
A Framework for Establishing Decentralized Secure Coalitions

Hongbin Zhou
Computer Science Department

University College Cork, Ireland
zhou@cs.ucc.ie

Simon N. Foley
Computer Science Department

University College Cork, Ireland
s.foley@cs.ucc.ie

Abstract

A coalition provides a virtual space across a network
that allows its members to interact in a transparent man-
ner. Coalitions may be formed for a variety of purposes.
These range from simple spaces used by individuals to share
resources and exchange information, to highly structured
environments in which businesses and applications operate
and may be governed according to regulation and contract
(security policy). Coalitions may spawn further coalitions
and coalitions may come-together and/or merge.

This paper describes a logic-based language that pro-
vides a foundation for coalition regulation and contract in
a manner that avoids authorization subterfuge and has a
number of novel features that make it applicable to open
systems. The language provides inter- and intra- coalition
delegation, including identity, role and threshold based del-
egation operations. The logic is used to describe a decen-
tralized infrastructure for establishing and regulating these
coalitions. Coalitions are formed with the involvement of
founders, constructors and oversight. Constructors are re-
sponsible for properly creating a coalition; this service can
be provided by a third party. If the service is improperly
provided then the constructor is subject to a penalty, which
may be collected by another third party providing oversight.

1 Introduction

Modern network environments are intended to support
collaborations between large numbers of autonomous enti-
ties. Examples include GRID, Web Services, Peer-to-Peer
systems, and so forth. We view these systems as provid-
ing frameworks for supporting coalitions. A coalition is a
virtual space to organize and control a number of entities
across a network. For example, a simple coalition may be
used by individuals to share resources and exchange infor-
mation. A complex coalition may provide a structured vir-
tual space that supports the ordinary operations within an

organization. Such a coalition may spawn further coalitions
which represent the organization’s departments. A number
of these coalitions may come together and form a new coali-
tion for a business-to-business relationship.

Many coalition-supporting frameworks provide not only
operational mechanisms to ensure correct operation, but
also provide security mechanisms to ensure that only au-
thorized entities may participate in a coalition. However,
with regard to authorization, we argue that existing coali-
tion security mechanisms are limited in many respects.

Existing frameworks, such as [2, 12, 13, 18, 19], rely on
a “super” administrator who has unlimited authority within
the coalition. However, in many cases such flexibility is not
desirable. For example, when several entities establish a
coalition to share resources, the concern may be that such an
administrator can arbitrarily authorize entities outside of the
coalition. It is preferable that coalition security mechanisms
do not rely on the notion of a “super” administrator.

In addition, existing coalition frameworks rely on the ap-
pointment of the “super” security administrator outside of
the mechanics of the coalition framework, and he must be
accepted by all coalition participants before a coalition can
be established. Regulations concerning the resources under
the control of this administrator should be carefully issued
by the administrator, and well understood by all participants
in advance. Different coalitions may require different estab-
lishment and regulations, and thus a high degree of exper-
tise is required for an administrator to properly form and
manage a coalition. We believe that coalition establishment
should not be done in this ad-hoc manner, rather, it should
be formalized as an integral part of the coalition framework.

Open delegation is a further challenge within coalition
frameworks. We define open delegation to mean that a per-
mission can be delegated in a decentralized way from one
coalition to another without ambiguity or subterfuge [11].
It may happen that entities from different coalitions may
use the same (permission) name in different ways. Thus,
no entity has a complete picture of the entire name schema
for all of the resources and services that are available; any
entity that makes authorization/delegation decisions, does

so based on its incomplete view of the world. This can re-
sult in authorization subterfuge [11], whereby, a principal
receiving a permission in one domain, can misuse the per-
mission in another domain via some unexpected circuitous
but apparently authorised route.

We argue that existing Trust Management/authorization
systems, in practice, provide for closed delegation,
whereby, a permission may be safely delegated only be-
tween coalitions that are effectively coordinated by the
same security administrator [20]. For example, Keynote [3]
relies on the Internet Assigned Number Authority (IANA)
[15], RT [16] relies on Application Domain Specification
Documents (ADSDs), and X509 [14] relies on the X500
name service, to ensure that different parties use the right
name for resources, conditions, other participants, and so
forth. However, global name providers are not coalition se-
curity administrators; they only provide each name with a
unique meaning. Entities from different coalitions may still
use arbitrary names to represent their own resources. For
example, the cross-domain delegation that is used by the the
payment systems [4, 5, 9] based on Keynote, are vulnerable
to authorisation subterfuge if care is not taken to properly
identify the ‘permissions’ indicating the payment authori-
sations when multiple banks and/or provisioning agents are
possible. To our knowledge, there is no existing authoriza-
tion language that supports true open delegation. We be-
lieve that without the proper underlying support for open
delegation, cross-coalition delegation is unreliable.

This paper describes a logic-based language (Distributed
Authorization Language, DAL) that supports coalition reg-
ulation and contract in large scale distributed systems with-
out requiring pre-agreed global naming services or “super”
administrators. In designing DAL, our motivation has been
to provide a safe language that is specialized for open dele-
gation in coalitions. The language is subterfuge-safe in the
sense that properly encoded credentials are not vulnerable
to subterfuge. While other languages such as [17, 7, 6, 16]
offer comparable levels of expressiveness to DAL, cre-
dentials written in these languages require formal analy-
sis [20] and/or pre-agreed global naming services to ensure
subterfuge-safe delegation. Like type-safe languages, DAL
is intended to provide flexibility while preventing classes of
unsafe formulae from being encoded. Using DAL, a frame-
work for establishing secure coalitions is proposed whereby
coalitions can be dynamically formed in a fully distributed
manner without relying on a “super” security administrator
or any particular threshold cryptography algorithms.

The remainder of this paper is organized as follows. Sec-
tion 2 describes DAL and this is used in Section 3 to explore
delegation in open systems. A decentralized framework to
support coalitions that are specified using DAL is described
and discussed in Section 4. Appendix B provides examples
that demonstrate the use of DAL in coalition establishment.

2 DAL: Distributed Authorisation Language

This section describes a simple yet expressive logic-
based distributed authorisation language. Authorisation de-
cisions are based on its logic axioms and on statements
made by principals. While DAL focuses on providing open
delegation, due to space limitations in this paper, we do not
explore in depth the expressiveness of DAL versus other au-
thorization languages. Subterfuge aside, DAL is generally
comparable in terms of expressiveness to existing authoriza-
tion languages, such as RT [16] and SPKI [7].

2.1 Notation

In the ‘real’ world, various entities, such as computers,
people, organisations, and so forth, should be identified as
globally unique. Identifiers represent these global unique
entities and are denoted by a triple (K, N , T), where K
specifies the entity’s signature key; text string N is the en-
tity’s user-friendly self-description; and T is a type flag
(value I or C). We assume that no two identifiers share the
same public key and thus are globally unique and verifiable
by others. For the sake of simplicity, the shorthand IDT

is used to replace the triple (K, N , T), where ID is the
global unique identifier replacing K and N . DAL defines
two types of identifiers: individual (denoted as I) and coali-
tion (denoted as C). An individual is a single entity who
may make decisions by itself and use its own signature key
to sign credentials. Examples include computers, people,
and so forth. A coalition is a virtual space which may not
make any decisions by itself: all of its decisions are made
by its participants. Examples include departments, organi-
sations, and so forth. If no ambiguity can arise, we refer to
a globally unique entity as an identifier.

Roles are principals and are useful for managing the del-
egation of different permissions to groups of principals. A
role is denoted as IDT .n, where IDT is an identifier, and
n is an auxiliary local name defined by the identifier IDT .
For example, UnivAC .student represents the role student
of coalition UnivAC . An identifier controls, and may dis-
cretionarily define, all of its own roles, but may only define
roles of other identifiers when explicitly authorised.

Threshold principals are used in DAL to provide
threshold-based delegation. For example, professor AI has
three teaching assistants BI , CI , DI for the course CS101.
To give any student an experimental score in CS101, two
of the three teaching assistants are required to agree with
the score. Like the SPKI/SDSI ‘k-of-n’ threshold [7], we
use a static threshold structure to express this kind of com-
pound principal, denoted as threshold(k, [p1, p2, . . . , pn]),
which means that at least k principals from the list of n prin-
cipals are required. The threshold of the above example is
represented as threshold(2, [BI , CI , DI]). As a further

example, in order to combat fraud, a company (coalition)
ComAC has a policy that two managers are required to
sign purchase orders for goods with a value over $5,000.
We may not a-priori know the number of managers in the
company (this number may change with time), and thus,
a dynamic threshold structure1 is required to express such
compound principals. This is denoted as threshold(k, r)
which means that at least k principals in the role r are re-
quired. The threshold of the above example is represented
as threshold(2, ComAC .manager).

Let G and R represent the set of all identifiers and roles
respectively. The symbols g, g0, g1, . . . , range over G, and
the symbols r, r0, r1, . . . , range over R. The set of prin-
cipals P is the set of all identifiers, roles, and their combi-
nations using the logic operators ∧ (and) and ¬ (negation).
The symbols p, p0, p1, . . . , range over P .

We assume that statements may contain temporal infor-
mation to indicate their validity periods. For the sake of
simplicity, we do not consider the time related issues in this
paper. Therefore, all statements are understood with respect
to an arbitrary but fixed current time.

We write g ‖∼ s to indicate a ‘directly-says’ statement;
this means that a statement s is directly signed by the sign-
ing key of identifier g. The ‘says’ statement, denoted p |∼ s,
is used to reflect deductive results from a chain of creden-
tials. This means that statement s is directly signed by prin-
cipal p, or that principal p indirectly makes statement s via
a chain of relating statements. We write (p1 ∧ p2) |∼ s as a
shorthand of p1 |∼ s and p2 |∼ s in the remainder paper, and
similarly for ‘directly-says’ statements.

We use functions to idealise atomic statements in the
language, such as facts, regulations, and permissions. A
function name may have different meanings for different
principals, and, therefore, function names are meaning-
ful only when bound to a specific identifier. A function
n(a1, . . . , an)@g, has name n, arguments a1, . . . , an, and
g is the identifier that defines this function and controls
the operation described by the function. A function ar-
gument may be a constant or a variable. To distinguish
a variable, its name is decorated by a “?”. For example,
function invocation Read(fileB, ?X)@AI specifies that any
(authorised) principal may read fileB. Evaluating statement
Read(fileB, CI)@AI to true means that individual CI may
read fileB by AI’s local function Read. This statement is
true only when the permission provider AI makes the state-
ment as AI |∼Read(fileB, CI)@AI , and CI makes the re-
quest CI |∼Read(fileB, CI)@AI .

A small number of widely used global functions are de-
fined by the provider identified as DALI . These are sim-
ilar in intent to the standard classes for programming lan-
guages, such as Java. When no ambiguity can rise, the iden-

1This contrasts with SDSI which requires the members of a role in a
threshold scheme to be a-priori defined.

tifier DALI is omitted from ‘global’ functions, and a global
function may be denoted as n(a1, . . . , an).

Global function actAs(p0, [p1, . . . , pj]) relates princi-
pals (identifiers and roles): each principal pi, (i ∈ [1, . . . , j])
acts as principal p0 (a role or an identifier). If j = 1,
the bracket is omitted in the expression. The function ex-
pression actAs(p0, [p1, . . . , pi]) is a shorthand for the con-
junction actAs(p0, p1) ∧ . . . ∧ actAs(p0, pj). For exam-
ple, statement actAs(UGC .member, [UAC , UBC , UCC])
means that each of coalitions UAC , UBC , and UCC is a
member of the coalition UGC . The reader should note
that identifier DALI provides only schema explanations for
global functions: actual role relationships are constructed
by participants’ statements in the logic and can, therefore,
be fully decentralized.

2.2 DAL Syntax

DAL statements represent facts that are held by prin-
cipals (identifiers, roles, and threshold principals). DAL
statements are made using basic logic operators, functions
and the says and directly says operators. Statements involv-
ing principal conjunction, such as (p1 ∧ p2) |∼ s, are treated
as a shorthand for p1 |∼ s and p2 |∼ s. Threshold principals
also represent a shorthand and their encoding in terms of the
basic logic operators is described in Appendix A.

Following [1], given principal p, identifier g, statements
s, s1 and s2, then DAL statements are defined inductively
as follows.

• a function is a statement;

• ¬s1 and s1 ∧ s2 are statements; we write the implica-
tion s1 ⊃ s2 as an abbreviation for ¬(s1 ∧ ¬s2); we
also write s2 ← s1 as an equivalence for s1 ⊃ s2, and
s1 ∨ s2 as an equivalence for ¬(¬s1 ∧ ¬s2);

• g ‖∼ s and p |∼ s are statements.

Operators ‖∼ (directly says) and |∼ (says) have the same
precedence in a statement and have higher precedence
than ∧. Operator |∼ is right-associative. Since both
identifiers and roles are principals in DAL, the statement
CC .manager |∼ s is valid. However, CC .manager ‖∼ s is
not a valid statement as ‘directly-says’ statements reflect
credentials directly signed by a key.

2.3 DAL Examples

This section demonstrates how DAL is used to express
common security policies.

• Decentralized authority. Authorization is delegated by
the issuing of certificates. For example, Alice signs a
certificate stating that Bob is a student at University A:

AliceI |∼ actAs(UnivAC .student, BobI)

• Role-based Authority. A principal may take on differ-
ent roles within the same or different coalitions. These
roles can have different authority. In order to prevent
accidental misuse of authority, a principal should indi-
cate which role it is acting as, when issuing a creden-
tial. For example, AliceI (a UnivAC staff member)
asserts that BobI is a student at UnivAC .

AliceI |∼ UnivAC .staff

|∼ actAs(UnivAC .student, BobI)

Notes that operator |∼ is right-associative.

• Identity-based delegation. A principal can delegate
rights to other specific principals. For example,
UnivBC trusts UnivAC to identify students.

UnivBC |∼(actAs(UnivBC .student, ?X)
← UnivAC |∼

actAs(UnivBC .student, ?X))

• Role-based delegation. A principal can delegate rights
to certain roles. This kind of delegation can be
done across coalitions. For example, UnivBC trusts
UnivAC .staff to identify students.

UnivBC |∼(actAs(UnivBC .student, ?X)
← UnivAC .staff |∼

actAs(UnivBC .student, ?X))

Another example, UnivAC trusts any coalition that is
a university to identify a student.

UnivAC |∼(actAs(UnivAC .student, ?X)
← actAs(UnivAC .univ, ?Y)
∧ ?Y |∼ actAs(UnivAC .student, ?X))

• Conjunction inference. A principal may require an-
other principal to satisfy several separate conditions to
be authorised for some action. For example, UnivAC

allows anyone who is both a lecturer and a manager to
access a document.

UnivAC |∼(access(fileB, ?X)@UnivAC

← actAs(UnivAC .lecture, ?X)
∧ actAs(UnivAC .manager, ?X))

• Assert Inference. A principal authorises anyone who
satisfies some condition to do a particular action. For
example, AliceI allows anyone who is a student to ac-
cess a course file.

AliceI |∼(Access(fileA, ?X)@AliceI

← actAs(student, ?X))

• Static threshold structures. For example, professor
HarryI requires two out of three students BobI ,
CarlI , and DavidI to cooperate in order to to give
student AliceI a score for course CS101 of University
A.

HarryI |∼
(Score(AliceI ,CS101, ?score)@UnivAC

← threshold(2, [CarlI , DavidI , BobI]) |∼
Score(AliceI ,CS101, ?score)@UnivAC)

• Dynamic threshold structures. Professor HarryI re-
quires two students from secC cooperate to approve
AliceI’s score for course CS101 of University A.

HarryI |∼
(Score(AliceI ,CS101, ?score)@UnivAC

← threshold(2, secC .student) |∼
Score(AliceI ,CS101, ?score)@UnivAC)

• Limited role-based delegation. A principal may re-
quire a role from a specified coalition to do a job. See
the example for dynamic threshold structures.

2.4 Proof System

The proof system has three kinds of axioms:

1. The standard axioms and rules of propositional logic,
such as the axiom (s1 ∧ s2) ⊃ s1, the rules
(s2 ← s1) ≡ (s1 ⊃ s2), and

s1, s1 ⊃ s2

s2

2. The standard axioms and rules of modal logic:

(p ‖∼(s1 ⊃ s2)) ⊃ ((p ‖∼ s1) ⊃ (p ‖∼ s2))
(p |∼(s1 ⊃ s2)) ⊃ ((p |∼ s1) ⊃ (p |∼ s2))

s

p |∼ s

These are useful for manipulating ‘directly-says’ and
‘says’ statements. The axioms define that the state-
ments that a principal says are closed under conse-
quence; the rule expresses that every principal says all
provable statements.

3. A small number of additional intuitive axioms, R1 -
R8, are listed in Figure 1.

R1 reflects the fact that a ‘says’ statement may be de-
duced from a single credential. R2 – R5 define that only
when both the role appointor g1 and role acceptor g2 ex-
plicitly confirm the role binding that g2 (or g2’s role g2.n2)

is bound to g1 (or g1’s role g1.n1), then the role binding be-
comes a fact. R6 and R7 define that the role binding relation
is transitive and reflexive. R8 defines that, if p1 is bound to
p2, then a statement by p1 is taken as a statement by p2 only
when p1 is explicitly representing p2 in the statement. We
informally consider the soundness of this proof system.

Proposition 1 If statement s is provable (that is, deducible
by the axioms) in the logic, then s is valid (in the sense that
the authorization request is granted).

Proof sketch (following the approach in [1]). The
propositional axioms and rules are valid, since the propo-
sitional connectives are interpreted in the usual manner. So
too are the standard axioms and rules of modal logic. R1,
R6 and R7 are straightforwardly valid. We argue that the
remaining axioms are valid using the following comparison
with SPKI/SDSI [7], a well-known name schema to link
roles(names) between principals.

SPKI/SDSI principal expression p1
′s . . . ′s pn means

that pn is a local name in ... in p1’s local name space, where
each of pi is an identifier or an auxiliary local name. A DAL
principal may be regarded as SPKI/SDSI principal with the
restrictions: p1 must be an identifier; p2 must be an auxil-
iary local name; and the linking name length n ≤ 2. In-
tuitively, when n = 1, the principal is an identifier; when
n = 2, the principal is a role. Thus the set of DAL principal
expression is a subset of SPKI/SDSI principal expression.

Given this restriction and the fact that an identifier can be
recognised by all principals, the SPKI/SDSI name linking
rule may be represented in DAL as

(g1 |∼ actAs(g1.n1, g2)) ⊃ actAs(g1.n1, g2)
(g1 |∼ actAs(g1.n1, g2.n2)) ⊃ actAs(g1.n2, g2.n2)

R2 – R5 are constructed from these SPKI/SDSI axioms
together with the restriction that not only the role appointer
is required to make the name linking statement, but also
the role acceptor. Similarly, R8 and R9 are constructed
from SPKI/SDSI’s ‘speaks-for’ axiom actAs(p2, p1) ⊃
((p1 |∼ s) ⊃ (p2 |∼ s)) with the restriction that, to repre-
sent another principal, a principal must explicitly represent
that principal in the statement. Therefore, DAL’s prov-
able statements form a subset of SPKI/SDSI provable state-
ments. The soundness of SPKI/SDSI— that all provable
statements are valid— has been proven [1]. Therefore, all
provable statements in DAL are also valid.

Soundness implies consistency: if s is provable in the
logic, then ¬s is not provable.

3 Delegation in Open Systems

Authorisation subterfuge [11, 20] is the vulnerability
whereby a principal receiving a permission in one domain,

can somehow misuse the permission in another domain via
some unexpected circuitous but apparently authorised route.
In this paper we use an example to illustrate the subterfuge
problem. [20] provides a formal treatment of the problem.

The SPKI/SDSI axioms can be characterized in terms of
the DAL syntax as follows.

• SPKI/SDSI Name Linking.

(g1 |∼ actAs(g1.n1, g2)) ⊃ actAs(g1.n1, g2)

• SPKI/SDSI Speaks For.

actAs(p2, p1) ⊃ ((p1 |∼ s) ⊃ (p2 |∼ s))

• Modal Logic K Axiom.

(p1 |∼(s1 ← s2)) ⊃ ((p1 |∼ s2) ⊃ (p1 |∼ s2))

Consider the following DAL-like statements.

s1 : ComAC |∼ actAs(ComAC .member, BobI)
s2 : ComAC |∼(T ← ComAC .member |∼T)
s3 : ComBC |∼(T ← BobI |∼T)
s4 : BobI |∼(T ← AliceI |∼T)

Statement s1 states that ComAC appoints BobI as
ComAC’s member. Statement s2 represents that ComAC

allows its member to issue purchase orders T , and they may
also delegate this right to others. The content of permis-
sion T may be specified as Example 2.6 in SPKI/SDSI [7].
Note that T is not a DAL function: the permission origina-
tor is not specified in this permission. Suppose that BobI

also works for another company ComBC which also uses
the T to issue purchase orders. Statement s3 states that
ComBC allows BobI to issue purchase orders T , and BobI

may also delegate this right to others. Suppose that BobI

only receives s3 from ComBC . Therefore, BobI issues s4

to delegate this permission (issuing a purchase order) to a
ComBC’s employee AliceI . BobI intends that AliceI use
s3 and s4 to obtain the permission from ComBC . How-
ever, AliceI knows s1 and s2 and thus combines s1, s2, s4

to prove that she may place a purchase order for ComAC .
Both delegation chains (s1, s2, s4) and (s3, s4) are provable
using SPKI/SDSI axioms, but the intended permission orig-
inator is unclear. Note that if permission T was properly en-
coded as a DAL function then the DAL statements s1 . . . s4

would be subterfuge-safe.
DAL provides a framework for specifying and reasoning

about delegation and authorization in a manner that avoids
subterfuge and has a number of novel features that make it
particularly applicable to open systems. This is explored in
the remainder of this section.

Atomic DAL permissions are globally unique. Exist-
ing Trust Management languages, such as SPKI/SDSI and

R1 : (g ‖∼ s) ⊃ (g |∼ s)
R2 : (g1 |∼ actAs(g1, g2)) ⊃ ((g2 |∼ actAs(g1, g2)) ⊃ (actAs(g1, g2)))
R3 : (g1 |∼ actAs(g1.n1, g2)) ⊃ ((g2 |∼ actAs(g1.n1, g2)) ⊃ (actAs(g1.n1, g2)))
R4 : (g1 |∼ actAs(g1, g2.n2)) ⊃ ((g2 |∼ actAs(g1, g2.n2)) ⊃ (actAs(g1, g2.n2)))
R5 : (g1 |∼ actAs(g1.n1, g2.n2)) ⊃ ((g2 |∼ actAs(g1.n1, g2.n2)) ⊃ (actAs(g1.n1, g2.n2)))
R6 : (actAs(p2, p1)) ⊃ (actAs(p3, p2) ⊃ actAs(p3, p1))
R7 : actAs(p1, p1)
R8 : (actAs(p2, p1)) ⊃ ((p1 |∼ p2 |∼ s) ⊃ (p2 |∼ s))

Figure 1. New DAL axioms.

Keynote are designed to express arbitrary permissions.
Writing a subterfuge-safe permission is dependent on the
user’s experience. Even though designed by experts, the
KeyNote based payment systems [4, 5, 9] are vulnerable
to authorisation subterfuge if care is not taken to properly
identify the ‘permissions’ indicating the payment authori-
sations when multiple banks and/or provisioning agents are
possible. Atomic DAL permissions are expressed by glob-
ally unique functions, whereby the identifier is the permis-
sion’s originator (or the permission authority). The origi-
nator has the full authority to explain and manage its own
permissions. Together with its own defined local function
name, the identifier ensures that the permission is globally
unique and the relationship between the permission and its
originator is globally verifiable. For example, in statement
access(fileB,BI)@AI , AI is the permission authority, and
when this permission is delegated to other principals, all
delegatees can verify that the permission is from AI .

DAL does not require global name services. A number of
existing coalition frameworks rely on some form of global
name provider to ensure that different parties get the right
name for resources, and so forth. For example, Keynote [3]
relies on IANA; RT [16] relies on ADSD; and X509 relies
on the X500 name service. However, global name providers
are not coalition security administrators; they only provide
each name with a unique meaning and have no control over
how names are used. Entities from different coalitions may
still use arbitrary names to represent their own and the re-
sources of others. While SPKI/SDSI does not rely on any
global name provider, its name schema is subject to authori-
sation subterfuge. This can be explained as follows. When
identifier g1 binds its local name n1 to g2’s local name n2,
the SPKI/SDSI ‘linking’ axiom does not require g2 to be
notified. Therefore, g2 might not know that its n2 is bound
to g1’s local name, and may accidentally use n2 for other
purposes. DAL axioms R2 – R5 are used to relate prin-
cipals. With these axioms, g2 in the above example is re-
quired to accept a given name(role) binding. Therefore, g2

may not use n2 for other purpose. Thus, in DAL, bind-
ing roles(names) between different name spaces does not

require global name providers, and can avoid authorisation
subterfuge. For example,

AI |∼(Read(fileB, ?X)@AI

← C1
C |∼ actAs(C1

C .manager, ?X)
∧ C2

C |∼ actAs(C2
C .manager, ?X))

does not require that C1 and C2 agree on the meaning of the
role manager. The meanings of “manager” in these separate
coalitions C1 and C2 are decided within their own coali-
tions. AI only needs to know the respective meanings of
“manager” in these two separate coalitions C1 and C2.

DAL requires a principal to explicitly indicate its current
role within the statement. Existing authorisation languages,
such as SPKI/SDSI and Keynote use the ‘speak-for’ axiom,
whereby if p2 is bound to p1, then any statement by p1 is
taken as a statement by p2. However, a principal may repre-
sent different principals. For example, consider the follow-
ing statements,

actAs(CC .manager, AI),
actAs(BI , AI),
CC |∼(Read(fileB, ?X)@CC

← CC .manager |∼Read(fileB, ?X)@CC),
AI |∼Read(fileB, BI)@CC

Using the SPKI/SDSI ‘speak-for’ axiom only,
we can deduce: CC |∼Read(fileB, BI)@CC , and
BI |∼Read(fileB, BI)@CC . The former statement
specifies the policy that CC authorises BI to read fileB
by CC’s local function. The latter statement defines the
request made by BI to read fileB by CC’s local function.
In this scenario, it is not clear what AI intends to do.

In order to provide more precise permissions, we
use the axiom R8 instead of the SPKI/SDSI ‘speak-for’
axiom. When a permission is delegated to a certain
role, in order to validate the permission, DAL requires
that principals must explicitly indicate that role in the
statement. Otherwise, even though the permission is signed
by the principal who obtains that role, the certificate is
useless. It also means that an entity may only speak

in roles it knows. This requirement prevents principals
from issuing ambiguous permissions. For example, in
a coalition, all permissions for use only in the coalition
should be delegated to coalition roles. If a principal wants
to write a valid ‘inner’ coalition permission statement,
it should know which role it is representing. Since this
‘inner’ coalition statement is invalid in other coalitions, the
principal obtains other roles from other coalitions, and this
statement is useless for use in other coalitions. Therefore,
cross-coalition subterfuge may be prevented in DAL.
Applying the DAL axioms to this example, it is not possi-
ble to derive statements CC |∼Read(fileB, BI)@CC and
BI |∼Read(fileB, BI)@CC . Presenting AI’s extended
statement AI ‖∼(CC .manager |∼Read(fileB, BI)@CC),
results in a policy that coalition CC authorises BI

to read fileB by CC’s local function. Presenting
AI ‖∼(BI |∼Read(fileB, BI)@CC) results in a request
by BI to read fileB by CC’s local function.

DAL supports coalition delegation in addition to indi-
vidual delegation. We give several statements that describe
different categories of inner- and outer- coalition delegation.

• Closed delegation: only coalition participants may
work within the coalition. Entities are required to ob-
tain local roles in a closed coalition before they may
use that coalition’s resources. All ‘inner’ coalition per-
missions are delegated only to local roles of that coali-
tion. For example, a closed delegation of coalition CC

may be defined by the statement

CC |∼(read(fB, ?X)@CC

← actAs(CC .member, ?X)
∧ ?X ‖∼CC .member |∼ read(fB, ?X)@CC)

This means that if a principal wants to operate file fB
by coalition CC’s local function read, it must be in the
role member of CC , and must explicitly indicate the
role that it is representing in its request (a ‘directly-
says’ statement). Otherwise, the principal may not use
that coalition’s resource.

• Semi-open delegation: the resource of coalition C1
C

may be used by a group of principals from another
coalition C2

C . These principals are not required to ob-
tain any local role of coalition C1

C . However, they
must obtain a specified role from coalition C2

C . In ad-
dition, these principals may not delegate their authority
to others. In this case, all delegation decisions are still
made by the resource owner coalition C1

C . The coali-
tion C2

C decides who may obtain its specified local
role to grant the permission. An example of a semi-
open delegation is given by the following statement.

C1
C |∼(read(f, ?X)@C1

C

← actAs(C2
C .member, ?X)

∧ ?X ‖∼C2
C .member |∼ read(f, ?X)@C1

C)

This means that C2
C’s members are authorised to use

C1
C’s local resource when representing its member-

ship of C2
C , but may not delegate it to others. Note that

the directly-says sub-statement is made by ?X. This
restricts ?X to identifiers because only identifiers (with
their associated public key), may sign permissions.

• Open delegation: permissions are delegated from
coalition C1

C to a group of principals from another
coalition C2

C . Unlike semi-open delegation, these
principals may delegate their authority to others. For
example, statement

C1
C |∼(read(f, ?X)@C1

C

← actAs(C2
C .member, ?X)

∧ ?X |∼C2
C .member |∼ read(f, ?X)@C1

C)

means that C1
C allows C2

C’s members to access file f
by C1

C’s local function read, and C2
C’s members may

also delegate the permission to others. For example,
assuming that actAs(C2

C .member, AI) is true, then
issuing the statement

AI |∼(C2
C .member |∼

read(f, ?X)@C1
C ← BI ‖∼ read(f, ?X)@C1

C)

means that C2
C .member AI delegates the above state-

ment to another principal BI . However, AI still holds
accountability for BI’s behavior regarding this dele-
gated permission. This is because, given the request
made by BI , we may deduce that AI makes the re-
quest in the role C2

C .member. Note that C1
C’s policy

statement has a ‘says’ sub-statement, which is unlike
the ‘directly-says’ used in semi-open delegation.

• Cross coalition delegation: permissions may be dele-
gated from one coalition C1

C to another coalition C2
C

which, in turn, may independently decide who may use
the permission. For example,

C1
C |∼(read(f, ?X)@C1

C ← C2
C |∼ read(f, ?X)@C1

C)

DAL does not support complex principal expressions,
such as SPKI/SDSI compound names. The compound name
UnivA’s professor’s student represents the lo-
cal name student in all the local name spaces of UnivA’s
professor. This kind of local name requires that all
UnivA’s professors must have the same meaning for
their local role student based on UnivA’s understand-
ing. We argue that this is unreasonable in many scenar-
ios. For example, before joining UnivA as a professor,
Alice may already define her local name student with
its own meaning. According to the conflicting local name
meanings, Alice may not join UnivA, or may have to

adapt the meaning of student according to UnivA’s lo-
cal name space and withdraw all certificates related to the
meaning of her own student. On the other hand, when
Alice joins UnivA, she may not be aware of the name
conflict, which may lead to further unexpected authorisa-
tions/delegations subterfuge. If UnivA wishes to delegate
its permission to UnivA’s professor’s student,
it should ensure that the name student has the same
meaning for all related principals’ local name space. In
practice, these are unreasonable solutions. DAL, in avoid-
ing the use of complex role principals, permits a local name
to resolve only to an identifier.

4 The Basic Coalition Framework

DAL is used to make statements regarding relationships
between principals including coalition membership. In this
section we consider the process by which new coalitions are
negotiated and formed. To establish a purpose-independent
coalition, intended participants should understand and obey
a small number of basic coalition regulations. To interact
with such coalitions, principals should know how the coali-
tion works in order to correctly negotiate with the coali-
tion. The regulations that are used to characterise the na-
ture of a coalition and its normal operation are specified
in terms of DAL. In designing DAL, our motivation has
been to provide a safe language that has been tailored for
open delegation in coalitions. While other languages such
as [17, 7, 6, 16] offer comparable levels of expressiveness
to DAL, credentials written in these languages require for-
mal analysis [20] and/or pre-agreed global naming services
to ensure subterfuge-safe delegation. Like type-safe lan-
guages, DAL is intended to provide flexibility while pre-
venting classes of unsafe formulae from being encoded.

In existing frameworks [2, 12, 13, 18, 19], coalitions may
or may not have an associated signing key. If a coalition
does not have its own signature key, then the coalition may
not be uniquely identified over the network. In this case
an outsider cannot verify whether a statement is from the
coalition and cross-coalition operations may not be possi-
ble. When a coalition has a signature key, its “super” se-
curity administrator controls that key. Other coalition par-
ticipants cannot prevent the administrator from arbitrarily
signing any statement using that key. Furthermore, if the
coalition signing key is compromised then the coalition has
to be reformed.

In our coalition framework, a coalition has a unique iden-
tifier that includes its signature key as defined in Section 2.
The purpose of the coalition key is to sign the initial coali-
tion regulations during the establishment of the coalition
and is not intended for any other purpose. The coalition
key is generated and initially held by a trusted principal (the
constructor) of the proposed coalition. The constructor is

selected by the coalition founders and may be a trusted ex-
ternal third party or intended member of the coalition.

Once the initial coalition regulations have been signed
and the coalition established, the coalition key should not
be used for further signing. In establishing a coalition, the
constructor signs a penalty contract accepting responsibil-
ity for the proper use of the signing key. If the key is mis-
used then the constructor becomes liable under the terms
of the contract. The coalition regulations are such that it
is not possible to establish a coalition without signing this
contract. In practice, it is expected that having established
the coalition, the constructor will destroy the (ephemeral
private) coalition key in order to avoid accidental compro-
mise. This coalition establishing framework does not de-
pend on any particular threshold cryptography scheme and,
therefore, the users of this framework are free to use the
cryptographic algorithms of their choice.

The following predefined global functions are used in
establishing coalitions. The reader is reminded that it is
only the function schema that are global; their (decentral-
ized) definitions are provided by DAL statements made by
participating principals. The coalition establishing process
relies on this small number of global functions to boot-
strap subterfuge-safe coalitions. DAL ensures that all other
names and permissions that are used within the coalitions
are managed in a subterfuge-safe way and do not require a
global name service such as X.500.

• Function Pay(amount, unit, payer, payee) means
that the principal payer is willing to pay a certain
amount of money to another principal payee. For
example, Pay(500, USD,AI , BI) means that AI is
willing to pay $500 to BI . When the payee is a coali-
tion role then the mechanism does not specify how the
payment should be divided among coalition partners.

• Given two valid statements s1 and s2, then function
neq(s1, s2) represents a fact within the logic as to
whether s1 is not equal to s2.

4.1 Core Coalition Regulations

Every valid coalition must include two core statements
which act as the basic regulation for the coalition. These
core statements have the following Coalition Formation
(CF) patterns.

CF1 A coalition id1
C is formed by an individual id2

I in
the role id1

C .constructor with the agreement of all
founding principals. The responsibility of id2

I ex-
tends to the formation of the coalition, but no further.

id1
C ‖∼(actAs(id1

C .constructor, id2
I)

∧ actAs(id1
C .r1, [p1, . . . , pn])

∧ (?X← threshold(n, id1
C .r1) |∼ ?X))

This statement from id1
C , is interpreted as follows,

1. id1
C |∼ actAs(id1

C .constructor, id2
I). This

statement indicates that the coalition id1
C claims

the individual id2
I is its constructor and holds

its coalition key. After obtaining this informa-
tion, the principal who wants to join id1

C , or col-
laborate with the coalition, may require further
insurance information (CF2) from id2

I .
2. id1

C |∼ actAs(id1
C .r1, [p1, . . . , pn]). Here, id1

C

defines the role id1
C .r1 in id1

C when id1
C estab-

lished, and pi, i ∈ [1, n] are the only initial princi-
pals for this role. The role id1

C .r1 represents the
most important role in the coalition, for example,
a role to which founders belong.

3. id1
C |∼(?X← threshold(n, id1

C .r1) |∼ ?X).
When a principal accepts the role id1

C .r1, it
needs to be sure that it does not delegate any
unintended rights, that no one can force it to
accept conditions it does not want to accept,
such as sharing its own resources without its
permission and so forth, as a consequence of
joining a coalition.
Only when n initial principals of this coalition
agree on a decision, may the coalition make this
decision. In other-words, if any one playing the
role id1

C .r1 does not agree on a decision, then
the coalition may not be established. If the coali-
tion key does not sign any other credentials, then
this statement guarantees that the id1

C authority
is distributed to all initial principals who are play-
ing the role id1

C .r1.

CF2 Coalition constructor id2
I agrees to a penalty con-

tract regarding proper use of the coalition key.

id2
I |∼(Pay(AMT,U, id2

I , id1
C .r2)

← neq(id1
C ‖∼ ?Y, CF1))

This is a necessary part of a properly formed coalition
and provides evidence that, if id1

C signs any statement
other than founding regulation CF1 above, then id2

I

is willing to pay a penalty amount AMT in the cur-
rency U to the principals in the oversight role id1

C .r2.

Note that the oversight role id1
C .r2 may be different

to the founding role id1
C .r1. The presence of some

penalty regulation clause is sufficient in a valid coali-
tion; whether it is acceptable is part of the coalition
establishment process with the founders and is consid-
ered in Section 4.2.

The signature keys for id1
C and id2

I are known only by
id2

I . Therefore, id2
I is the only principal who can gener-

ate the necessary regulation credentials above. The signa-
ture key for id1

C should only be used for establishing the

coalition; to use it for any other action results in a penalty
on id2

I according to CF2.

Example 1 AI , BI , CI wish to form a coalition MC .
They will be the MC’s founders. They all trust a third party
TTP I to generate the basic coalition regulations so long
as TTP I is willing to promise that if TTP I misuses the
coalition key, then it will pay $50 collective penalty to prin-
cipals in the role MC .oversight2. The regulations generated
are as follows.

CF1 =̂ MC ‖∼(actAs(MC .constructor, TTP I)
∧ actAs(MC .founder, [AI , BI , CI]))
∧ (?X← threshold(3, MC .founder) |∼ ?X))

CF2 =̂ TTP I |∼(Pay(50, USD, TTP I ,MC .oversight)
← neq(MC ‖∼ ?Y,CF1))

4

4.2 Coalition Establishment Process

Establishing a new coalition requires cooperation and
agreement between the coalition constructor and all of the
coalition founders. This Coalition Establishment (CE) pro-
cess involves three steps. Given i, j ∈ [1, n]:

CE1 id2
I → pi : CF1 ∧CF2;

Each principal pi invited to join the coalition’s found-
ing role id1

C .r1 receives and checks the two regula-
tions generated from id2

I . After signing CF1 it will
not be in the interest of id1

C to sign further credentials,
due to the penalty signed by id2

I (in CF2).

CE2 pi → id2
I : pi |∼(actAs(id1

C .r1, pi) ∧CF1 ∧CF2);

Each founder pi that accepts the coalition regulations
signs an agreement on the regulations and its role
membership. Before engaging this step, coalition
founders may communicate to consider and informally
agree the regulations.

CE3 pi → pj: pi |∼ id1
C .r1 |∼ actAs(id1

C .r2, id1
C .r1).

The final step in the process requires the founders to
agree the enforcement role, that is, the oversight role
to which payment will be made if the coalition con-
structor breaks the regulations of the coalition.

After establishing a coalition, anyone can trust id1
C or

ask its constructor id2
I to provide all above credentials as

evidence for the coalition establishment.

2Note the founders may also be willing to pay for the service of a prop-
erly generated coalition. For reasons of space, we do not consider this form
of coalition regulation; it is the topic of a further paper

Example 2 (Security Group) This is a centralized coali-
tion, in which the constructor AliceI is also the founder
and controls all authority of the coalition secC . Alice fol-
lows the three protocol steps defined above.

Alice acting as coalition constructor sends the founding
regulations to herself (in role secC .head).

CFsec1 =̂
secC ‖∼(actAs(secC .constructor, AliceI)

∧ actAs(secC .head, AliceI)
∧ (?X← threshold(1, secC .head) |∼ ?X))

CFsec2 =̂
AliceI ‖∼(Pay(500, USD, AliceI , secC .oversight)

← neq(secC ‖∼ ?Y, CFsec1))

Alice accepts founding role secC .head defined by herself:

AliceI ‖∼(actAs(secC .head, AliceI)∧CFsec1∧CFsec2)

Alice specifies that role secC .oversight is the oversight role:

AliceI ‖∼ secC .head |∼ actAs(secC .oversight, secC .head)

At this point AliceI is the constructor, founder and sole
member of the coalition secC . She introduces a new role
secC .member for members and assigns BobI to that role:

AliceI |∼ secC .head |∼ actAs(secC .member, BobI)

AliceI assigns all group members to the oversight role:

AliceI |∼ secC .head |∼ actAs(secC .oversight, secC .member)

If BobI is satisfied with the regulation on oversight then he
is willing to participate within the coalition and signs

BobI |∼ actAs(secC .member, BobI)

and BobI can now speak as a member of the coalition. 4

Appendix B provides further examples of coalition es-
tablishment, coalition merging, and coalition spawning.

4.3 Security Analysis

The coalition establishment process is secure, in the
sense that no principal can cheat or mis-represent the coali-
tion. We provide a security analysis of coalition establish-
ment; for reasons of space, the analysis is informal.

This coalition establishment process relies on three roles:
constructor, founder, and oversight. Role constructor is a
predefined role name for all coalitions, making it clear who
creates the coalition. The founders and oversight are user-
definable role names. We analyse the accountability of each
role as follows.

Regulation CF1 is a prearranged agreement by all
founders regarding coalition structure and initial partici-
pants. CF2 is a prearranged penalty contract agreed by the
coalition constructor and all of the coalition founders. All
founders knows the constructor’s public key and agree that
the constructor generates the basic coalition regulations.

Only the constructor knows the coalition and construc-
tor signature (private) keys. He is therefore the only prin-
cipal that can generate and accept accountability for CF1

and CF2. If a valid constructor generates just one ver-
sion of CF1 ∧ CF2 then it is not possible to deduce
neq(id1

C ‖∼?X,CF1) and consequently it is not possible
to deduce id2

I |∼ pay(AMT,U, id2
I , id1

C .r2), that is, a
valid constructor cannot be penalised using CF2.

Founders are willing to accept some pre-agreed CF1

and CF2 when establishing the coalition. If a construc-
tor (or any principal masquerading as constructor) gener-
ates regulations CF1 and CF2 that are not acceptable to
the founders, then the coalition establishment process stops
at Step CE2.

If the coalition constructor attempts to mislead princi-
pals by generating different versions of CF1 for founders
and other participants, then upon detection the penalty reg-
ulation can be applied. Similarly, once a coalition has
been established, if the constructor attempts to speak for the
coalition (using the coalition key), then upon detection the
penalty regulation may be applied. Thus, a constructor can-
not misrepresent a coalition without the application of the
penalty regulation. On the other hand, a valid constructor
cannot be penalised.

Having completed Step CE2, the founders can collec-
tively speak for the coalition. However, each founder is not
willing to participate until it has received acceptable decla-
ration concerning the oversight role (Step CE3). This agree-
ment is also necessary before the penalty regulation can be
properly applied and effectively protects the constructor if a
coalition is not properly established.

Before accepting the role founder, coalition founders
may informally negotiate with each other to determine
whether they received the same message. Any founder may
stop the establishment process, if it received an unexpected
CF1 or CF2.

The threshold structure in CF1 ensures that agreement is
required between all founders before Step CE2 can be suc-
cessfully completed: it is not possible to establish a coali-
tion without the agreement of all founders. Once estab-
lished all the founders share authority of the coalition.

The oversight role does not have any inherent author-
ity other than authority over the penalty. However, when a
principal accepts this role, it may protect itself by keeping
necessary evidence to carry out the penalty contract.

4.4 Discussion

The coalition forming framework has a number of char-
acteristics.

• Authentication. Each individual and coalition has a
unique signature key. Every coalition and individual
can be uniquely authenticated.

• Delegation. DAL can express a wide range of dele-
gation actions, including, identity-based, role-based,
conjunction, cross-coalition and static and dynamic
threshold-based delegation.

• Decentralisation. Our framework does not need a
centralized or ‘super’ coalition administrator. Once
a coalition is established, then all the authority of the
coalition lies with the founders who can create and reg-
ulate their own coalition structure. If some of the coali-
tion founders’ signature keys are compromised, then
the other coalition founders may choose to no longer
issue further regulations in order to protect the coali-
tion. However, revocation of compromised keys and
revocation of regulations that have been issued with
the participation of compromised keys remain an is-
sue. The focus in this paper is on providing a logic and
framework for establishing coalitions and we do not
consider revocation in this paper.

• Accountability. Principals wishing to negotiate with a
coalition check the coalition’s two regulations. Fol-
lowing delegation of coalition authority, principals
determine whether they are engaging with the right
role/principal in that coalition. If incorrect regulations
are received then they can be kept as evidence. The
constructor has accountability for incorrect regula-
tions. This provides autonomy and self-determination.

• Maintainability. Once the coalition is created the
coalition (signing) key should be destroyed by the con-
structor; the coalition key provides a unique identity
and is used to validate the basic regulations. Founders
can introduce further regulations (speaking for the
coalition) that control existing and new participants.
Principals, including the founders, may also leave a
coalition under regulations that were agreed upon by
the other founders.

• Fairness. No principal has advantages over any other
during or after the coalition establishment process.
This fair coalition establishing process does not require
any trusted third party who has total power over is-
suance of certificates.

• Non-repudiation. We consider only the simple mean-
ing of non-repudiation, that is, once a statement is

signed by a principal then it may not subsequently
deny that statement. We do not consider non-
repudiation of recipient.

• Dynamic establishment. Since coalitions are principals
then the establishment process can be used by coali-
tions to form further coalitions.

5 Conclusion

In this paper a logic-based language Distributed Autho-
rization Language (DAL) is proposed that supports open
delegation in large scale distributed systems. ¿From the
outset, DAL has been designed with open systems in mind;
flexible cross-domain delegation can be achieved without
subterfuge and without having to rely on the proper use of
a global name service.

Using DAL, a formal framework for regulating the es-
tablishment of dynamic coalitions is proposed. Coalitions
are formed with the involvement of founders, constructors
and oversight and do not rely on the traditional notion of
a “super” administrator. Constructors are responsible for
properly creating a coalition; this service can be provided
by a third party. If the service is improperly provided then
the constructor is subject to a penalty, which may be col-
lected by another third party providing oversight. With this
framework, a coalition can be dynamically formed in a fully
distributed manner without relying on a “super” security
administrator or any particular threshold cryptography al-
gorithms. We are currently using DAL and the coalition
establishment process to develop support for Virtual Orga-
nizations in GRIDs.

As with any protection framework the challenge is to
make sure that it provides some useful and consistent no-
tion of security. Assurance is required that a principal can-
not bypass security via some unexpected but authorised
route. In the case of DAL, we seek formal proof that it is a
subterfuge-safe language. It is argued in [8] that verifying
whether a particular configuration of access controls is ef-
fective can be achieved by analysing its consistency, that is,
whether it is possible for a malicious principle to interfere
with the the normal operation of the system. This type of
analysis [8, 10] is not unlike the analysis carried out on au-
thentication protocols. In the case of mechanisms based on
trust management schemes, such as DAL, it is a question of
ensuring consistency between potential delegation chains.
We are currently developing a non-interference verification
for subterfuge-safety in DAL based on [8, 10].

Acknowledgements

We are grateful for helpful feedback from the anony-
mous referees. This work is supported by Enterprise Ireland
Basic Research Grant (SC/2003/007).

References

[1] M. Abadi. On sdsi’s linked local name spaces. In Proceed-
ings of the 10th Computer Security Foundations Workshop
(CSFW ’97), page 98, Washington, DC, USA, 1997. IEEE
Computer Society.

[2] T. Aura and S. Mäki. Towards a survivable security archi-
tecture for ad-hoc networks. In Proc. Security Protocols,
9th International Workshop, volume 2467 of LNCS, pages
63–79, Cambridge, UK, Apr. 2001. Springer.

[3] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. D. Keromytis.
The keynote trust-management system, version 2, Septem-
ber 1999.

[4] M. Blaze, J. Ioannidis, S. Ioannidis, A. Keromytis, P. Nikan-
der, and V. Prevelakis. Tapi: Transactions for accessing pub-
lic infrastructure. In Proceedings of the 8th IFIP Personal
Wireless Communications (PWC) Conference, 2003.

[5] M. Blaze, J. Ioannidis, and A. D. Keromytis. Offline micro-
payments without trusted hardware. In Financial Cryptog-
raphy, Grand Cayman, February 2001.

[6] J. DeTreville. Binder, a logic-based security language. In
Proceedings of the 2002 IEEE Symposium on Research in
Security and Privacy, pages 105–113. IEEE Computer So-
ciety Press, 2002.

[7] C. Ellison, B. Frantz, B. Lampson, R. L. Rivest, B. Thomas,
and T. Ylonen. Spki certificate theory, September 1999.

[8] S. Foley. A non-functional approach to system integrity.
IEEE Journal on Selected Areas in Communications, 21(1),
Jan 2003.

[9] S. Foley. Using trust management to support transfer-
able hash-based micropayments. In Proceedings of the 7th
International Financial Cryptography Conference, Gosier,
Guadeloupe, FWI, January 2003.

[10] S. Foley. Believing in the integrity of a system. In IJCAR
Workshop on Automated Reasoning for Security Protocol
Analysis. Springer Verlag Electronic Notes in Computer Sci-
ence, 2004.

[11] S. N. Foley and H. Zhou. Authorisation subterfuge by del-
egation in decentralised networks. In International Security
Protocols Workshop, Cambridge, UK, April 2005.

[12] I. Foster, C. Kesselman, and G. Tsudik. A security archi-
tecture for computational grids. In Proceedings of ACM
Conference on Computers And Security, pages 83–91. ACM
Press, Oct. 1998.

[13] L. Gong. Enclaves: Enabling secure collaboration over the
internet. IEEE Journal on Selected Areas in Communica-
tions, 15(3):567–575, 1997.

[14] R. Housley, W. Polk, W. Ford, and D. Solo. Internet x.509
public key infrastructure certificate and certificate revoca-
tion list (crl) profile, April 2002.

[15] Internet Assigned Numbers Authority. Internet corporation
for assigned names and numbers, May 1999.

[16] N. Li and J. C. Mitchell. RT: A role-based trust-management
framework. In The Third DARPA Information Survivabil-
ity Conference and Exposition (DISCEX III), pages 201–
212, Washington, D.C., April 2003. IEEE Computer Society
Press, Los Alamitos, California.

[17] N. Li, W. H. Winsborough, and J. C. Mitchell. Delega-
tion logic: A logic-based approach to distributed authoriza-
tion. ACM Transactions on Information and System Security
(TISSEC), 6(1):128–171, February 2003.

[18] N. H. Minsky and V. Ungureanu. Law-governed interac-
tion: a coordination and control mechanism for heteroge-
neous distributed systems. ACM Transactions on Software
Engineering and Methodology, 9(3):273–305, 2000.

[19] L. Pearlman, C. Kesselman, V. Welch, I. Foster, and
S. Tuecke. The community authorization service: Status and
future. In CHEP03, La Jolla, California, March 2003.

[20] H. Zhou and S. N. Foley. A logic for analysing subterfuge in
delegation chains. In Workshop on Formal Aspects in Secu-
rity and Trust (FAST2005), Newcastle upon Tyne, UK, July
2005.

A Encoding Threshold Principals in DAL

The static threshold principal threshold(k, [p1, . . . , pn])
can be simply encoded in the usual way in terms of the logic
operators ∧ and ¬. For example, given principals p1 and p2,
then threshold(2, [p1, p2]) and threshold(1, [p1, p2]) may
be represented by p1 ∧ p2 and p1 ∨ p2, respectively.

A dynamic threshold principal threshold(n, g.r) means
that at least n principals in the role g.r are required. A
threshold may appear only as a principal in a statement, that
is, in a statement of the form threshold(n, g.r) |∼ s for some
arbitrary statement s. A statement threshold(n, g.r) |∼ s is
encoded by the logic statement

(?X1 |∼ g.r |∼ s) ∧ . . . ∧ (?Xn |∼ g.r |∼ s)

where each of the ?Xi (1 ≤ i ≤ n) are distinct principals.
A function that is similar to neq(s1, s2) defined in Section
4 can be defined to distinguish principals and this function
can be used to encode neq(?Xi, ?Xj) for the above formula
with 0 ≤ i, j ≤ n and i 6= j.

The global uniqueness of signature keys ensure that iden-
tifiers and roles are distinguishable from each other. Roles
are distinguishable between each other in statements be-
cause DAL does not have a SPKI-like rule of the form
actAs(p2, p1) ⊃ (p1 |∼ s ⊃ p2 |∼ s). Instead, DAL uses
axiom R8 to force a principal to provide an unambiguous
role name in the statements clarifying the current role that it
is acting as. For any two different roles g1.r1 and g2.r2, the
statement g1.r1 |∼ s may not be deduced from g2.r2 |∼ s. For
example, given actAs(BC .student, AI), then statements
AI |∼ s and AI |∼BC .student |∼ s are different, since from
the latter we may deduce BC .student |∼ s, which cannot be
deduced from the former AI |∼ s in DAL.

B Coalition Establishing Examples

GRID Group This is a decentralized coalition, in which the constructor JohnI , together with other two individuals EllenI

and AliceI , are the founders of the coalition gridC . These three individuals control all gridC’s authority. We have:
JohnI → EllenI , AliceI : CFgrid1 ∧CFgrid2, where,

CFgrid1 =̂ gridC ‖∼(actAs(gridC .constructor, JohnI)∧actAs(gridC .committee, [EllenI , JohnI , Alice]I)
∧(?X← threshold(3, gridC .committee) |∼ ?X))

CFgrid2 =̂ JohnI ‖∼(Pay(500, USD, JohnI , gridC .oversight)← neq(gridC ‖∼ ?Y,CFgrid1))

Alice, Ellen, and John accept the founding role gridC .committee of coalition gridC :

EllenI → JohnI : EllenI ‖∼(actAs(gridC .committee, EllenI) ∧CFgrid1 ∧CFgrid2)

JohnI → JohnI : JohnI ‖∼(actAs(gridC .committee, JohnI) ∧CFgrid1 ∧CFgrid2)

AliceI → JohnI : AliceI ‖∼(actAs(gridC .committee, AliceI) ∧CFgrid1 ∧CFgrid2)

Alice, Ellen, and John specify that role gridC , oversight is the oversight role:

EllenI → JohnI , AliceI : EllenI ‖∼ gridC .committee |∼ actAs(gridC .oversight, gridC .committee)
JohnI → AliceI , EllenI : JohnI ‖∼ gridC , committee |∼ actAs(gridC .oversight, gridC .committee)
AliceI → EllenI , JohnI : AliceI ‖∼ gridC .committee |∼ actAs(gridC .oversight, gridC .committee)

Everyone can verify that gridC has been established properly. The committee member role gridC , committee share all gridC’s
authority. All new regulations must be certificated by all of them.

Spawning a New Web-Grid Group gridC wants to spawn a further group webC to manage the Web GRID project. gridC

director holds all authority of webC .
Firstly, John acting as the constructor sends the founding regulations to himself (in role webC .founder):

CFweb1 =̂ webC ‖∼(actAs(webC .constructor, JohnI)∧actAs(webC .founder, gridC .director)
∧(?X← threshold(1, webC .founder) |∼ ?X))

CFweb2 =̂ JohnI ‖∼(Pay(500, USD, JohnI , webC .oversight)← neq(webC ‖∼ ?Y, CFweb1))

Then, John accepts the founding role webC .founder defined by himself:

JohnI ‖∼ gridC .director |∼(actAs(webC .founder, gridC .director) ∧CFweb1 ∧CFweb2)

Finally, John specifies that role webC .oversight is the oversight role:

JohnI ‖∼ gridC .director |∼webC .founder |∼ actAs(webC .oversight, webC .founder)

Web Security Group Coalitions secC and webC merge to a new coalition, which is called websecC . We have:
AliceI → BobI , PhilipI : CFwebsec1 ∧CFwebsec2;

CFwebsec1 =̂ websecC ‖∼(actAs(websecC .constructor, AliceI) ∧ actAs(websecC .cmtte, [secC , gridC])
∧(?X← threshold(2, [websecC .cmtte]) |∼ ?X))

CFwebsec2 =̂ AliceI ‖∼(Pay(500, USD, AliceI , websecC .oversight)← neq(websecC ‖∼ ?Y, CFwebsec1))

Then, Bob and Philip accept the founding role websecC .cmtte defined by Alice:

BobI → AliceI : BobI ‖∼ secC .wscmtte |∼(GFactAswebsecC .cmtte, secC ∧ CFwebsec1 ∧ CFwebsec2)
PhilipI → AliceI : PhilipI ‖∼webC .wscmtte |∼(actAs(websecC .cmtte, webC) ∧ CFwebsec1 ∧ CFwebsec2)

Finally, Bob (speaking for secC) and Philip (speaking for webC) specify that role websecC .oversight is the oversight role.

PhilipI → BobI : PhilipI ‖∼webC .wscmtte |∼websecC .cmtte |∼ actAs(websecC .oversight, websecC .cmtte)
BobI → PhilipI : BobI ‖∼ secC .wscmtte |∼websecC .cmtte |∼ actAs(websecC .oversight, websecC .cmtte)

