , {Na,Nb,Kab}Kbs
,

Message 4 A→ B : {Nb}Kab
, {Na,Nb,Kab}Kas ,

Message 5 B → A : {Na}Kab
.

Protocol 4.7.

Message 1 A→ B : A,Na,

Message 2 B → S : A,B,Na, {A,Nb}Kbs
,

Message 3 S → A : {B,Na,Nb,Kab}Kas , {Nb,Kab}Kbs
,

Message 4 A→ B : {Nb,Kab}Kbs
, {Nb}Kab

,

Message 5 B → A : {A}Kab
.
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Protocol 4.8.

Message 1 A→ B : A,Na,

Message 2 B → S : A,B,Na,Nb,

Message 3 S → A : {A,Na,Nb,Kab}Kbs
, {B,Na,Kab}Kas ,

Message 4 A→ B : {Nb,Na}Kab
, {A,Na,Nb,Kab}Kbs

Message 5 B → A : {Nb}Kab
.

B.3.3. Six Message Protocols

ASPB synthesises a number of six-message mutual authentication protocols.
For the purpose of illustration, we only describe the following protocol, Pro-
tocol 5.1, that satisfies the requirement specification in Figure 10.

Protocol 5.1.

Message 1 A→ B : A,Na,

Message 2 B → S : A,B,Na,Nb,

Message 3 S → B : {A,Nb,Kab}Kbs
, {Na,Nb,Kab, B}Kas ,

Message 4 B → A : {Na,Nb,Kab, B}Kas ,

Message 5 A→ B : {A,Na,Nb}Kab
,

Message 6 B → A : {B,Na}Kab
.

ASPB does not generate the six-message protocols in [10] that are listed
as Protocol 5(a) and 5(b). The reason for this is that ASPB generates pro-
tocols according to corresponding principal sequences, whereby the receiver
of a message is the sender of the next message. Protocol 5(a) and 5(b) can
not be described in terms of principal sequences. For example, in Proto-
col 5(a), after A receives message 2, B (not A) sends Message 3. We observe
that without the participation of previous protocol steps, B is unable to
determine when Message 3 should be sent. Therefore, we argue that if a
protocol is not described in terms of a principal sequence, then it is difficult
to properly execute the protocol in practice.
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Protocol 5(a).

Message 1 A→ S : A,B,Na,

Message 2 S → A : {B,Na,Kab}Kas ,

Message 3 B → S : B,A,Nb,

Message 4 S → B : {A,Na,Nb,Kab}Kbs
,

Message 5 A→ B : {B,Nb,Na}Kab
,

Message 6 B → A : {Nb,A}Kab
.

Protocol 5(b).

Message 1 A→ B : A,Na,

Message 2 B → S : A,B,Na,Nb,

Message 3 S → B : {A,Nb,Kab}Kbs
,

Message 4 S → A : {Na,Nb,Kab, B}Kas ,

Message 5 A→ B : {A,Na,Nb}Kab
,

Message 6 B → A : {B,Na}Kab
.

Protocol 5(a) can be refined as Protocol 4.8 by reordering the message
to satisfy the ASPB principal sequence and by refining messages by using
the ASPB redundancy removing rules. Clearly, our 5-message protocols can
be considered to be more compact and efficient than the 6-message versions
in [10]. Similarly, Protocol 5(b) can be refined as Protocol 5.1, that is
generated by ASPB.
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