
A Framework for Heterogeneous Middleware Security

Simon N. Foley, Thomas B. Quillinan, Maeve O’Connor,
Barry P. Mulcahy, and John P. Morrison

Department of Computer Science,
University College, Cork, Ireland.�

s.foley, t.quillinan, b.mulcahy, j.morrison � @cs.ucc.ie

Abstract

With the advent of Web Services, achieving seamless in-
teroperability between heterogeneous middleware technolo-
gies has become increasingly important. While much work
investigating functional interoperability between different
middleware architectures has been reported, little practical
work has been done on providing a unified and/or interop-
erable view of security between the different approaches.

In this paper we describe how Secure WebCom—a dis-
tributed metacomputing system—provides interoperability
support between the COM+/.NET, CORBA and Enterprise
Java Beans middleware security architectures. Secure We-
bCom uses the KeyNote trust management system to help
coordinate the trust relationships between the different
middleware systems and their associated security policies.
Middleware authorisation policies can be encoded in terms
of KeyNote cryptographic certificates, and vice-versa. This
provides a unified view of security across heterogeneous
middleware systems and also provides the basis for decen-
tralised support of middleware security policies.

KEYWORDS: Middleware; Security; Web Services; Role
Based Access Control; Trust Management; Interoperability.

1 Introduction

Interoperability between heterogeneous middleware
technologies is typically achieved through the creation of
Middleware to Middleware (M2M) bridges [16, 23]. Sepa-
rate bridges are created for each combination of differing
middleware. Utilising these different bridges to provide
smooth interoperability between disparate technologies is
bridge-dependent and is difficult to generalise. While these
bridges provide functional interoperability between differ-
ent middleware architectures [15], little practical work has
been achieved on providing a unified and/or interoperable
view of security between the different approaches.

The provision of a unified view of security policy fa-
cilitates the specification and integration of heterogeneous
middleware components across complex application sys-
tems. To properly address this unification of security pol-
icy we propose that the following characteristics should be
addressed.

Policy Configuration. Configuring a collection of secu-
rity policies across different middleware environments is a
difficult problem. Each middleware architecture requires a
different process for specifying security policies. An ap-
proach to specifying a global security policy that can, in
turn, be commissioned in a consistent manner across the
supported range of middleware architectures is required.

Policy Comprehension. Given an collection of indepen-
dent security policies that have been configured across a
range of middleware systems, then an approach to synthe-
sising these disparate policies into a single unified security
policy is required. This synthesis promotes ease of under-
standing of the current state of the overall system security
configuration, and the ability to enforce middleware poli-
cies at a more abstract level. Security policies for different
middleware architectures can be cataloged and relevant por-
tions enforced in a system-wide basis. In this way, princi-
pals in one system can seamlessly utilise components from
other systems in the network.

Policy Migration. Given the ability of policy comprehen-
sion comes the ability to migrate security policy configura-
tions from one middleware architecture to another. For ex-
ample, the ability to comprehend a COM+/.NET access pol-
icy and synthesise an equivalent access policy for an Enter-
prise Java Beans Server. Policy migration from one hetero-
geneous middleware to another requires translation of the
security policy. This translation should be generalised to a
common format and then applied to the destination system.

Policy Maintenance. Security policy configurations
change with time as user and application authorisation
requirements change. Such maintenance must be properly
coordinated across the different middleware systems to
ensure that a consistent view of security policy is main-
tained. Changes to individual middleware security policy
configurations must be propagated across the system to
ensure consistency; changes to the global policy must be
coordinated with changes to the individual middleware
security policies. Providing a means to delegate authority
between principals within the system is also useful. In this
way, a more localised control of the policy is possible.

Policy Decentralisation. While providing distributed
client-server architectures, traditional middleware security
mechanisms such as CORBA [2], Enterprise Java Beans
(EJB) [27] and Microsoft COM/.NET [20], are effectively
based on centralised security policies. Access is determined
either by centralised authorisation servers, or by (possibly
replicated) policies at local clients; there is little opportunity
to coordinate differing access-controls and policies across
different domains and regions. Relying on centralised au-
thorisation servers when supporting heterogeneous middle-
ware creates a bottleneck. The ability to decentralise the
security policies is desirable.

Emerging trust management schemes [5, 4, 24] use pub-
lic key authorisation certificates to specify delegation of au-
thorisation between public keys and can be used to help de-
centralise authorisation policies. Trust Management is an
approach to constructing and interpreting the trust relation-
ships between public keys that are used to mediate security
critical actions. Cryptographic credentials are used to spec-
ify delegation of authorisation among public keys.

Providing a means to distribute these security policies
throughout the different Middleware technologies requires
a generic bridge between the different systems. WebCom
[22] is a distributed metacomputing architecture that pro-
vides interoperability between different middleware. Web-
Com applications are developed using a variety of CORBA,
Enterprise Java Beans (EJB) and Microsoft COM/.NET
components; WebCom coordinates their execution across
the appropriate client/servers, according to a condensed
graph [21] that defines the execution sequencing rules for
the application. Secure WebCom [14] uses Trust Manage-
ment [4, 6, 9, 24] to manage authorisation within WebCom.
Cryptographic authorisation credentials are used to deter-
mine whether it is permitted for a middleware client/server
to execute a component. In [14], Secure WebCom uses
KeyNote [4] to manage these trust relationships1.

1Secure WebCom includes support for SPKI/SDSI. While we use
KeyNote in this paper, our results are applicable to SPKI/SDSI.

In this paper we outline how the current version of Se-
cure WebCom is used to provide interoperable security, in
particular authorisation, across different middleware envi-
ronments. This support integrates the authorisation schemes
provided by the underlying operating system, the middle-
ware system and KeyNote/trust management based authori-
sation. The approach provides a number of advantages, ad-
dressing the characteristics of Policy Configuration, Com-
prehension, Migration, Maintenance, and Decentralisation.
While conventional middleware security architectures typi-
cally rely on a centralised notion of authorisation, KeyNote
certificates may be used to promote a decentralised ap-
proach. In this paper we show that middleware Role Based
Access Control (RBAC) policies can be encoded in terms
of KeyNote credentials and vice-versa. This provides a uni-
fied view of authorisation within a heterogeneous middle-
ware application system, and also provides the basis for the
support of centralised and decentralised RBAC middleware
security.

The paper is organised as follows. Section 2 provides
an interpretation of authorisation policies in CORBA, EJB
and COM middleware in terms of a simple Role Based Ac-
cess Control Model. An introduction to Trust Management
and the KeyNote system in particular, are given in Section
3. Section 4 describes how KeyNote is integrated into We-
bCom and how interoperability between KeyNote and the
underlying middleware security policies is supported. Web-
Com facilitates the support of both trust management based
policies and underlying middleware policies, as described
in Section 5. WebCom provides an environment for devel-
oping distributed applications built from different middle-
ware components; Section 6 outlines how such applications
can be developed when taking security into consideration.

2 Middleware RBAC Security

Role-based access control (RBAC) [26, 29] is widely
used to provide access control in Database management
systems, operating systems and Middleware architectures.
In RBAC, access rights (permissions) are associated with
roles, and users are members of these roles. When a user is
assigned to a role, they gain all the permissions of that role
in the system. This allows an organisation to model its secu-
rity infrastructure along the lines of its business. The model
suits large organisations very well, since roles, like the job
positions that they describe, tend to remain relatively static
[26]. A role relates closely to organisation’s physical job
functions, increasing the usefulness of an RBAC security
model. RBAC provides administrators with the ability to
easily select appropriate roles for users and, when required,
the ability to revoke individual user’s rights without modi-
fying the permissions on individual objects.

Role Based Access Control (RBAC) is defined in terms

2

of Users, Roles and Permissions [26, 29]. For the purposes
of this paper we extend this to include Domain and Object-
Type. A Domain is a logical grouping of roles, analogous
to departments in an organisation. Roles are members of
these Domains. The same role name may be present in dif-
ferent domains. Permissions are defined in the context of
particular object types. For example, the permission read
on objects of type SalariesDB entitles the holder to have
read access on objects of that type. An RBAC policy is de-
fined in terms of the following relations.

���������	��
�� ��������������������������
� ���	�! ���"$#&%('�)*�	�+�	��
��+�&,�,-�&���.�

��������/0,-��
 �������������������������� � /	,���

where
���������	��
��1�2��3546
7�$4-���84�)9�2�

means that the role

(in
domain

3
) holds permission

)
on an object of type

�
,

and
�������7/	,���
:��3;42
�42<=�

means that user
<

is assigned to
domain-role pair

��3546
��
. This extended model is equivalent

to the standard RBAC model when
�����������>�?�������

and�	�! ���"@#&%('�);�A�B�	��
��+�&,�,-�&���
are regarded as concretisations

of abstract
�������

and
�	��
��C�!,�,-�D���

. In order to define an ap-
propriate common definition of the RBAC security policies,
analysis of the different implementations considered is re-
quired.

Enterprise Javabeans [27] EJB components encapsulate
the business logic of Sun Microsystems Java 2 Enterprise
Edition (J2EE) application model. Components reside in
a bean container located on a server, running on a host ma-
chine. The combination of host, EJB server, and the relevant
bean container JNDI [28] name provide the domains of the
policy. Roles are bean specific on each server. Users exist
globally in each EJB server, and as such can be members
of roles in different domains. Users are unique to each EJB
server, and are managed by that server. Permissions repre-
sent method calls that a role is permitted to make on an EJB
object.

Microsoft COM+/.NET [20] The DCOM specification
[20] extends the COM model to provide remote invocation
capabilities. COM was designed to allow application de-
velopers to create reusable software components. DCOM
allows these software components to be called remotely.
COM objects can be anything from a simple software pro-
gram right up to a complex program, such as Word. COM’s
RBAC model is an extension of the Windows security
model and provides Windows NT Domains, roles unique
to each domain, and permissions. For the purposes of this
paper, COM permissions are Launch, Access, RunAs.

Common Object Request Broker Architecture
(CORBA) [2] CORBA is a general and open indus-
try standard for working with distributed objects. It allows
the interconnection of objects and applications, regardless
of computer language or machine architecture. Using
its standard protocol (IIOP) a CORBA-based program
on any heterogeneous setup, can interoperate with a
CORBA-based program on almost any other heterogeneous
setup.

The CORBA RBAC model consists of Roles, Users and
Permissions. We consider a Domain to be the name of the
machine and the Corba ORB server name, similar to the
EJB system. Again Roles are unique to each Domain, and
Users can be members of one or many roles. Permissions
relate to the method calls on objects of the given object type.

The RBAC policy can be implemented in each of
these Middleware systems in a common manner. Fig-
ure 1 provides a simple example of an RBAC policy for
SalariesDB objects in an organisation with domains (de-
partments) Finance and Sales, and roles Clerk, Manager and
Assistant.

3 Trust Management

Unlike identity based authorisation systems, for exam-
ple those using X.509 [8] certificates, where authorisation
is based on linking an identity to a public key, Trust Man-
agement addresses the need to associate abilities to public
keys. In other words, identity based certificates answer the
question “Who is the holder of this public key?” whereas
ability based certificates answer the question “What can I
trust this public key to do?”.

Conventional secure applications verify that certificates
have not been revoked, and are signed by a recognised and
trustworthy source. The names are then extracted from the
certificates and a database is queried to determine if the
requested action is authorised. This is cumbersome and
aspects, such as the database lookup, are outside of the
scope of the certificate system. Furthermore, there is the
problem of determining the correct identity of an individ-
ual: there may be more than one John Smith in a particular
organisation[10].

Trust management systems eliminate the extraction of
names and database lookup. The certificates holding the
abilities of the public key requesting the action are instead
submitted to the trust management system, along with the
action request. The trust management system verifies that
the action is authorised by the certificates provided. For
the purposes of authorisation, trust management systems
are not concerned with verifying personal identity of a re-
quester. These questions, while valid security questions,

3

Domain Role Permission
Finance Clerk write
Finance Manager read/write
Sales Manager read
Sales Assistant no access

Domain Role User
Finance Clerk Alice
Finance Manager Bob
Sales Manager Claire
Sales Assistant Dave
Sales Manager Elaine

Figure 1. RBAC relations for a Salaries Database

are not relevant to an application attempting to determine
whether an action is authorised.

Trust Management systems have a number of advantages
compared to the traditional systems created using X.509.
Policies and certificates are created and maintained sepa-
rately from the application in a very natural way. The at-
tributes used within the policies/certificates are application
defined, and they are represented in a free-form fashion, al-
lowing the application designer to decide what character-
istics are required. Changing the format of the attributes
does not require changes to the trust management system
used. By removing the traditional lookup of an identity’s
authority, and instead representing that authority within the
certificate, applications no longer need to consider the secu-
rity of where this authority is stored. An additional benefit
of utilising a trust management system within applications
is that designers and implementers of these applications are
required to consider trust management applications explic-
itly. This in itself encourages good practices when consider-
ing the overall security of such applications. Trust manage-
ment policies are easy to distribute across networks, helping
to avoid reliance on centralised configuration of distributed
applications.

KeyNote [3, 4] is an expressive and flexible trust man-
agement scheme that provides a simple credential notation
for expressing both security policies and delegation. A stan-
dard KeyNote Application Programming Interface is used
by an application to make queries about whether security
critical requests (to the application) have authorisation or
not. The formulation and management of security poli-
cies and credentials are separate from the application, mak-
ing it straight forward to support trust management policies
across different applications. KeyNote has been used to pro-
vide trust management for a number of applications includ-
ing active networks [7] and to control access to Web pages
[1].

When a request from an untrusted principal (key) is made
to a networked application to execute a particular action,
then, authentication notwithstanding, the application must
determine whether the key(s) that made the request is autho-
rised. Authorisation comes in the form of digitally signed
public key credentials that bind public keys to the authorisa-

tion to perform various actions. In practice, authorisation is
achieved by a collection of credentials that exhibit the nec-
essary trust relationships between their keys. Given a pol-
icy (public keys, trusted in known ways), and a collection of
credentials, a network application must determine whether
a particular public key is authorised to request a particular
operation.

Example 1 A simple Salaries application runs on a server
and accepts requests from clients to access the salaries
database of a company (see Figure 1). The request for op-
eration read is made to request an employee’s salary infor-
mation while the request write is used to make modifica-
tions to the database. We expect that, in practice, a clerk
will have the authority to write to the database (in order to
add new employees) and managers will have the authority
to both read and write to the database; this authority will be
delegated by senior management.

Assume that the owner of public key Kbob is trusted to
make requests to the Salaries application. This is specified
by the following KeyNote credential 2.

Authorizer: POLICY
licensees: "Kbob"
Conditions: app_domain=="SalariesDB" &&

(oper=="read" || oper=="write");

Figure 2. Policy Credential allowing Manager
Bob to read from and write to the database

This is a special policy credential that defines the condi-
tions under which requests from the licensee key Kbobmay
be trusted by the application SalariesDB. These condi-
tions are defined using a C like expression syntax in terms
of the action attributes, in this example, app_domain and
oper which are used characterise the circumstances of a
request.

The owner of public key Kbob (The company’s finance
manager) has the authority to delegate this trust to other

2Note: this credential does not represent an RBAC role. Such creden-
tials are considered in Section 4.

4

System

TM

c d

e

baconnect

op

connect

op

Policy

TM API

PKI

scheduler
WebCom

Application
TM queries

Untrusted

Environment
Trusted Environment

Untrusted Principles

WebCom

WebCom

Client/parent

Client/parent

WebCOM Parent

Figure 3. WebCOM-KeyNote Architecture

keys and does so by signing the following credential for a
clerk who owns public key Kalice.

Authorizer: "Kbob"
licensees: "Kalice"
Conditions: app_domain=="SalariesDB"

&& oper=="write";

Figure 4. Credential allowing Clerk Alice to
write to the database

In signing this credential, authoriser Kbob delegates au-
thority for writing to the database to the key Kalice.
When Alice attempts to write to the database (sending a re-
quest signed by Kalice), she presents this credential as
proof of authorisation. We can confirm that this key is in-
deed authorised since, by default (policy), we trust Kbob to
read and write to the database and Kbob has delegated some
of this trust to Kalice, by virtue of signing the credential.�

An application may use a Trust Management (TM)
scheme such as KeyNote [4] to determine whether requests
to it are authorised, without the application having to know
about how that determination is made.

Example 2 When the SalariesDB application (Exam-
ple 1) queries the KeyNote TM system to determine
whether it is safe to execute a particular request, it must
specify the circumstances of the query. These circum-
stances include: action authorizers, corresponding to the
key(s) that made the request; action attribute set, which is a
set of action attribute name and value pairs that characterise
the request; policy credentials, representing the keys that are
trusted, and other credentials as provided by the requester
and/or PKI.

For example, when Kalice requests to write to the
database then the order application queries KeyNote
with action authorizer Kalice, action attribute set�
app_domain � "SalariesDB"

4
oper �

"write" � , the policy credential for Kbob above,
and a set of signed credentials provided by Alice. KeyNote
must determine if the given request is authorised based
on the evidence provided. The application interacts with
KeyNote via calls to the KeyNote API.

�

The KeyNote architecture provides a level of separa-
tion between the provision of security policy authorisation
and application functionality. As a software engineering
paradigm, techniques that support separation of concerns
for security [4, 11], synchronisation [19], and so forth are
desirable since they lead to applications that are easier to
develop, understand and maintain.

4 Secure WebCom

Secure WebCom [14, 22] is a distributed secure and
fault-tolerant architecture that can be used to coordinate
the distributed execution of middleware components across
a network. A Secure WebCom environment [14] uses
KeyNote to help manage the trust relationship with other
Secure WebCom environments.

Figure 3 illustrates how the KeyNote trust management
scheme is integrated into WebCom by regarding WebCom
as an application.

The WebCom master authenticates its clients and uses
their credentials to determine what operations it may sched-
ule to them. Each WebCom client has a trust management
architecture that is similar to the KeyNote architecture in
[4], authenticating the master and using the master’s cre-
dentials to determine whether it is authorised to schedule
the operation. We originally selected KeyNote because of

5

Authorizer: Policy
Licensees: "KWebCom"
Conditions: app_domain == "WebCom" &&

ObjectType == "SalariesDB" &&
(Domain=="Sales" && Role=="Manager" && Permission=="read") ||
(Domain=="Finance" && Role=="Manager"

&& (Permission=="read"||Permission=="write"))||
(Domain=="Finance" && Role=="Clerk" && Permission=="write");

Figure 5. WebCom’s Policy for the Salaries Database

its simplicity and expressiveness; as previously noted, we
have since used the SDSI/SPKI system in a similar way.
KeyNote provides a simple notation for specifying both lo-
cal security policies and credentials that can be sent over
untrusted networks.

A Secure WebCom environment can automatically con-
vert middleware RBAC policies to their equivalent KeyNote
policies/credentials, and vice-versa. This provides a high
degree of policy interoperability, between the middleware
and trust management layer, and also within the differ-
ent middlewares. In addition to providing a uniform way
of specifying RBAC policies for different middleware sys-
tems, it also becomes possible to enforce standardised
RBAC middleware policies across middleware systems that
do not have a configured RBAC policy.

RBAC-like policies can be encoded in terms of equiv-
alent cryptographic certificates/policies [18]. Secure We-
bCom is configured to support middleware RBAC-like se-
curity policies by effectively encoding the

���������	��
��
and�������7/	,��-

relationships (from Section 2) within KeyNote
authorisation credentials. This is unlike [18] which inte-
grates authorisation certificates as part of the lower-level
middleware system.

Secure WebCom uses KeyNote to determine whether
it is safe to execute a middleware component. The cir-
cumstances of the action are described in terms of at-
tributes coded within the credentials. WebCom uses the at-
tributes: Domain, ObjectType, Role, Permission
which correspond to the RBAC attributes described above.

The
���������	��
��

table of Figure 1 is encoded as KeyNote
Policy credential shown in Figure 5.

This in effect specifies that the WebCom administration
key KWebCom is authorised to administer rights in connec-
tion with this policy.

Key KWebCom can delegate authorisation for role
Manager in domain Finance to Claire by writing and
signing the credential shown in Figure 6. While the pol-
icy above centralises the

���������	��
��C�!,�,-�&���
table, it could

alternatively be decentralised and spread across a number
of credentials and additional authorisations and role mem-
berships delegated to other keys. For example, Claire can
delegate her role to Kfred by writing the credential shown

Authorizer: "KWebCom"
Licensees: "Kclaire"
Conditions: app_domain == "WebCom" &&

Domain=="Finance" && Role=="Manager";
Signature: ...

Figure 6. Claire is authorised to be a Manager
in the Finance Domain

Authorizer: "Kclaire"
licensees: "Kfred"
Conditions: app_domain=="WebCom" &&

Domain=="Sales" && Role=="Manager";
Signature: ...

Figure 7. Claire delegates her Role member-
ship to Fred

in Figure 7.

4.1 Policy Configuration

It is not necessary to rely on just the security/KeyNote
mechanism of Secure WebCom; the underlying middleware
and operating system also provide RBAC security medi-
ation. In this case it is necessary to translate the speci-
fied KeyNote RBAC policy into its equivalent middleware
RBAC security configuration. This support is provided for
by WebCom.

On each WebCom environment a secure automated ad-
ministration service accepts KeyNote credentials and up-
dates the local middleware security policy configuration to
reflect the authorisations granted by the credentials. This is
currently implemented for COM and EJB middleware sys-
tems. For example, Figure 8 outlines how a user, currently
registered only in Domain B, is integrated into a COM+
RBAC policy within Domain A. The KeyCOM service of
WebCom accepts a policy update request (plus KeyNote
credentials) and if valid it updates the security policy in the

6

KeyNote

security policy

KeyCOM

Windows Server Domain A

Clientcredentials

Policy

COM Catalogue

Domain B

WebCom
Service

Policy update request

Figure 8. Decentralised Middleware Architecture

COM Catalogue (middleware/Windows RBAC policy) with
the equivalent authorisation. KeyCOM acts, in effect, as an
automated Windows/COM administrator, processing client
authorisation requests, while the KeyNote cryptographic
credentials facilitate users in delegating authorisation with-
out requiring assistance of non-automated (that is, human)
administrators. Similar services exist for other supported
middleware systems.

4.2 Policy Comprehension

It is also useful to translate middleware RBAC policies
into equivalent (WebCom) KeyNote RBAC policies. In this
case the middleware RBAC policy can alternatively be en-
forced by Secure WebCom. A middleware RBAC policy
comprised of relations

���������	�-
��
and

�������7/	,���

is con-

verted into KeyNote credentials as follows.
The

���������	��
��
is encoded as a KeyNote Policy that au-

thorises the WebCom Key as administrator for the RBAC
policy and is authorised for the given values over attributes
domain, role, ObjectType and Permission. For
each user (public key) in the

��������/0,-��

table, a credential

is generated, and signed by the WebCom key, authorising
the user to be a member of the corresponding roles from�������7/	,��-

.
This process aids comprehension of the overall policy

through the definition of the entire policy in one common
format. Using this process it is possible to enforce an equiv-
alent security policy at a more abstract layer.

4.3 Policy Migration

Migration of existing policies from one middleware sys-
tem to another is also possible. This interoperability of dis-
parate security policies allows, for example, a new system
to be configured with the same policy as an existing system.

Figure 9 illustrates this interoperability with a sample
configuration. System � is a WebCom Server, while sys-
tems � , � and � are WebCom clients. System � security
relies on the Windows (W) operating system, COM middle-
ware and KeyNote trust management. These systems could
have independent policies, or might require a more homo-
geneous policy across the different platforms. A WebCom
client running on Windows with COM middleware secu-
rity policy inter-operates with the server. If required, the
KeyNote RBAC credentials held by users of System � can
be used to update the COM+ catalogue of System � . On
the other hand, the COM middleware RBAC policy on Sys-
tem � can be translated to equivalent KeyNote credentials
and these, in turn, used by System � which does not have
a middleware security mechanism. In addition, if System �
was a legacy system under migration to System � , then the
KeyNote credentials generated from the legacy COM pol-
icy can be used to automatically configure the replacement
EJB RBAC policy.

It should be noted that migration of policies between dif-
ferent middleware technologies does not consist of a simple
one-to-one mapping. Some interpretation of the security
policies must be considered by the translation tools, using
techniques such as similarity metrics [13].

4.4 Policy Maintenance

The maintenance of a consistent global policy across the
different heterogeneous middlewares is important for the
overall security if the system. Making changes to the un-
derlying middleware security policies can lead to inconsis-
tencies between the authorisation of principals on different
systems.

Maintaining both middleware and trust management
policies is an important aspect of the Secure WebCom sys-
tem. For example, if a new employee is to be added to

7

T(KN)

OS(W)

M(E)

OS(U)
X

Y

Z

W

OS(W)

M(COM)

T(KN)

OS(W)
M(COM)

Figure 9. Interoperating Security Policies

the existing policy, changes must be propagated to all the
relevant heterogeneous system policies. It is possible to
add entries to the underlying middleware security policies
and then utilise the translation services to propagate these
policy changes to the other systems. However, we recom-
mend changing the trust management policy to reflect re-
quired changes in the system. This enables the changes
to be propagated down the security stack where necessary,
while maintaining the consistency of the overall security
policy. Making the changes to the trust management policy
has additional benefits. For example, a manager can dele-
gate authority to a new employee without requiring detailed
knowledge of the underlying systems in use.

The manager can achieve this by the creation of new cre-
dentials, assigning the employee the roles required. Figure
7 shows an example of such role delegation. The adminis-
trative translation services can update the middleware poli-
cies to permit the new employee to use the services appro-
priate to their function. Maintaining the policy in this fash-
ion has the additional benefit that it provides a high-level
view of the overall policy of the organisation.

4.5 Policy Decentralisation

The trust management system used by WebCom pro-
vides the means to make policy decisions in a decentralised
manner.

5 Stacked Authorisation

Using the trust management architecture in Secure We-
bCom requires that the WebCom environment be trusted in
the sense that part of the security mediation (authorisation)
is performed by the WebCom environment and not the un-
derlying operating system. An advantage of this approach
is that since it is independent of the security architecture of
the underlying system then it provides a better opportunity
for interoperation between heterogeneous platforms that run
the WebCom environment. However, since it does not rely
on the underlying operating system/middleware authorisa-
tion mechanisms, a result is that it increases the software in

the trusted computing base.
In the case where the WebCom system is not trusted by

the operating system, the security policy of the middleware
applications is enforced. This implies that a choice between
enforcing the middleware and WebCom security policies
must be made.

We address this property by considering how the security
mechanisms of the underlying middleware/operating sys-
tem can be used to provide the basis of security mediation
and form a part of the overall WebCom security architec-
ture. This provides a stack of security layers, as depicted
in Figure 10. Note that the Level 3 security corresponds
to mechanisms encoded within the condensed graph that is
used to coordinate the application components. It is used to
implement application level workflow security, for example
[12], and is not considered in this paper.

These stacked layers of secure WebCom are ‘pluggable’
in the sense of [17, 25]; for example, in the absence of
CORBASec support for a particular ORB, a WebCom envi-
ronment could be configured so that authorisation is based
only on a combination of KeyNote (trust management) and
underlying operating system policy.

Using this stackable architecture, applications can be de-
veloped that use trust management policies for new compo-
nents and the middleware security architectures for existing
security mediations. This has the benefit of using legacy
code and policies, minimising inconsistencies in the con-
version of applications.

6 Secure Heterogeneous Application Devel-
opment

A distributed application is constructed as a condensed
graph of components using an Integrated Development En-
vironment (IDE) for WebCom. By integrating secure mid-
dleware components into the IDE, it provides a platform
to build distributed middleware applications that leverage
existing middleware business logic and security policies.
Through this approach, programmers can easily build se-
cure and complex distributed applications.

To incorporate the existing middleware components as

8

Application Security

Trust Management

Middleware Security

OS SecurityL0

L1

L2

L3

Security Mechanisms Interoperability

W
eb

C
om

Stack

Figure 10. Stacked Security Architecture in WebCom

part of a WebCom application, the middleware services
need to be interrogated. That is, extract the relevant middle-
ware components, and make them available to application
developers through the use of a component palette on the
WebCom IDE. Interrogation is achieved using a WebCom
plugin specific to the middleware service in question.

To facilitate secure heterogeneous application develop-
ment the middleware interrogation process also extracts se-
curity policy information related to the middleware com-
ponents. This information is presented in the IDE as an
additional palette (Figure 11). The IDE analyses the mid-
dleware component currently highlighted, and determines
which combinations of domain, role and user is suitably au-
thorised (holds permissions) to execute the selected compo-
nent.

The programmer may specify any valid combination of
domain, role and user for a component to execute under.
The Webcom scheduler ensures components are scheduled
to the specified domain, role, and user. A partial specifica-
tion is also supported, for example, allowing the program-
mer to specify a domain and role for a given component, in
which case it will be scheduled to any authorised user in the
specified domain and role.

7 Discussion and Conclusion

We have outlined how to provide interoperable security
support for the different middleware environments that are
supported by WebCom. With this approach, KeyNote cer-
tificates provide a decentralised approach for authorisation.
We have also outlined how middleware RBAC policies can
be encoded in terms of KeyNote credentials and vice-versa.
This provides a unified view of security of a heterogeneous
middleware application system, and also provides the ba-
sis for the support of centralised and decentralised RBAC
middleware security.

This system provides the infrastructure to allow differ-
ent technologies to contribute to the overall security of the
system. It provides the ability to construct richer security

policies. For example, utilising the existing setup present in
legacy systems. Providing such interoperability also raises
the potential to transfer relevant parts of security policies,
either to enforce them in KeyNote or in the middleware
RBAC system, where appropriate.

Traditionally, work in this area has focused on replac-
ing existing security models with Trust Management sys-
tems. We have introduced a system that harnesses the ex-
isting RBAC systems, and uses Trust Management to create
more integrated policies. There are advantages to this ap-
proach over existing work, such as [18]. For example, we
have the ability to both abstract existing security policies
into Trust Management policies and conversely enforce por-
tions of Trust Management policies in terms of middleware
RBAC policies.

The system as outlined above has some limitations: in
order to maintain a coherent security policy, we must have
the ability to name objects in the entire system in a consis-
tent and reliable fashion. The current system provides for
making mediation decisions purely on the identifier of the
components. Extending this to consider the environment of
the component, its inputs, and so forth, is a topic of ongoing
research.

Acknowledgments

The support of the Informatics Research Initiative of En-
terprise Ireland is gratefully acknowledged.

References

[1] Apache-ssl release version 1.3.6/1.36. Open source software
distribution. http://www.apache.org.

[2] B. Blakley. Corba Security. An Introduction to Safe Com-
puting with Objects. Object Technology Series. Addison-
Wesley, 2000.

[3] M. Blaze. Using the KeyNote trust management sys-
tem. http://www.crypto.com/trustmgt, Decem-
ber 1999.

9

Figure 11. The WebCom Integrated Development Environment

[4] M. Blaze et al. The keynote trust-management system ver-
sion 2. Sept. 1999. Internet Request For Comments 2704.

[5] M. Blaze et al. The role of trust management in distributed
systems security. In Secure Internet Programming: Issues
in Distributed and Mobile Object Systems. Springer-Verlag
Lecture Notes in Computer Science, 1999.

[6] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized trust
management. In Proceedings of the Symposium on Security
and Privacy. IEEE Computer Society Press, 1996.

[7] M. Blaze, J. Ioannidis, and A. Keromytis. Trust management
and network layer security protocols. In Security Protocols
International Workshop. Springer Verlag LNCS, 1999.

[8] CCITT Draft Recomendation. The Directory Authentication
Framework, Version 7, Nov. 1987.

[9] C. Ellison et al. SPKI certificate theory. Sept. 1999. Internet
Request for Comments: 2693.

[10] C. M. Ellison. The nature of a useable PKI. Computer Net-
works, (31):823–830, 1999.

[11] S. Foley. A kernelized architecture for multilevel secure ap-
plication policies. In European Symposium on Research in
Security and Privacy. Springer Verlag LNCS 1485, 1998.

[12] S. Foley and J. Morrison. Computational paradigms and pro-
tection. In ACM New Computer Security Paradigms, Cloud-
croft, NM, USA, 2001. ACM Press.

[13] S. N. Foley. Supporting imprecise delegation in keynote us-
ing similarity measures. In Proceedings of The Sixth Nordic
Workshop on Secure IT Systems, pages 101–119, Copen-
hagen, November 2001.

[14] S. N. Foley, T. B. Quillinan, and J. P. Morrison. Secure
component distribution using webcom. In Proceeding of
the 17th International Conference on Information Security
(IFIP/SEC 2002), Cairo, Egypt, May 2002.

[15] R. Geraghty, S. Joyce, T. Moriarty, G. Noone, and S. Joyce.
COM-CORBA Interoperability. Number ISBN: 0-130-
96277-5. Prentice Hall PTR, 1998.

[16] J. Hugues, F. Kordon, L. Pautet, and T. Quinot. A case study
of middleware to middleware: Mom and orb interoperabil-
ity. In Proceedings of the 4th International Symposium on
Distributed Objects and Applications (DOA’02), Irvine, CA,
USA, Oct. 2002. University of California, Irvine.

[17] N. Itoi and P. Honeyman. Pluggable authentication modules
for Windows NT. In Proceedings of the 2nd USENIX Win-
dows NT Symposium, pages 97–108, Seattle, Washington,
August 1998.

[18] T. Lampinen. Using SPKI certificates for authorization in
CORBA based distributed object-oriented systems. In 4th
Nordic Workshop on Secure IT systems (NordSec ’99), pages
61–81, Kista, Sweden, November 1999.

[19] C. Lopes and K. Lieberherr. Abstracting process-to-process
relations in concurrent object-oriented applications. In
European Conference on Object-Oriented Programming
(ECOOP). Springer Verlag LNCS 821, 1994.

[20] Microsoft Corporation. Microsoft Platform SDK. The COM
Library. Microsoft Developer Network., 0.9 edition, October
1995. http://www.msdn.microsoft.com.

[21] J. Morrison. Condensed Graphs: Unifying Availability-
Driven, Coercion-Driven and Control-Driven Computing.
PhD thesis, Eindhoven, 1996.

[22] J. Morrison, D. Power, and J. Kennedy. A Condensed
Graphs Engine to Drive Metacomputing. Proceedings of the
international conference on parallel and distributed process-
ing techniques and applications (PDPTA ’99), Las Vagas,
Nevada, June 28 - July1, 1999.

10

[23] T. Quinot, F. Kordon, and L. Pautet. From functional to
architectural analysis of a middleware supporting interop-
erability across heterogeneous distribution models. In Pro-
ceedings of the 3rd International Symposium on Distributed
Objects and Applications (DOA’01). IEEE Computer Soci-
ety Press, Sept. 2001.

[24] R. Rivest and B. Lampson. SDSI - a simple distributed se-
curity infrastructure. In DIMACS Workshop on Trust Man-
agement in Networks, 1996.

[25] V. Samar and R. Schemers. Unified login with pluggable au-
thentication modules (PAM). Request for Comments 86.0,
Open Software Foundation, October 1995.

[26] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E.
Youman. Role-based access control models. IEEE Com-
puter, 29(2):38–47, February 1996.

[27] Sun Microsystems. Enterprise JavaBeans(tm)
Specification, Version 2.1, June 2003.
http://java.sun.com/products/ejb/docs.html.

[28] Sun Microsystems Inc. Java Naming and Directory Inter-
face, 1.2 edition. http://java.sun.com/products/jndi/.

[29] X. Zhang, S. Oh, and R. Sandhu. PDBM: A flexible delega-
tion model in RBAC. In Proceedings of the 7th ACM Sympo-
sium on Access Control Models and Technologies (SACMAT
2003), Como, Italy, June 2003.

Author Biographies

Simon N. Foley holds a PhD on the modeling of security-
critical systems and is a Statutory Lecturer in Computer
Science at University College Cork where he teaches and
directs research on computer security. He serves on the
editorial board of the Journal of Computer Security and
has served as Program chair of the IEEE Computer Se-
curity Foundations Workshop and the ACM New Security
Paradigms Workshop.

Thomas B. Quillinan holds a B.Eng in Computer Engi-
neering from the University of Limerick and a M.Sc. in
Computer Science from University College Cork. He is
currently pursuing a Ph.D. in Computer Security with the
Centre for Unified Computing in University College Cork.
His academic interests include secure naming, trust man-
agement and security in distributed systems.

Maeve O’Connor holds a B.E. and a M.Eng.Sc. in Bio-
Engineering from University College Dublin, and has pub-
lished papers on bread manufacturing. She has extensive
experience working in Industry in the area of Software En-
gineering. She also holds a M.Sc. in Computer Science
from University College Cork.

Barry P. Mulcahy holds a B.Sc. in Computer Science
from University College Cork. He is currently pursuing
a Ph.D. in Computer Security with the Centre for Unified

Computing in University College Cork. His academic in-
terests include decentralised security policies, distributed
security mechanisms, and secure workflows.

John P. Morrison is a Statutory Lecturer in the Com-
puter Science Department in University College Cork. He
has previously worked in Phillip’s Natuurkundig Laborato-
rium, Eindhoven, Holland. Dr. Morrison received his Ph.D.
from the Technische Universiteit Eindhoven. He is a Senior
Member of IEEE, a member of the ACM, Research direc-
tor of the Centre for Unified Computing, Co-director and
co-founder of Grid-Ireland and a Co-director of the Boole
Centre for Research in Informatics in UCC.

11

