
Explanations and Relaxations for Policy Conflicts in Physical Access Control

Fatih Turkmen, Simon Foley,
Barry O’Sullivan, William Fitzgerald

Cork Constraint Computation Centre
University College Cork

Cork, Ireland

Tarik Hadzic, Stylianos Basagiannis,
Menouer Boubekeur

United Technologies Research Center Ireland
United Technologies Corporation

Cork, Ireland

Abstract—Physical access control policies define sets of rules
that govern people’s access to physical resources such as
rooms and buildings. While simple decision-precedence can
be used to reconcile different rules that result in conflicting
access decisions, the presence of rule conflicts and other rule
anomalies can make it difficult for a policy-administrator to
comprehend and effectively manage complex policies.

In this paper we are concerned with discovering conflicts
and computing relaxations of access policies in order to
eliminate conflicting rule instances. We propose several SAT-
based encodings in which these rule conflicts and anomalies are
expressed as explanation style problems. Relaxation techniques
are in turn used to eliminate these anomalies by recommending
what rules have to be revoked or what permissions have to be
removed from which rules. Moreover, we discuss a relaxation
strategy that preserves most of the access constraints of the
original policy. Finally we provide a preliminary performance
study of our techniques. Our approach is applicable to access
control policies in general.

Keywords-Access Control; Policy; Relaxations;

I. INTRODUCTION

Access Control deals with the protection of sensitive

resources from unauthorized access. Resources subject to

access control could be files and directories in an LDAP

directory, protected network ports in a firewall configuration

or physical areas protected by physical access control (PAC)

systems (involving card readers, electronic locks, alarms

etc). In large organizations there could be thousands of

files and physical locations to which an access needs to be

regulated.

Large organizations such as universities, hospitals or

airports can be organized into logical divisions to meet re-

quirements of enterprise policy and the users of the resources

are organized into groups for the ease of administration. For

instance, a hospital may introduce a division that constitutes

operating rooms, organize a set of hospital personnel under

the group “surgery” and provide necessary access control

in a PAC policy. IT security administration may put files

containing sensitive technical information subject to Export

Control regulations into a separate folder (or a server) and

introduce an ”export control required” group, so that all

members of the group are not allowed to access folder with

export controlled material. In general, we can think of the

access policy as a collection of group-based rules which

determine whether particular groups of subjects have access

to particular groups of resources.

However, the requirements imposed from the enterprise

level, the decision choices made to enable easy administra-

tion and the current configuration of access control equip-

ment may result with unintended effects, i.e. anomalies, in

the access control policy. In particular, rule conflicts may

occur in situations where for a given subject, one rule

permits and another denies access to the same resource.

The access control community has developed a number of

approaches for conflict resolution, typically in the form of

rule combinators which determine strategies for aggrega-

tion of conflicting decisions, e.g. ”deny-overrides”, ”allow-

overrides” or ”first applicable” (typically used in network

access control). Apart from discovery, finding explanations

to an anomaly with reasonable complexity and providing

appropriate resolutions to them is an important challenge in

access control policy analysis. A policy administrator can

be aided with the tools that will help him understand the

cause of the anomaly and choose a (optimal) configuration

that is anomaly-free. Our observation is that this problem is

quite similar to configuration problems existing in constraint

satisfiability problem (CSP) research. One could consider

a PAC policy as a set of constraint specifications and

anomalies as conflicts. With this mapping, existing conflict

explanations and constraint relaxation techniques can be

applied for preferred policy configurations. Moreover, such

an approach leads to several different possibilities on PAC

policy encodings such as preserving the operational be-

haviour or enabling the specification of the rule preferences

while eliminating conflicts.

II. BACKGROUND

A. Group-Based Access Control Model

In our previous work [6], we presented a group-based ac-

cess control model tailored to physical security and identified

several anomalies1 that may arise in policy specifications.

In the model, some subsets of users (User) and resources

(Resource) represent user groups UGroup = P(User) and

1We use the terms anomaly and conflict interchangeably in the paper

2013 IEEE 25th International Conference on Tools with Artificial Intelligence

1082-3409/13 $31.00 © 2013 IEEE

DOI 10.1109/ICTAI.2013.57

330

resource groups RGroup = P(Resource) respectively. The

elements of UGroup and RGroup reflect the logical or

physical organization of users such as lecturers at a uni-

versity and resources such as artificial intelligence division

in a research lab. The model supports the specification of

negative authorizations where a user is not only allowed
access but also explicitly denied access to a resource. Thus

possible access control decisions are denoted and given by

Action ::= allow | deny. The benefits of an access control

model with negative authorizations have been discussed

in the literature widely [1], [11]. Moreover, enabling the

specification of negative authorizations allows easy integra-

tion with other access control models with more expressive

syntax such as Role-based access control (RBAC)[21] and

Attribute-based Access Control (ABAC)[12].

An access-control rule is a triple : Rule = UGroup ×
RGroup×Action and a policy is a set of rules for a build-

ing, Policy = P(Rule).In some parts of the paper, a rule is

represented by using its atomic permissions (authorizations)

from the set A = User×Resource. An atomic permission

a(u, r) denotes the authorization state of user u and resource

r. By expanding each rule r with the Cartesian product of its

group and resource elements, we obtain r.A = {ai, . . . , aj},

the set of atomic permissions associated with r.

Conflicts in PAC Policies: In this paper, our particular

focus is the exception anomaly. In the exception anomaly

(�EA)), one rule denies (or allows) an authorization that is

allowed (resp. denied) by another rule. More formally, given

a pair of rules r and s, an exception anomaly (denoted as

r �EA s) is defined as follows;

r.Action �= s.Action ∧ r.A ∩ s.A �= ∅
An exception anomaly is either a sign of simple availabil-

ity violation, i.e. a user is denied access to a room she is

authorized, or simple safety violation, i.e. a user is allowed

access to a room she is unauthorized.

Example Policy: Consider that, in the model presented

above, we have the following rules:

r1 = 〈{u1, u2, u3, u4}, {df1}, Allow〉
r2 = 〈{u1, u3}, {df2, df3}, Deny〉

r3 = 〈{u2, u3}, {df6, df3, df5}, Allow〉
r4 = 〈{u2, u4}, {df6, df4}, Allow〉

r5 = 〈{u3}, {df5}, Deny〉
Here df denotes the resources in the physical domain,

the ”door faces” which uniquely determine the input/output

readers in the building. As presented in Section II-A, the

users of a rule are part of a group that is created according to

their logical or administrative organization. In our example

policy, each rule refers to a different group and we have

exception anomalies between r2 and r3 (r2 �EA r3), and r3
and r5 (r3 �EA r5).

B. Explanations and Relaxations in Constraint Program-
ming

Explanations and relaxations have been mainly considered

in the context of interactive product configuration in which

a list of options for product selection is given to the

customer. Due to customer’s budget limitations, an optimum

combination of options (according to a cost function) is

sought according to user preferences. An over-constrained

problem (P) is denoted by the pair 〈B, C〉 where B is a set

of constraints that can not be relaxed, C is the set of soft

constraints. A minimal conflict refers to a subset C of C in

which a removal of a constraint from C makes it consistent.

A maximal relaxation R of P is also a subset of C in

which the addition of a constraint to R makes it inconsistent.

Moreover, a conflict C has minimum cardinality if there is

no other conflict C∗ such that |C∗| < |C| and a relaxation

R has maximum cardinality if there is no other relaxation

R∗ such that |R∗| > |R|.
There is a strong duality between the computation of

explanations and relaxations. While the literature suggests

different explanation algorithms, we discuss our problem by

using the QuickXplain algorithm from [13]. The basic expla-

nation algorithm starts with the construction of a relaxation

by iteratively removing a constraint α from C and adding to

a set R after an inconsistency check on the set B∪R∪{α}
is reached. During the computation of a relaxation when an

inconsistency is reached at the constraint α, then it is easy

to see that an explanation is a subset of the set R∪ {α}.

Explanation algorithms have a pivotal function, π, that

encapsulates the inconsistency check of a given set of

constraints. Specifically, given a set of constraints C;

π : C → {true, false}
Notice that the function π can perform consistency checks

in different forms such as cost function optimization in an

optimization problem or conflicting clauses in a proposi-

tional satisfiability problem. Hence, its actual functionality is

dependent on the type of constraints and it will be discussed

in the following sections.

III. RELATED WORK

Anomaly detection and resolution in security policies

have been widely discussed in the literature and various

techniques have been proposed. Some of the earliest works

include [18] and [14] where conflicts are described both

syntactically and semantically at a high level and possible

resolution strategies are presented. The former proposes to

define precedence relations between policies for resolution

while the latter uses graph transformations to eliminate

conflicts on policies that are specified by using graphs.

Anomaly analysis has been a particular interest in network

security research. Various anomalies that can arise in firewall
policies have been identified and custom algorithms have

been proposed for discovery and resolution of the identified

331

anomalies [2], [8]. Our policies and conflict definitions show

similarities to firewall policies but differ in the application

domain.

Physical security where only authorized members of an

organization are enabled physical access to hardware pro-

tected resources is a relatively new research area. Among the

few papers available in the literature, [7] presents a formal

framework, Access Nets, to model access control in physical

spaces. They show how model checking techniques can be

applied for verifying physical access control policies by

modelling them as a state transition system. The transitions

from one state to the other is obtained by several rules

including clock ticks. A property such as a violation of

access to a room at a given time period can be verified

through state exploration.

Within the context of access control, perhaps the closest

work to ours is presented in [9] in which the authors

discuss anomaly detection and resolution for XACML [19].

The authors employ binary decision diagrams (BDD) for

representing the state of a policy or a policy set. Starting

from an empty state, they incrementally detect and resolve

anomalies at each new rule addition. In our work, we focus

on explaining and resolving the anomalies by casting the

problem of anomaly detection and resolution as an over-

constrained CSP. While we provide minimal explanations for

the anomalies and propose possible (maximal) resolutions to

them, we leave the final decision to the policy administrator

to prevent any lost of intended semantics.

Finally, security analysis of access control systems is an

active area of research. Most of the prior work has centered

around safety analysis [15] and checking certain security

properties of RBAC [16] and eXtensible Access Control

Language (XACML) [5], [10]. The main focus in this line

of research was to check whether a given model specific

access control setting satisfies a given property specification

statically and not to explain or refine the access control

policies due to some errors.

IV. EXPLANATIONS AND RELAXATIONS FOR POLICY

CONFLICTS

We will refer to the problem of explaining conflicts and

relaxing policies for eliminating them as exception problem
(ExP (B, F)). Notice that each instance of ExP for the same

PAC policy is characterized by the constraint definitions.

In this section we present two different problem instances

for the exception anomaly. The first instance contains only

the rules as constraints while the second considers also the

authorizations that cause the exception anomaly. We call

these two problem instances as rule-level and permission-
level explanations, and provide the constraint encodings in

the following sections. Our constraints are specified as part

of a SAT formula (i.e. a set of clauses) with hard and soft

clauses.

A. Rule-Level Explanations
Rule-level explanations present a coarse-grained view

to the conflicts. They contain clauses that encode rule-

authorization associations as background constraints (B) and

unit clauses that represent rules as soft constraints (C). More

formally, for each rule r ∈ P , let xr and xa be propositional

variables denoting rule r and authorization a respectively, we

generate a set of clauses, CR, as the background constraints.

c =

{∧
a∈r.A ¬xr ∨ xa, if r.Action = Allow∧
a∈r.A ¬xr ∨ ¬xa, if r.Action = Deny

As a result, the exception problem instance for rule-level

explanations is given as ExP (CR, {xr1 . . . xrn}). Let F
denote the SAT formula representing an ExP . It is easy

to see that a rule-level minimal conflict of the formula F is

a pair of unit clauses representing two rules that conflict with

each other. We call the conflicting rules as rule-level minimal
policy conflict and it is also a cardinality minimal conflict.

A maximal relaxation of F is a subset of unit clauses

{xr1 . . . xrm} from {xr1 . . . xrn} such that any addition of

a unit clause denoting a rule makes F inconsistent. From

the maximal relaxation of F , we define maximal policy

relaxations (MPR).
Definition 1 (Rule-level MPR): Given a PAC policy P , a

rule-level maximal relaxation R of a problem ExP (CR,
{xr1 . . . xrn}) is a subset of rules R ⊆ P such that addition

of any rule r ∈ P \R to R introduces a conflict in the policy.
In [20] the worst-case number of maximal relaxations

has been observed as
(

n
n/2

)
. For our example, the mini-

mal conflicts are unit clauses {xr2 , xr3} and {xr3 , xr5}.

In what follows, we will sometimes refer to these unit

clauses as rules. A rule-level MPR is a possible (among

many) policy encoding that eliminates some of the rules that

appear in conflicts. For our example policy configuration,

example maximal relaxations include {xr1 , xr2 , xr4 , xr5}
and {xr1 , xr3 , xr4}.

Definition 2 (Rule-level cardinality MPR): Given a PAC

policy P , a rule-level cardinality maximal relaxation of a

problem ExP (CR, {xr1 . . . xrn}) is a set of rules R ⊆ P
such that there is no other maximal relaxation of rules R∗ ⊆
P such that |R∗| > |R|. A cardinality maximal relaxation

can be found by performing a single maximum satisfiability

(MaxSAT) solving for π function.
A cardinality MPR is an anomaly-free policy encoding

that preserves most of the rules from the original policy.

Notice that the maximal relaxation {xr1 , xr2 , xr4 , xr5} is a

cardinality maximal relaxation while {xr1 , xr3 , xr4} is not

cardinality maximal.

B. Permission-Level Explanations
While rule-level explanations can provide a high-level

view of the conflicting rule pairs, an administrator may

be interested in a more granular explanation and relax-

ation of exceptions. In addition to conflicting rule pairs, a

332

permission-level explanation also contains the authorization

that causes the conflict. In order to encode permission-

level explanations in SAT, we use the concept of selector

variables. A selector variable is a propositional variable that

allows enabling and disabling of clauses. For instance, given

a clause c in a propositional encoding and y a selector

variable, the formula ¬y∨c enforces c to be true only when

y is set to true.
With the selector variable approach, certain clauses can

be selected and grouped together to have more meaningful

explanations. In our case, we can use a similar encoding

to rule-level explanations for rule-authorization associations

but introduce a selector variable for each clause. Hence we

generate the clauses representing rule-permission associa-

tions, denoted as CA, by using the following encoding:

c =

{
¬xa

r ∨ ¬xr ∨ xa if r.Action = Allow

¬xa
r ∨ ¬xr ∨ ¬xa if r.Action = Deny

Let xa
r be a selector variable for representing the associ-

ation between rule r and authorization a and fr denote the

boolean formula xa1
r ∧. . .∧xak

r for rule r.A = {a1, . . . , ak}.
Definition 3 (Permission-level Policy Explanations):

Given a PAC policy P , permission-level explanations

are obtained from the explanation problem instance

ExP (B, FA) such that the background constraints are

B = CA ∧ xr1 , . . . ,∧xrn and soft constraints are FA = fr1
∧, . . . , ∧frn .

Notice that the formula representing the set of soft

constraints is obtained from the conjunction of selector

variables for each rule. Similar to rule-level minimal conflict,

a permission-level minimal conflict of F is a pair of unit

clauses (xa
r , x

a
s) representing the association of a to rules

r and s. It is also cardinality minimal conflict. In terms of

PAC policies, let RA denote pairs between rules and their

permissions such that RA ⊆ P × A. Then a permission-
level minimal policy conflict is a pair ((r, a), (s, a)) from

RA where r, s ∈ P .
Definition 4 (Permission-level MPR): Given a PAC pol-

icy P , a permission-level MPR, R, of a problem

ExP (B, FA) is a subset R of RA such that any permission

a ∈ r.A in the rule r where (r, a) ∈ RA \ R introduces a

conflict in the policy.
Definition 5 (Permission-level cardinality MPR): Given

a PAC policy P , a permission-level cardinality MPR,

R, of a problem ExP (CR, {xr1 . . . xrn}) is a set of

rule-permission associations R ⊆ RA such that there is

no other maximal relaxation of rules R∗ ⊆ RA such

that |R∗| > |R|. The cardinality maximal relaxation can

be found by performing a single maximum satisfiability

(MaxSAT) solving for π function.
Compared to rule-level cardinality MPR, permission-level

cardinality MPR presents a more granular resolution to

conflicts in the PAC policy. It introduces some minimum

number of changes to rules that are involved in conflicts.

V. AUTOMATED OPTIMAL RESOLUTIONS WITH

RELAXATIONS

Relaxations refer to alternative policy encodings that

are anomaly-free. In majority of the cases, the intended

semantics of a policy specification is not provided formally

and is unavailable to the resolution process a priori. Different

strategies can be followed when proposing alternative policy

encodings. There has been different proposals to anomaly

resolution in policy analysis. For instance, [9] requires an

access control decision (i.e. allow or deny) from the user

for each conflicting authorization segment. An alternative

technique is available in [4] where the correct authorization

setting is learned from past actions (i.e. logs of access).

In this section we present a different strategy that pre-

serves operational behavior of a PAC policy while resolving

anomalies with relaxations. In what follows, we extend the

respective Exp problem instances defined in Section IV for

this purpose and present an algorithm for post processing

the relaxation.

A. Preserving Operational Behaviour

In this strategy, the policy resulting from anomaly resolu-

tion must maintain the operational behaviour of the original

PAC system. More specifically, a negative authorization

(deny) must remain negative and a positive authorization

(allow) must remain positive after relaxation. Moreover,

there can be authorization requests that are covered by the

policy but responded by the default behaviour of the PAC

system. Even though it is possible to allow access by default

in most of the commercially available PAC systems, we

assume that the default behaviour of a door is deny. This is

a reasonable assumption and it simplifies our problem as we

can now consider that an authorization is either positive or

negative operationally. Note that, it is easy to enumerate all

positive and negative authorizations by simply querying the

system that operates based on the precedence deny � allow.

Definition 6: (Operational PAC Policy and Equivalence).

Given a PAC policy P , the respective operational policy,

denoted as P �, is a pair 〈A+, A−〉 that divides the total

permission space A into disjoint authorization sets that

contain positive, and negative authorizations. We say that

two policies P and Q are operationally equivalent, denoted

as P ≡ Q if the following conditions hold:

P �.A+ = Q�.A+ ∧ P �.A− = Q�.A−

In an ideal policy, the intersection of authorization spaces

should be empty, A+ ∩ A− = ∅ so that the given policy

specification is equivalent to its operational counterpart.

When relaxing a policy with operational behaviour preser-

vation we are interested in maintaining the authorization

set A+ and A− intact. We can achieve this by adding a

unit clause to background constraints of permission-level

explanation problem for each authorization. Let xa denote

an authorization a ∈ A. The background constraints B′

333

for the operational behaviour preserving permission-level

relaxations are obtained from background constraints B of

permission-level explanations as follows:

B′ = B ∧
∧

a∈A+

xa ∧
∧

a∈A−
¬xa

Obviously, any solution to the relaxation problem

RexP(B′, C) is a possible policy encoding that does not

consider the logical organization of rules. The solution sug-

gest modifications to some rules (i.e. authorization removal)

which in return presents a consistent policy that preserves

most of the policy intact. However, one could be interested

in maximizing the preservation of logical structures of rules,

i.e. minimizing the number of new rules of groups, by further

processing a maximal solution to RexP. For this purpose we

define an operation (�) that removes a permission from a

rule in an optimized way.
Definition 7: (Safe Permission Removal). An authoriza-

tion a can be safely removed from a rule r ∈ P , denoted as

r.A � a, if the removal of r from P and addition of rule/s

obtained from (r.A�a) to P keep the operational policy of

P intact, i.e. P \ {r} ∪ {(r.A� a)} ≡ P .
By using Definition 7, multiple objectives can be easily

integrated when proposing modifications to rules that appear

in conflicts. We will present one possible algorithm for

the implementation of � where we minimize the number

of rules, groups and resource groups respectively. The

algorithm considers authorizations (User × Resource) as

a table where rows are users and columns are door faces.

Moreover, the cardinality MPRs (abbreviated as sol) of an

explanation problem instance is represented as a mapping

function, sol : Rule → PA.

Step 1 Identify the rows (i.e. users) without any authoriza-

tion to be removed and create a rule (succeeding

rule r′) from the respective users and door faces.

Step 2 Among the remaining rows, group rows that have

the same columns to be removed and order them

according to number of common columns (i.e. door

faces). For each group of rows, create a new rule

with the rest of the columns.

Step 3 Create a new rule for each remaining row from

Step 2.

Figure 1 illustrates the execution of the algorithm on a

rule r given on the left for possible authorization removals.

Both examples result with two rules due to our optimization

strategy on the number of rules.

Figure 1. Resolution Example

VI. EVALUATION

We have performed some preliminary experiments to ob-

tain indications on computational costs of finding anomalies

(i.e. conflicts) and their resolutions with relaxations. Our

experimental test-beds include both randomly generated syn-

thetic policies that vary in size and real-world policies from

our university (UCC). Synthetic policies contain disjoint

user/resource pairs so that they do not contain anomalies

initially. In the experiments with UCC policies, we deter-

mined three different PAC instances according to logical and

physical organization of the university: UCC-PL, UCC-NU

and UCC-CS. The details of the policies are summarized in

the Table I. As shown in the table UCC policies are rather

flat in organizing resources. There is only one resource (door

face) in each resource group. Note that our UCC policies

contain only allow rules initially.

Table I
POLICY SETS FOR THE EXPERIMENTS

#Rule #User #Resource #UGroup #RGroup
Synthetic-1 100 500 20 20 15
Synthetic-2 500 2500 60 100 45
Synthetic-3 1000 5000 100 200 75

UCC-PL 42 1425 6 17 6
UCC-NU 208 1907 4 52 4
UCC-CS 236 1342 35 74 35

According to the binary decision diagram (BDD) based

technique proposed in [9], an important factor of the perfor-

mance of anomaly detection and resolution is the number of

disjoint authorization spaces. Disjoint authorization spaces

are obtained from rules or their fractions that are applicable

to distinct requests. The list of disjoint authorization spaces

can be considered as a policy encoding (i.e. rules) in which

the rules specify disjoint permission sets. Thus we list the

number of disjoint authorization spaces associated with each

policy setting in our results. Other important factors include

the number of rules and permissions (users and door face

pairs) as they determine the size of SAT formula.

While the computation of explanations and relaxations

in the context of SAT is an active area of research and

there are multiple computations of interest, we consider

two of them more relevant in our context: enumeration of

conflicts and computation of cardinality MPRs. Enumera-

tion of conflicts, known as minimally unsatisfiable subset

(MUS) in SAT is inherently complex when completeness is

sought. Thus different algorithms have been proposed that

enable a trade-off between completeness and quicker MUS

enumeration. We employed one such tool, MARCO [17],

that enumerates most of the MUSes quickly at first and

then computes maximally satisfiable subsets (MSS) to check

if there remains any MUS not found. MARCO enables

the specification of a limit on the number of obtained

subsets, either MUS or MSS, and when that limit is reached

the solver returns all found subsets and terminates. In our

334

experiments we exploit this feature and set the subset limit

to 40 for all experiments in order to keep a balance between

computational complexity and completeness. For computing

cardinality MPRs (MaxSAT) we used a solver, IncMaxSatz,

from Sixth MaxSAT competition [3].

The experiments were conducted on a Linux computer

with Intel-Core 3.40GHz processor and 8GBs of memory.

Conflicts: To consider the effect of anomaly existence

in a given policy, we introduced a fixed number of new deny

rules in the policies. When adding new deny rules, first a new

user group is created, if none exists already, that contains one

randomly selected user from the existing allow rules. Then a

random resource group is selected from the existing resource

groups and a deny rule is constructed by using the selected

user/resource group pairs. For the experiments with synthetic

policies, these two steps allowed us to keep the number of

conflicts (MUSes) in the respective SAT formula within a

range. More specifically, given n deny rules introduced we

expect n conflicts for rule-level conflicts, and a minimum of

n and a maximum of 2n conflicts in synthetic policies.

For UCC policies, keeping the number of conflicts under

control is relatively difficult since there are overlapping

user groups. Because resource groups contain only a single

resource in UCC policies, the addition of a deny rule

corresponds to the introduction of a single negative autho-

rization that may conflict with several other rules. As a

result, the number of conflicts is unknown due to random

construction of a deny rule and the overlapping user groups

in policies. To cope with this issue, we considered 40 as a

reasonable limit on the number of subsets (MUS or MSS)

for enumerating conflicts. By setting a limit on the number

of subsets we speeded up the enumeration while loosening

the completeness.

A. Results

The experimental results are given in Table II. Because

there is no consensus on the possible number of conflicts

(the column #Deny Rule) in access control policies, we

considered a ratio of the existing rule number. More specifi-

cally, 5% for Synthetic-1 policy and 2% for Synthetic-2 and

Synthetic-3 policies. A similar pattern has also been fol-

lowed for UCC policies. Notice that we generated different

policy sets for rule-level and permission-level explanations.

As expected, due to disjoint rules generated randomly, the

number of disjoint authorization spaces for synthetic policies

are close to actual number of rules. This does not hold for

UCC policies due to overlapping user groups.

Generally, the time necessary for enumerating conflicts

is almost proportional to the size of the SAT formula

encoding synthetic policies. It takes around 3 seconds to

enumerate less than 40 conflicts for policies with 100 rules

and containing 5 conflicting rule pairs. The time rises to

almost 20 seconds for 1000 rules and 20 conflicting rules.

Notice that the inherent complexity of enumeration of all

conflicts is apparent in the results. In fact if completeness is

sought, then a direct approach that iterates through rules (or

permissions) to find the conflicting pairs may perform better.

However this approach may hinder the possible benefits (e.g.

preferences) of well-established explanation frameworks.

The results of UCC policies show a similar pattern to

synthetic policies. Moreover, the performance of our ap-

proach does not appear to be affected from complex user

group organizations. Specifically, the conflict enumeration

of UCC-CS policies which has more elements in the product

|User| × |Resource|, i.e. a more scattered policy, is as

efficient as the enumeration on a relatively less scattered

policy UCC-NU.

Computation of cardinality MPRs is generally quite effi-

cient. In both types of cardinality MPRs, it is at the levels of

milliseconds and requires less than 1 second for 1000 rules.

However, a further processing of the obtained cardinality

MPR may be needed most of the time since it may exclude

rules that are important (rule-level) or modify rules in such

a way that requires logical changes to policy (permission-

level).

VII. CONCLUSIONS AND FUTURE WORK

Conflict detection and resolution in access control policies

enable the maintenance of correctness in rule specifications.

In this paper, we proposed a CSP based technique that

exploits explanations and relaxations of over-constrained

problems for the discovery and resolution of conflicts in

physical access control policies. We considered coarse-

grained explanations that work at the level of rules and fine-

grained explanations that work at the level of permissions.

The former explanations lack conflicting permission details

but are expected to be less in the number and more under-

standable. The latter explanations may be numerous but pro-

vide more granular information about conflicts. In addition

to basic conflict discovery and resolution, we demonstrated

how optimal conflict resolution can be built on top of

our technique. Optimal conflict resolution opens a door to

wider application scenarios where different objectives such

as preserving the logical policy structures may be sought.

We experimentally evaluated the computational cost of

enumerating all conflicts and resolving them while main-

taining most of the policy intact. We believe that there is

room for optimizations and observe that the enumeration of

conflicts in SAT is an active area of research. As future work,

we plan to investigate methods of improving performance

and develop different optimal conflict resolution strategies

with different objectives. Example objectives include the

preservation of logical organization of rules or satisfaction of

user preferences on rules or permissions. Finally, we would

like to apply the concepts discussed in this paper to various

access control languages such as XACML.

335

Table II
EXPERIMENT RESULTS

#Deny Rules
#Disjoint Authorization Spaces Time (s) - (<40) Conflicts Time (s) - Cardinality MPR
Rule-level Permission-level Rule-Level Permission-level Rule-level Permission-level

Synthetic-1 5 100 102 2.96 2.99 0.048 0.04
Synthetic-2 10 500 500 12.55 13.29 0.308 0.240
Synthetic-3 20 1003 1002 19.98 19.22 0.864 0.832

UCC-PL 5 72 74 1.06 2 0.016 0.02
UCC-NU 10 267 266 5.24 4.82 0.1 0.304
UCC-CS 10 351 352 6.7 5.16 0.96 0.248

A. Acknowledgements

We thank to Mark Liffiton for providing a version of

MARCO that supports partial MaxSAT input and the SAT

group in University College Dublin (UCD) for useful dis-

cussions.

REFERENCES

[1] Mohammad A. Al-Kahtani and Ravi S. Sandhu. Rule-based
rbac with negative authorization. In ACSAC, pages 405–415,
2004.

[2] Ehab S. Al-Shaer, Hazem H. Hamed, Raouf Boutaba, and
Masum Hasan. Conflict Classification and Analysis of Dis-
tributed Firewall Policies. IEEE Journal on Selected Areas in
Communications, Issue: 10, Volume: 23, Pages: 2069 - 2084,
October 2005.

[3] Josep Argelich, Chu Min Li, Felip Many, and Jordi Planes.
Sixth MaxSAT competition, February 2011.

[4] Lujo Bauer, Scott Garriss, and Michael K. Reiter. Detect-
ing and resolving policy misconfigurations in access-control
systems. ACM Trans. Inf. Syst. Secur., 14(1), 2011.

[5] Kathi Fisler, Shriram Krishnamurthi, Leo A. Meyerovich,
and Michael Carl Tschantz. Verification and change-impact
analysis of access-control policies. In ICSE, pages 196–205,
2005.

[6] William M. Fitzgerald, Fatih Turkmen, Simon N. Foley, and
Barry O’Sullivan. Anomaly analysis for physical access con-
trol security configuration. In 7th International Conference
on Risks and Security of Internet and Systems (CRiSIS), pages
1–8, 2012.

[7] Robert Frohardt, Bor-Yuh Evan Chang, and Sriram Sankara-
narayanan. Access nets: Modeling access to physical spaces.
In VMCAI, pages 184–198, 2011.

[8] Joaquı́n Garcı́a-Alfaro, Nora Boulahia-Cuppens, and Frédéric
Cuppens. Complete analysis of configuration rules to guar-
antee reliable network security policies. Int. J. Inf. Sec.,
7(2):103–122, 2008.

[9] Hongxin Hu, Gail-Joon Ahn, and Ketan Kulkarni. Anomaly
discovery and resolution in web access control policies. In
SACMAT, pages 165–174, 2011.

[10] Graham Hughes and Tevfik Bultan. Automated verification of
access control policies using a sat solver. STTT, 10(6):503–
520, 2008.

[11] Sushil Jajodia, Pierangela Samarati, Maria Luisa Sapino, and
V. S. Subrahmanian. Flexible support for multiple access
control policies. ACM Trans. Database Syst., 26(2):214–260,
2001.

[12] Xin Jin, Ram Krishnan, and Ravi S. Sandhu. A unified
attribute-based access control model covering dac, mac and
rbac. In DBSec, pages 41–55, 2012.

[13] Ulrich Junker. Quickxplain: Preferred explanations and relax-
ations for over-constrained problems. In AAAI, pages 167–
172, 2004.

[14] Manuel Koch, Luigi V. Mancini, and Francesco Parisi-
Presicce. Conflict detection and resolution in access control
policy specifications. In FoSSaCS, pages 223–237, 2002.

[15] Manuel Koch, Luigi V. Mancini, and Francesco Parisi-
Presicce. A graph-based formalism for rbac. ACM Trans.
Inf. Syst. Secur., 5(3):332–365, 2002.

[16] Ninghui Li and Mahesh V. Tripunitara. Security analysis
in role-based access control. ACM Trans. Inf. Syst. Secur.,
9(4):391–420, 2006.

[17] Mark H. Liffiton and Ammar Malik. Enumerating infeasibil-
ity: Finding multiple muses quickly. In Integration of AI and
OR Techniques in Constraint Programming for Combinatorial
Optimization Problems (CPAIOR), pages 160–175, 2013.

[18] Emil Lupu and Morris Sloman. Conflicts in policy-based
distributed systems management. IEEE Trans. Software Eng.,
25(6):852–869, 1999.

[19] Organization for the Advancement of Structured Informa-
tion Standards (OASIS). eXtensible Access Control Markup
Language (XACML) Version 3.0, January 2013.

[20] Barry O’Sullivan, Alexandre Papadopoulos, Boi Faltings, and
Pearl Pu. Representative explanations for over-constrained
problems. In AAAI, pages 323–328, 2007.

[21] R.S. Sandhu, E.J. Coyne, H.L. Feinstein, and C.E. Youman.
Role-based access control models. Computer, 29(2):38 –47,
feb 1996.

336

