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Abstract. Threat knowledge-bases such as those maintained by MITRE
and NIST provide a basis with which to mitigate known threats to an
enterprise. These centralised knowledge-bases assume a global and uni-
form level of trust for all threat and countermeasure knowledge. However,
in practice these knowledge-bases are composed of threats and counter-
measures that originate from a number of threat providers, for example
Bugtraq. As a consequence, threat knowledge consumers may only wish
to trust knowledge about threats and countermeasures that have been
provided by a particular provider or set of providers. In this paper, a trust
management approach is taken with respect to threat knowledge-bases.
This provides a basis with which to decentralize and delegate trust for
knowledge about threats and their mitigation to one or more providers.
Threat knowledge-bases are encoded as Semantic Threat Graphs. An
ontology-based delegation scheme is proposed to manage trust across a
model of distributed Semantic Threat Graph knowledge-bases.
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1 Introduction

Threat management is a process used to help implement a security configuration
that mitigates known enterprise (security) threats. Centralised threat knowledge-
bases, such as NIST’s National Vulnerability Database (NVD) [1] are an integral
part of the threat management process. However, in practice threat knowledge-
bases are composed of threats, vulnerabilities and countermeasures that originate
from multiple providers, for example US-Cert [2], Bugtraq [3] and/or vendors
(such as Cisco and Microsoft). As a consequence, threat knowledge may only
be trusted if it has been asserted by a particular provider or set of providers.
For example, a consumer of the NVD may only want to trust knowledge about
software buffer-overflow vulnerabilities that have been asserted by Bugtraq and
corresponding countermeasures asserted by Microsoft. However, access to a cen-
tralised threat knowledge-base implies a global or uniform level of trust for all
knowledge about threats, vulnerability and countermeasures indiscriminately.

This paper adopts a trust management approach with respect to threat
knowledge-bases. The advantages are twofold. The first is that it provides a basis
with which a consumer may delegate authority to trusted providers for knowl-
edge about threats, vulnerabilities and countermeasures. Secondly, it provides
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a basis to decentralize a threat knowledge-base where trusted threat knowledge
may reside with the originating provider and/or be distributed across other
trusted provider threat knowledge-bases.

Threat Trees/Graphs, such as [20, 28, 29], are used to represent, structure
and analyse what is known about threats and their countermeasures. In this
paper, threat knowledge-bases are encoded as Semantic Threat Graphs [20].
We argue that using an ontology-based framework provides a natural approach
to constructing, reasoning about and managing decentralized Semantic Threat
Graphs. An ontology provides a conceptual model of a domain of interest. It pro-
vides a framework for distributed and extensible structured knowledge founded
on formal logic [7]. In recent years, research in computer security has seen an in-
crease in the use of ontologies. For example, ontologies have been applied to the
areas of information security (common security vocabulary) [24], security man-
agement (threats, vulnerabilities and countermeasures) [17], access control [15],
policy management [25] and trust management [33]. The decentralized Semantic
Threat Graphs (ontology fragments) are implemented in OWL-DL, a language
subset of OWL which is a W3C standard that includes Description Logic rea-
soning semantics [30].

Distributed fragments of Semantic Threat Graphs that are naturally compos-
able under the open-world assumption, provide a unified view of the threat-based
domain. Ontologies provide for separation of concerns, whereby consumers and
providers of threat-based knowledge can be separately developed, with reasoning
and deployment over their composition done locally. It also means that informa-
tion about new threats, vulnerabilities and countermeasures can be incorporated
as new facts within existing Semantic Threat Graph knowledge-bases.

The paper is outlined as follows. Section 2 provides an overview of Descrip-
tion Logic. Section 3 outlines the Semantic Threat Graphs model and an en-
coding of standards of best practice for threat mitigation. Section 4 describes
the delegation scheme used to manage trust across a model of distributed threat
knowledge-bases. A model for decentralized Semantic Threat Graphs is pre-
sented in Section 5. Section 6 provides use case scenarios that demonstrate how
the approach may work in practice. Related research is discussed in Section 7.

2 Description Logic and Knowledge-Bases

The Description Logic SHOIN (D) is a decidable portion of First Order Logic
that can be used to represent and reason about application knowledge and is
commonly implemented as OWL-DL [7]. Knowledge is described in terms of
concepts about individuals and their relationships. For example, suppose that
concept DOS describes denial of service threats and concept TCPcntr describes
TCP-stack based countermeasures such as syn-cookie and syn-cache, then the
concept

(∃1mitigates.DOS) ⊓ TCPcntr

can be considered to characterize TCPcntr countermeasure concepts that miti-
gate denial of service threats. In this case mitigates is a property that has been
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defined between DOS threats and countermeasures. For example, the individual
countermeasure syn-cache is related (property mitigates) to the individual DOS
threat syn-flood. A Description Logic concept corresponds to a unary predicate;
intuitively, it represents a set, and concept conjunction (⊓) and disjunction (⊔)
provide set intersection and union, respectively. A Description Logic property
(role) corresponds to a binary predicate. The concept (∃≥1 p.φ) defines individ-
uals related to at least one individual of concept φ via property p.

A knowledge-base comprises a terminological component, hereafter referred
to as its TBox, and an assertional component (its ABox ). In addition to describ-
ing concepts, a TBox may define concept and property relationships. These are
given as axioms of the form φ1 ⊑ φ2, given concepts φ1 and φ2 and where sub-
sumption ⊑ can be interpreted as subset. For example, the TBox containing the
concepts from the previous paragraph could include the axiom DOS ⊑ Threat,
indicating that denial of service is a kind of threat. Property subsumption axioms
may similarly be defined, which we also represent as φ1 ⊑ φ2 if no ambiguity
arises.

3 Semantic Threat Graphs

Semantic Threat Graphs [20], a variation of the traditional Threat/Attack Tree,
are encoded within an ontology-based framework. Figure 1 provides an abstract
model for Semantic Threat Graphs and identifies the key concepts and relation-
ships.

Enterprise IT assets are represented as individuals of the Asset concept. An
asset may have one or more hasWeakness ’s (property relationship) that relate to
individuals categorised in the Vulnerability concept. Individuals of the Vulnera-

bility concept are exploitable (exploitedBy) by a threat or set of threats (Threat
concept). As a consequence, an asset that has a vulnerability is, therefore, also
threatenedBy a corresponding Threat. A countermeasure mitigates particular
vulnerabilities. Countermeasures are deemed to be kinds-of assets and thus are
defined as a subConceptOf Asset.

Semantic Threat Graphs can be used to encode standards and best prac-
tices for threat mitigation using firewalls [20]. Mis-configured firewall security
configurations have the potential to expose both internal servers and the fire-
walls themselves to threats. For example, consider the following scenario where
a webServer is susceptible to a threatSynFlood attack via the vulWebTCPConnOverflow
weakness. An individual vulWebTCPConnOverflow is representative of a weakness in
the TCP stack where it is possible exceed the maximum number of socket con-
nections permitted by the TCP protocol due to a syn flood attack [32]. An ipta-
bles rule, represented as individual iptrSynThresholdWeb, mitigates the vulnerability
vulWebTCPConnOverflow on the Web server (webServer). Note that we use human-
interpretable names (in a typewriter font) for individuals in the ontology as
a way of suggesting their meaning. For example, individual iptrSynThresholdWeb
represents an iptables rule (iptr) that limits TCP syn packet connections to
the Web server (SynThresholdWeb).
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Fig. 1. Abstract Semantic Threat Graph Model.

The Semantic Threat Graph model presented in Figure 1 can be further re-
fined with sub-concepts. For example, the Threat concept can define a num-
ber of sub-concepts in accordance with best practice, such as the Microsoft
STRIDE standard whereby threats are categorised as (Figure 2): Spoofing iden-

tity, Tampering with data, Repudiation, Information disclosure, Denial of ser-

vice and Elevation of privilege [23]. A similar hierarchy is adopted for the cor-
responding vulnerability and countermeasure concepts.

Threat

STRIDEThreat

Spoofing Tampering Repudiation InfoDisclosure DenialofService ElevationOfPrivilege

RFCThreat

RFC3330Threat

NISTThreat

NIST80041Threat

RFC1918Threat

Fig. 2. Fragment of Threat Hierarchy.

A best practice standard is a high-level document, written in natural language
(typically English text), that defines a set of recommended best practices (coun-
termeasures) to protect sensitive and critical system resources. Best practice
standards for network access control, including NIST for secure Web-servers [34]
and Internet RFCs for anti-bogon (RFC3330) are encoded as Semantic Threat
Graphs (ontologies). How these best practice standards are encoded in terms of
Semantic Threat Graphs is described in [20]. For example, Table 1 provides a Se-
mantic Threat Graph interpretation for part of the NIST-800-41 standard [35] for
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firewall configuration. FBP-1 recommends that (spoofed) packets arriving on an
external interface claiming to have originated from either of the three RFC1918
reserved internal IP address ranges should be dropped. Such traffic indicates a
denial of service attack typically involving the TCP syn flag. Therefore, Threat
individual threatInbound192.168.0.0/16SrcIPPkt, is asserted to be a member of sub-
concepts Spoofing, DenialOfService and RFC1918Threat. Figure 2 illustrates a
partial hierarchy of threats.

ID Recommendation Description

FBP-1 Deny “Inbound or Outbound traffic from a system using a source address that falls within the address ranges
set aside in RFC1918 as being reserved for private networks” [35].
Threat Vulnerability Countermeasure

threatInbound192.168.0.0/16SrcIPPkt vulUnAuthenInbound192.168.0.0/16PktToFW iptrDropIn192.168.0.0/16SrcIPPktInputChain

threatOutbound192.168.0.0/16SrcIPPktvulUnAuthenOutbound192.168.0.0/16PktFromFW iptrDropOut192.168.0.0/16SrcIPPktOutputChain

threatInbound192.168.0.0/16SrcIPPkt vulUnAuthenInbound192.168.0.0/16PktToHost iptrDropIn192.168.0.0/16SrcIPPktForwardChain

threatOutbound192.168.0.0/16SrcIPPktvulUnAuthenOutbound192.168.0.0/16PktFromHostiptrDropOut192.168.0.0/16SrcIPPktForwardChain

threatInbound10.0.0.0/8SrcIPPkt vulUnAuthenInbound10.0.0.0/8PktToFW iptrDropIn10.0.0.0/8SrcIPPktInputChain

threatOutbound10.0.0.0/8SrcIPPkt vulUnAuthenOutbound10.0.0.0/8PktFromFW iptrDropOut10.0.0.0/8SrcIPPktOutputChain

threatInbound10.0.0.0/8SrcIPPkt vulUnAuthenInbound10.0.0.0/8PktToHost iptrDropIn10.0.0.0/8SrcIPPktForwardChain

threatOutbound10.0.0.0/8SrcIPPkt vulUnAuthenOutbound10.0.0.0/8PktFromHost iptrDropOut10.0.0.0/8SrcIPPktForwardChain

threatInbound172.16.0.0/12SrcIPPkt vulUnAuthenInbound172.16.0.0/12PktToFW iptrDropIn172.16.0.0/12SrcIPPktInputChain

threatOutbound172.16.0.0/12SrcIPPkt vulUnAuthenOutbound172.16.0.0/12PktFromFW iptrDropOut172.16.0.0/12SrcIPPktOutputChain

threatInbound172.16.0.0/12SrcIPPkt vulUnAuthenInbound172.16.0.0/12PktToHost iptrDropIn172.16.0.0/12SrcIPPktForwardChain

threatOutbound172.16.0.0/12SrcIPPkt vulUnAuthenOutbound172.16.0.0/12PktFromHost iptrDropOut172.16.0.0/12SrcIPPktForwardChain

ID Recommendation Description

FBP-2 Deny “Inbound traffic containing ICMP (Internet Control Message Protocol) traffic” [35].
Threat Vulnerability Countermeasure

threatICMPNetworkScan vulInfoDisclosureICMPReplyPktFromFW iptrDropInICMPPktInputChain

threatICMPNetworkScan vulInfoDisclosureICMPReplyPktFromHost iptrDropInICMPPktForwardChain

Table 1. Ontology Extract for NIST-800-41: Guidelines on Firewalls & Firewall Policy.

4 Knowledge Delegation as Subsumption

A (distributed) system may comprise of a number of separately managed knowl-
edge bases. Each knowledge-base is assumed to have a unique name that indi-
cates its controlling/owning principal. We assume that each atomic concept (or
property) φ syntactically embeds the name (φ)N of the principal that describes
the concept (or property). For example, a TBox owned by principal A includes
a concept A:DOS where (A:DOS)N = A. A principal P has jurisdiction over any
concept (or property) φ if (φ)N = P ; this means that P is considered to be the
original authority on φ.

Note that while a TBox may contain concepts originating from different prin-
cipals, all concepts referenced in a concept expression are required to have the
same name. For example, (A:Threat ⊓ A:DOS)N = A. This ensures a consistent
interpretation for our syntatic approach to referencing (the originator of) con-
cepts. Future research will consider how a permission-naming logic such as [21]
can be used to provide a consistent treatment for the originators of a concept
such as (A:Threat ⊓ B:DOS).
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Principals may make public assertions about terminological knowledge. A
public assertion P |≈(φ1 ⊑ φ2) is a statement by principal P about concept (or
property) subsumption. For example, A |≈(B:DOS ⊑ A:Threat) is an assertion
by A that its concept of threat includes B’s concept of denial of service. These
ontology mappings can be used to implement delegation of jurisdiction. Given
(φ1)

N = Q and (φ2)
N = P then P |≈(φ1 ⊑ φ2) is an assertion by P that it

trusts Q when it describes φ1 to the extent that Q’s concept of φ1 can be con-
sidered as a kind of φ2 concept over which P ’s has jurisdiction. For example,
suppose that principal B provides a vulnerability reporting service, then asser-
tions A |≈(B:DOS ⊑ A:DOS) and A |≈(B:mitigates ⊑ A:mitigates) mean that
A trusts B’s mitigation knowledge for denial of service attacks.

Transitive subsumption in SHOIN (D) can be used to reason over chains
of delegation statements. For example, public assertion B |≈(C:mitigates ⊑
B:mitigates) indicates that the vulnerability reporting service B trusts mitiga-
tion recommendations provided by a software developer C. Continuing the ex-
ample, principal A can use these public assertions to deduce that C:mitigates ⊑
A:mitigates and thus be happy to trust mitigation recommendations from the
software developer.

The following rule defines the conditions under which an arbitrary principal
may import, into its TBox, a public assertion (delegation) from P .

P |≈(φ1 ⊑ φ2); (φ2)
N = P

import φ1 ⊑ φ2 into TBox

This does not extend the semantics of SHOIN (D), rather, it is a syntactic treat-
ment whereby delegation statements translate to concept axioms that can in turn
be reasoned over within SHOIN (D). This treatment is easily modeled within
OWL-DL. The URI of an OWL-DL document provides its principal/namespace.
A public assertion P |≈(φ1 ⊑ φ2) is an ontology document that is trusted to
originate from the namespace of P : this trust can be achieved by P signing the
document. The ontology-import constructor owl:imports is used to import a
public assertion that is confirmed to come from a from another namespace.

The assertional component of a knowledge base, hereafter referred to as its
ABox, contains assertions about named concept individuals. A concept asser-
tion φ(i), indicates that named individual i is a member of concept φ; a role
(property) assertion p(i, j) indicates that named individual i is related to named
individual j under property p. For example, ABox assertion DOS(syn-flood)
describes that individual syn-flood is a DOS threat and ABox role assertion
mitigates(syn-cache,syn-flood) describes that the syn-cache countermea-
sure mitigates a syn-flood threat.

We use a similar naming scheme for individuals whereby (i)N indicates a
principal/namespace syntactically embedded in the identifier of the individual i.
Principals may make public assertions about individuals. A public assertion
P |∼φ(i) is a statement by P that named individual i is a member of concept
φ. A principal may not make public assertions about ABox knowledge (concept
and individual) that is not under its jurisdiction. However, a principal may use
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subsumption to infer ABox knowledge that is effectively under the jurisdiction
of others. The following rule defines the conditions under which an arbitrary
principal may import, into its ABox, a public assertion from P about a named
individual i and concept φ.

P |∼φ(i); (φ)N = (i)N = P

import φ(i) into ABox

A similar rule can be defined for public ABox property assertions.
Continuing the above example, B |∼(B:DOS(B:syn-flood)) is a statement by

the vulnerability reporting service B that B:syn-flood is a B:DOS threat. On
importing this ABox assertion and the TBox assertion A |≈(B:DOS ⊑ A:DOS),
it is possible for A to deduce A:DOS(B:syn-flood), that is, B:syn-flood is an
A:DOS threat.

These public ABox assertions are a syntactic treatment that do not extend
SHOIN (D). In practice, OWL-DL individuals include reference to their names-
pace (principal) and a public ABox assertion P |∼φ(i) is an ontology document
that has been signed by its originator P and a valid φ(i) can be imported into
another ontology using the owl:imports constructor.

In general, a public TBox assertion P |≈(φ1 ⊑ φ2) is effectively a delegation
certificate that can be understood as a statement P |≈(φ2 ⊃ φ1) in a delegation
logic such as [4], where φ1 and φ2 are unary (or binary) predicates that refer to
static principals (φ1)

N and (φ2)
N , respectively. A public ABox assertion P |∼φ(i)

is a signed value of type φ that can be effectively considered to be a form of a
signed permission that cannot be forged by another principal that does not hold
jurisdiction.

Note that for ease of presentation, delegation of trust is assumed transi-
tive. Non-transitive trust can be incorporated into the model, for example, by
adding a SPKI-style [16] delegation-bit to delegation certificates. Alternatively,
a KeyNote-style [12] Action Authorizers concept could be added to the ontology
to constrain the delegation.

5 Delegation in Semantic Threat Graphs

A decentralized Semantic Threat Graph (STG) uses subsumption to model the
delegation of jurisdiction over (potentially distributed) fragments of a Seman-
tic Threat Graph. These fragments can include concepts such as V ulnerability,
Threat and Countermeasure, assertions about membership of these concepts
and assertions about properties between the concepts. In this section, we outline
how the delegation involving these fragments is encoded using subsumption; Sec-
tion 6 will provide complete examples of decentralized Semantic Threat Graphs.

STG Concept Delegation. Subsumption is used to define delegation of Threat,
V ulnerability and Countermeasure concepts between principals. For example,

Y |≈X :DenialOfService ⊑ Y :Threat
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defines that principal Y trusts principal X, concerning the identification (nam-
ing) of denial of service attacks. Suppose that X in turn asserts

X |∼X :DenialOfService(X :threatSynFlood)

that is, X :threatSynFlood is a DenialOfService individual, as identified by X. In
this case, as a result of the delegation by subsumption above, principal Y can
safely deduce that

Y :Threat(X :threatSynFlood)

that is, X : threatSynFlood can be identified as an individual of Y ’s Threat con-
cept. Similar assertions can be made about other Semantic Threat concepts
including V ulnerability and Countermeasure.

STG Property Delegation. Like concepts, properties can be hierarchical, and over
which, principals may make jurisdiction assertions. For example, the property
delegation

Y |≈X :exploits ⊑ Y :exploits

is a statement by Y that it is willing to trust properties from the knowledge-
base of X that relate how vulnerabilities are exploited by threats. For example,
suppose that principal X asserts

X |∼X :exploits(X :threatSynFlood, X :vulWebTCPConnMax)

then principal Y , trusting X’s assertions on exploits (X :exploits ⊑ Y :exploits)
can infer the following statements in its knowledge base.

Y :Threat(X :threatSynFlood), Y :Vulnerability(X :vulWebTCPConnMax),
Y :exploits(X :threatSynFlood, X :vulWebTCPConnMax)

STG Property Restriction Delegation. Restrictions (‘quantifier’ and ‘hasValue’)
can be applied to properties and are used to constrain an individual’s mem-
bership to a specific concept. A property restriction effectively describes an
anonymous or unnamed concept that contains all the individuals that satisfy
the restriction. For example, principal Y asserts

Y |≈(∃≥1X :exploits.X :V ulnerability ⊑ Y :Threat)

meaning that threat individuals that are members of an unnamed threat concept
∃≥1 X : exploits.X : V ulnerability defined within principal X’s knowledge-base
are considered as trusted individuals of concept Y : Threat in principal Y ’s
knowledge-base.

A ‘hasValue’ restriction, denoted by ∋, describes a set of individuals that
are members of an anonymous concept (domain) that are related to a specific
individual along the range of a given property. For example, in

Y |≈X :exploits ∋ X :vulWebTCPConnMax ⊑ Y :Threat
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Y asserts that it trusts principal X’s knowledge about threats that exploit
the X : vulWebTCPConnMax. Therefore, threat is X : threatSynFlood is considered
a threat (a member of concept Y : Threat) within principal Y ’s knowledge-
base. Note, concept X : exploits ∋ X : vulWebTCPConnMax is a sub-concept of the
∃≥1 X :exploits.X :V ulnerability.

6 Decentralized Semantic Threat Graphs: Use Cases

In this section, a series of examples are presented in order to demonstrate how
decentralized Semantic Threat Graphs may work in practice and in which we
identify some potential business usage patterns (Figure 3). We believe this to
be an improvement over the current centralised approach where trust between
different providers is not discriminated.

Knowledge about threats, vulnerabilities and countermeasures while originat-
ing from a number of providers, is typically managed within centralised threat
knowledge-bases such as NIST’s National Vulnerability Database (NVD) [1]. The
advantage of decentralising a threat knowledge-base means that threat knowl-
edge may reside with the originating provider and/or be distributed across other
trusted third party providers. A disadvantage of a centralised approach is that it
implies on the part of a consumer a global level of trust for all threat knowledge
indiscriminately. However, a consumer may only wish to trust threat knowl-
edge that has been provided by a particular provider or set of providers. For
example, a consumer of the NVD may only want to trust knowledge about
network-based Denial of Service threats that have been provided by US-Cert
and corresponding (firewall) countermeasures provided by Redhat. The advan-
tage of a trust management approach is that it provides a basis with which a
consumer may delegate authority to trusted providers for threat knowledge. In
practice, providers/producers construct fragments of Semantic Threat Graphs
and consumers make assertions about the conditions under which they trust the
fragments provided by providers. These are defined as a combination of STG
Concept, Property and Property Restriction delegation assertions described in
the previous section.

Use Case 1. A company (for example, ACME Inc.) having a consumer role, del-
egates jurisdiction for knowledge about threats, vulnerabilities and countermea-
sures to one or more trusted compliance agencies (for example, NIST) having a
role of a provider. A compliance agency, having a consumer role in this instance,
in turn delegates jurisdiction for knowledge about threats, vulnerabilities and
countermeasures to one or more trusted vendors (for example Redhat). A ven-
dor (provider) may then notify the company with respect to Semantic Threat
Graph knowledge it has jurisdiction over. The company can import these STG
assertions into its knowledge-base and use the knowledge during reasoning. For
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Fig. 3. Example Delegation Usage Patterns.

example, principal ACME asserts:

NIST :NIST80041Threat ⊑ ACME :Threat

NIST :NIST80041Vulnerability ⊑ ACME :Vulnerability

NIST :NIST80041Countermeasure ⊑ ACME :Countermeasure

NIST :exploits ⊑ ACME :exploits

NIST :mitigates ⊑ ACME :mitigates

indicating that it trusts countermeasure recommendations made by NIST re-
garding threats and vulnerabilities that are to be mitigated in order to be be
compliant with NIST-800-41 [35] firewall best practice. Note that, when no am-
biguity can arise, we drop the turnstile notation “|≈” and “|∼” and infer the
principal from the statement.

Principal NIST, in turn, asserts:

NIST :Spoofing ⊑ NIST :NIST80041Threat

NIST :UnAuthPkt ⊑ NIST :NIST80041Vulnerability

RH :Spoofing ⊑ NIST :Spoofing

RH :UnAuthPkt ⊑ NIST :UnAuthPkt

RH :IptablesRule ⊑ NIST :NIST80041Countermeasure

RH :exploits ⊑ NIST :exploits

RH :mitigates ⊑ NIST :mitigates

indicating that principal RH (Redhat vendor) is trusted to specify Linux ipta-
bles firewall countermeasures used to mitigate spoofing threats and associated
vulnerabilities. Intuitively, the NIST compliance agency has outsourced the in-
stantiation of spoof-based threats and recommended firewall countermeasures to
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Redhat. Note, the delegation statement made by NIST also includes additional
knowledge about its threat and vulnerability hierarchy. For example concept
NIST :Spoofing is a subsumed by concept NIST :NIST80041Threat.

Delegation chains (transitive subsumption) constructed in terms of concept
and property subsumption can be reasoned over within OWL-DL to establish if
received ABox statements are to be trusted and imported. For example, Redhat
(principal RH) asserts the following anti-bogon IP spoofing threat information:

RH :Spoofing(RH :threatInbound192.168.0.0/16SrcIPPkt),
RH :UnAuthPkt(RH :vulUnAuthenInbound192.168.0.0/16PktToHost),
RH :IptablesRule(RH :iptrDropIn192.168.0.0/16SrcIPPktForwardChain),
RH :exploits(RH :threatInbound192.168.0.0/16SrcIPPkt,

RH :vulUnAuthenInbound192.168.0.0/16PktToHost),
RH :mitigates(RH :iptrDropIn192.168.0.0/16SrcIPPktForwardChain,

RH :vulUnAuthenInbound192.168.0.0/16PktToHost)

On receipt of this ABox statement principal ACME has no prior trust relation-
ship with RH. However, given the set of known delegation statements, ACME

can form the following delegation (trust) chains.

RH :Spoofing ⊑ NIST :Spoofing ⊑ NIST :NIST80041Threat ⊑ ACME :Threat
RH :UnAuthPkt ⊑ NIST :UnAuthPkt ⊑ NIST :NIST80041Vul ⊑ ACME :Vulnerability
RH :IptablesRule ⊑ NIST :NIST80041Countermeasure ⊑ ACME :Countermeasure

RH :exploits ⊑ NIST :exploits ⊑ ACME :exploits
RH :mitigates ⊑ NIST :mitigates ⊑ ACME :exploits

As a consequence, ACME can deduce that the ABox mitigation knowledge re-
ceived from RH is trusted. It then becomes possible for ACME to deduce a new
concept hierarchy within its local Semantic Threat Graph knowledge-base, for
example:

RH :Spoofing ⊑ NIST :Spoofing ⊑ NIST :NIST80041Threat ⊑ ACME :Threat

in addition to the following inferred concept membership and property relations:

ACME :Threat(RH :threatInbound192.168.0.0/16SrcIPPkt),
ACME :Vulnerability(RH :vulUnAuthenInbound192.168.0.0/16PktToHost),
ACME :Countermeasure(RH :iptrDropIn192.168.0.0/16SrcIPPktForwardChain),
ACME :exploits(RH :threatInbound192.168.0.0/16SrcIPPkt,

RH :vulUnAuthenInbound192.168.0.0/16PktToHost),
ACME :mitigates(RH :iptrDropIn192.168.0.0/16SrcIPPktForwardChain,

RH :vulUnAuthenInbound192.168.0.0/16PktToHost)

Use Case 2. As in the previous use case, a company may delegate jurisdiction
for knowledge about threats, vulnerabilities and countermeasures to one or more
trusted compliance agencies. However, rather than a compliance agency delegat-
ing jurisdiction over threats, vulnerabilities and countermeasures as a collection
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to one or more vendors such as Redhat or Cisco, it may instead decide to delegate
certain fragments (for example threats) to one or more additional compliance
agencies and other fragments (for example countermeasures) to one or more
vendors. Vendors in turn may also trust one or more compliance agencies.

In this example, ACME makes the same TBox statement for delegation of ju-
risdiction to NIST defined in the previous scenario. Principal NIST delegates ju-
risdiction to CVE (compliance agency) for knowledge about NIST-800-41 spoof-
ing threats and vulnerabilities only.

NIST :Spoofing ⊑ NIST :NIST80041Threat

NIST :UnAuthPkt ⊑ NIST :NIST80041Vulnerability

CVE :Spoofing ⊑ NIST :Spoofing

CVE :UnAuthPkt ⊑ NIST :UnAuthPkt

CVE :exploits ⊑ NIST :exploits

Principal NIST also asserts the following delegation statement stating that
principal RH is trusted for NIST-800-41 based iptables firewall countermeasures.

RH : iptablesRule ⊑ NIST :NIST80041Countermeasure

RH :mitigates ⊑ NIST :mitigates

Note, trust is not bidirectional. Given that RH has not been given jurisdiction
over relevant threats and vulnerabilities with which to make iptables recommen-
dations, it must also delegate jurisdiction to NIST for this knowledge.

NIST :Spoofing ⊑ RH :Spoofing

NIST :UnAuthPkt ⊑ RH :UnAuthPkt

NIST :exploits ⊑ RH :exploits

Principal RH receives the following ABox statements from CVE for which it
has no prior trust relationship.

CVE :Spoofing(CVE :threatInbound192.168.0.0/16SrcIPPkt),
CVE :UnAuthPkt(CV E :vulUnAuthenInbound192.168.0.0/16PktToHost),
CVE :exploits(CV E :threatInbound192.168.0.0/16SrcIPPkt,

CVE :vulUnAuthenInbound192.168.0.0/16PktToHost)

Principal RH can form a chain of trust based on its trust for NIST and
NIST’s trust for CVE. As a consequence, RH can define a suitable iptables rule
(countermeasure) that mitigates the vulnerability of unauthenticated 192.168.0.0/16
subnet packets exploited by spoofed packets of the same source IP range.

RH :IptablesRule(RH :iptrDropIn192.168.0.0/16SrcIPPktForwardChain),
RH :mitigates(RH :iptrDropIn192.168.0.0/16SrcIPPktForwardChain,

CVE :vulUnAuthenInbound192.168.0.0/16PktToHost)
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Principal ACME in turn receives the following ABox statements from RH

for which it has no prior trust relationship.

RH :Spoofing(CVE :threatInbound192.168.0.0/16SrcIPPkt),
RH :UnAuthPkt(CVE :vulUnAuthenInbound192.168.0.0/16PktToHost),
RH :IptablesRule(RH :iptrDropIn192.168.0.0/16SrcIPPktForwardChain),
RH :exploits(CVE :threatInbound192.168.0.0/16SrcIPPkt,

CVE :vulUnAuthenInbound192.168.0.0/16PktToHost),
RH :mitigates(RH :iptrDropIn192.168.0.0/16SrcIPPktForwardChain,

CVE :vulUnAuthenInbound192.168.0.0/16PktToHost)

Principal ACME can form a chain of trust based on its trust for NIST and
NIST’s trust for CVE and RH. For example:

CVE :Spoofing ⊑ NIST :Spoofing ⊑ NIST :NIST80041Threat ⊑ ACME :Threat
CVE :UnAuthPkt ⊑ NIST :UnAuthPkt ⊑ NIST :NIST80041Vul ⊑ ACME :Vulnerability
RH :IptablesRule ⊑ NIST :NIST80041Countermeasure ⊑ ACME :Countermeasure

Use Case 3. This scenario is a variation of use case 2. A company may trust
one or more vendors for Semantic Threat Graph ABox statements where each
vendor may in turn trust other vendors and/or compliance agencies for ABox
Semantic Threat Graph statements. For reasons of space, we do not provide
example TBox delegation statements and Abox statements.

7 Related Research

The delegation scheme proposed in this paper is based on managing trust across
a model of distributed knowledge-bases. While the model is simple, it closely re-
sembles the OWL-DL approach to modular ontologies [22] using the owl:imports
constructor with a URI based namespace. Future research will explore represent-
ing and reasoning about distributed trust in other modular Description Logic
languages such as [14,36]. The TBox intensional reasoning provided by existing
OWL-DL reasoners is relatively scalable, however, extensional reasoning is poor
for medium to large-sized ABoxes.

A large body of research results exist on Trust Management and decentral-
ized authorization systems, for example, [9, 13, 16, 27]. However, there has been
little consideration regarding how it might be applied to managing trust re-
lationships across knowledge-bases, which is considered in this paper. In [31],
a centralised reference ontology is developed to represent trust requirements.
Agarwal and Rudolph [5] present an ontology for SPKI/SDSI certificates. In [5]
SPKI names are represented as concept names while public keys are represented
as individuals. However, once the ontology is constructed any reasoning over
delegation chains for the purpose of compliance checking is performed outside of
the ontology framework.

Trust Management systems typically describe policy and authorization in
terms of discrete permissions and/or assertions. In this paper, authority (about
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STGs) is defined in terms of Description Logic concepts. Description Logic has
been used to describe and reason about RBAC [18] and XACML policies [26] with
subsumption providing role/authorization hierarchies, but do not consider the
jurisdiction that principals may have over the ontologies in their local knowledge-
bases. Semantic SPKI [6] uses subsumption to define SDSI local name bindings,
however an external certificate discovery algorithm implements name reduction.
In our paper, public keys are used to uniquely identify principals and their name
spaces. Future work will extend this to support SDSI naming, based on the logic
described in [21].

The requirements of Distributed Semantic Threat Graphs determined our
particular use of Trust Management and effectively corresponds to a conven-
tional compliance check [13]: for a given delegation network, is a principal trusted

for some action? This check returns a binary answer and we believe that the
model could be extended to support forms of quantitative trust, by incorporating
KeyNote-style [12] compliance values or weights [11,19] in the delegation state-
ments. We also assume that trust is monotonic, for example, it is safe to rely
on a Semantic Threat Graph delegation chain provided by a vendor since the
model does not permit other principals to make conflicting assertions about con-
cepts that originated from the vendor’s namespace. Supporting non-monotonic
trust, including inter-policy-conflicts such as [10], is non-trivial and effectively
requires synchronization of the distributed ABox/TBoxes. Providing support for
distributed ontologies is an active research topic [8]. The extent to which these
other forms of reasoning over the distributed ontology are applicable, and could
be supported by extending our current model, is a topic for future research.

8 Conclusion

In this paper, a trust management approach is proposed to decentralize and
delegate knowledge for threats and their mitigation (encoded as Semantic Threat
Graphs) to one or more trusted providers. That is, the ability to trust-manage
the (delegation) relationships that may exist between the providers.

The ontology-based delegation scheme used subsumption to model the del-
egation of jurisdiction over (potentially distributed) fragments of a Semantic
Threat Graph. This paper extends the model from [20] — which did not con-
sider the possibility that threat catalogues may originate from different trusted
providers — to a decentralized trust model.

In this paper, the Semantic Threat Graphs knowledge-bases comprised of
knowledge about standards and best practices for threat mitigation using fire-
walls. The applicability of the (centralised) approach of encoding numerous best-
practices is demonstrated in [20]. We argue that the effort of decentralizing this
cataloging exercise is comparable. Future work will consider constructing Se-
mantic Threat Graphs from additional threat knowledge-bases such as NVD.
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