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Abstract

An integrity policy defines the situations when modification of information is autho-
rised and is enforced by the protection mechanisms of a system. Traditional models
of protection tend to define integrity in terms of ad-hoc authorisation techniques
whose effectiveness are justified more on the basis of experience and ”best practice”
rather than on any theoretical foundation. In a complex application system it is
possible that an integrity policy may have been incorrectly configured, or that the
protection mechanisms are inadequate, resulting in an unexpected system compro-
mise. This paper examines the meaning of integrity and and describes a simple
belief logic approach for analysing the integrity of a system configuration.

Key words: Security, Integrity, Security Protocols, Belief logics,
System Configuration.

1 Introduction

The 2001 Computer Crime and Security Survey [9] reported that 196 of the
respondents to the survey could quantify their losses due to unauthorised use
of computer systems at a total of US$378 million in the previous year. While
access-control mechanisms, firewalls and so forth may help counter such losses,
we can never be confident about security unless we are provided with some
assurance of their effectiveness. Such assurance may be achieved, in part, by
analysing whether a formal description of the system upholds certain security
properties. These properties include confidentiality (no unauthorised release
of information) and integrity (no unauthorised modification of information).
The study of integrity as a formal security property has received little attention
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within the research community; confidentiality has been extensively studied
and is the better understood of the two properties.

Early security research [3] characterised integrity in terms of read-write
access controls between subjects and objects. This provides for a very coarse
interpretation of integrity [30]; for example, once granted access to an account
database, a bank clerk can make any change to the customer’s account details.
Access triples, well-formed transactions, and the principles of encapsulation
[8,25], provide finer grained control by constraining the operations that a
subject may carry out on an object: the bank clerk may execute only deposit
or withdraw operations to access an account database.

Many integrity compromises are a result of ‘insiders’ executing fraudulent
but authorised operations [9]. For example, the bank clerk executes an ac-
count deposit without lodging actual funds. Separation of duty [8,13,37,35]
controls decrease the potential for fraud by involving at least two individuals
at different points in a transaction: for example, by reconciling bank accounts
and funds received each day, a supervisor detects and corrects the fraudulent
deposit by the clerk. Role Based Access Control models [31,32] and authorisa-
tion models [2,21] provide integrity controls based on structures that organise
related operations into roles and constrain the way that roles may be assigned
and/or inherited by users; separation of duty is expressed within these models
using role constraints.

These conventional security models describe controls for achieving integrity;
they take an operational and/or implementation oriented approach by defining
how to achieve integrity. No attempt is made to formalise a property that de-
fines what is meant by integrity. For example, [8] recommends a combination
of separation of duties, access-triples and auditing as a strategy for achieving
integrity: it does it not attempt to address what is meant by integrity. Confi-
dence is achieved to the extent that good design principles have been applied;
there is no assurance that an integrity property is upheld. Thus, when we de-
fine a complex separation of duty policy we do not know, for certain, whether
a dishonest user can bypass the intent of the separation via some unexpected
circuitous, but authorised, route.

Jacob [20] formalises integrity as a functional property. This interpreta-
tion of integrity means that an integrity mechanism determines whether the
current request for an operation is authorised based on the history of past
authorisation requests that led to the current state.

In our research [14,15], we argue that integrity should be regarded as a
non-functional property. Non-functionality means that in order to determine
authorisation, it is necessary to examine every possible history of requests
that could have reached the current state. Non-interference is an example
of a non-functional property, and while non-interference and its derivatives
have been extensively studied [12,11,17,28,29], designing and verifying secu-
rity mechanisms that uphold non-functional properties is known to be difficult
[24,34]. Thus, we argue that building mechanisms that uphold integrity (a
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non-functional property) can be expected to be as difficult as building mech-
anisms that uphold non-interference.

This difficulty in properly analysing the integrity of a system is illustrated
in [14,15], whereby, to provide integrity guarantees it is necessary to model
the behaviour of both the system (with its protection mechanisms) and the
infrastructure in which the system operates. Infrastructure is everything that
serves the system requirements: software, hardware, users, and so forth. Even
if a system is functionally correct, the infrastructure is likely to fail: soft-
ware fails, users are dishonest, do not follow procedures, and so forth. The
system and its security mechanisms must be designed to be resilient to these
infrastructure failures. Only when a system is characterised in this way can
it become possible to completely analyse whether a particular system config-
uration (including security policy) ensures integrity.

The non-functional approach to integrity proposed in [14,15] provides a
formal algebraic semantics that requires detailed formal specifications to be
provided for the system and its infrastructure. This requires considerable
specification effort. The cost of such in-depth specification and subsequent
analysis may be justified for small critical security mechanisms. However, we
argue that such integrity analysis would not scale well to the configuration of a
large and/or complex application system because it would be necessary to for-
mally specify and reason about the potential behaviour of every infrastructure
component, user and so forth.

2 Analysis of Security Configurations

We are interested in developing shallow and pragmatic security analysis meth-
ods for systems. This is achieved through the analysis of how a system is con-
figured, rather than an analysis of its underlying mechanisms and protocols.
Instead of concentrating on detailed semantics and complete formal verifica-
tion of components, we are concerned more with with the ability to trace, at a
practical level of abstraction, how component security requirements relate to
each other and any overall security requirements. We believe that a complete
security verification of a system is not achievable in practice; we seek some de-
gree of useful feedback from an analysis that a particular system configuration
is reasonable.

In [4] we describe a modelling approach that requires less semantic detail
about the operation of the system and its infrastructure. Rather than at-
tempting to model the complete behaviour of the system and infrastructure
(as in [15]), only those components that are considered relevant to the security
policy and configuration are modelled. This is done by modelling the system
and infrastructure in terms of the constraints that they impose over security
relevant components of the system. This results in a definition of integrity
consistency that can be solved as a constraint satisfaction problem [23]. An
advantage to expressing integrity analysis as a constraint satisfaction problem
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is that there exists a wide body of existing research results on solving this
problem for large systems of constraints in a fully mechanised manner. Con-
straints have been used in many practical analysis tools, such as Concurrent
Engineering and Computer Aided Verification.

Another example of a ‘shallow’ configuration analysis is given in [33]. This
approach searches for possible conflicts between separation of duty, user role
assignment and role inheritance rules in RBAC models. [4] provides an (albeit
abstract) semantics for integrity that may be used to determine whether the
separation of duty controls actually achieve external consistency and whether
the application uses integrity mechanisms correctly.

3 Towards a Logic of Integrity

We argue that the integrity-algebraic approach [14,15] does not scale well to
large complex systems. In this paper we propose a logic-based approach: such
an approach facilitates a high-level analysis of a system that is too complex
to be amenable to algebraic analysis. The basis for this approach rests on
our conjecture that belief logics [19] can be used to provide a complementary
approach to integrity/external consistency analysis.

Studying the effects of normal versus abnormal infrastructure behaviour
of systems has been successfully applied to cryptographic security protocols,
for example [10,26,27]. Analysis is based on a generic behaviour (called ”spy”
[27] or ”adversary” [10]) that characterises the untrusted network (abnormal
infrastructure) over which a security protocol operates. Algebraic integrity
analysis [15] generalises this by considering a complex adversary that charac-
terises the combined threats from the infrastructure that a protection mecha-
nism must withstand. This viewpoint—that many different adversaries with
differing behaviours should be modelled in the environment—is also adopted
in [1] in the analysis of security protocols.

Belief logics such as [6,18,36] have also been successfully used to analyse
beliefs held between participants in cryptographic security protocols. In these
logics the behaviour of the adversary is implicit in the deduction rules and
in the stated beliefs of the principals. Therefore, integrity analysis based on
belief-logic is possible if one reflects the ‘infrastructure adversary’ in terms of
suitable logic deduction rules and in terms of the beliefs held by principals.
We are developing a belief logic that can be used to analyse integrity. The
following example sketches how it might be used.

Let P, A, B, C represent principals, φ represent a formulae of the logic and
X represents a message (which can also be a formulae). The logic has the
following formulae constructions.

• P |≡X: P believes , or would be entitled to believe X.

• P |∼X: P at some time said/sent a message that indicated X.

• ΥX: X is consistent with some real world value. We use this to characterise
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integrity in terms of external consistency, which is informally described in
[8] as “the correct correspondence between data objects and the real world”,
for example, a bank account balance corresponds to the customer’s own
belief about the account based on withdrawals and deposits.

We assume that formulae can be derived using the usual propositional logic
operators ∨, ∧ and →, and the usual K-Axiom of modal logics:

P |≡ (φ1 → φ2), P |≡φ1

P |≡φ2

Consider a customer C making a deposit (via an envelope) to an ATM
machine A. The relationship between these principals are described in terms
of beliefs with respect to the belief modality of the customer C.

The customer believes that the ATM A registers her deposit correctly:

C |≡A |∼C |∼Υdep (1)

This reflects the belief of the customer that when the transaction is com-
plete the ATM has said/registered that the customer made (said) a consistent
deposit.

The customer believes that once the bank (for simplicity, A) is satisfied
with (believes) the consistency of the deposit then it updates the customer
account acct.

C |≡ ((A |≡Υdep) → Υacct) (2)

These two logical formulae represent the operational beliefs held by C con-
cerning a deposit transaction.

The customer believes that the ATM is honest: it says only what it
believes 3 :

C |≡ ((A |∼φ) → (A |≡φ)) (3)

Thus, formula 1 reduces to

C |≡A |≡C |∼Υdep (4)

The customer also believes that the bank believes she honest, that is, she
will only say things that can be believed.

C |≡A |≡ ((C |∼φ) → φ)

If the customer believes that her deposit is correct (C |≡Υdep), then given
the nature of the system and infrastructure as described above, the following
can be deduced within the logic.

C |≡Υacct

3 Note that, for the sake of simplicity, we do not consider how recently A said a message,
or whether it is a replay of some earlier message.
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That is, the customer believes that her account has integrity as a result of the
transaction.

This deduction is possible because the ATM and customer are individually
honest and competent. If the customer does not believe that the bank will
honestly reconcile the amount in the envelope then it is not possible to deduce
this account consistency. For example if the customer did not believe that A is
honest (deletion of formula (3)) then the goal cannot be deduced. This result
is as expected and it indicates that further operational checks and balances
may be needed in the system, if account consistency is to be ensured in the
presence of such infrastructure dishonesty.

For example, suppose that a bank clerk B validates the deposit in the ATM.
After a transaction, the customer believes the clerk confirms the amount in
the envelope

C |≡B |∼C |∼Υdep (5)

However, suppose that only one of A and B can be considered honest. For-
mula (3) is replaced by

C |≡ (((A |∼φ) → (A |≡φ))

∨((B |∼φ) → (B |≡φ)))
(6)

Furthermore, suppose that the software that reconciles what A and B say
about a deposit has a way to detect which is honest 4 . Thus, formula (2) is
replaced by

C |≡ (((A |≡Υdep) ∨ (B |≡Υdep)) → Υacct) (7)

These last two formulae correspond to a separation of duty-like rule on the
transaction and it becomes possible to derive the original goal C |≡Υacct.

Note that a complete analysis should also consider the belief modality with
respect to bank: can it be defrauded by dishonest customers?

Our example is grossly simplified. We are developing an expressive in-
tegrity logic, making it possible to properly express beliefs about operations
and/or techniques that are used to guarantee integrity, such as cryptography,
separation of duty, well-formed transactions, auditing and so forth.

4 Discussion and Conclusion

An abstract logic based approach facilitates high-level analysis of a system
that is too complex to be amenable to algebraic analysis. The logic approach
follows the strategy to make only the needed distinctions and no more and
simplifies the specification and analysis of integrity.

A potential weakness of taking the logic approach is that, like existing
authentication logics, it is possible that an integrity logic will miss classes

4 For simplicity, we have abstracted away the other bank principals that determine this
when they resolve conflicts that arise between the Clerk and ATM.
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of attacks that could be identified by the algebraic approach in [15]. In the
integrity logic we can model the infrastructure in terms of beliefs about the
honesty and competency of the components. While limited in expression, this
results in specifications that are relatively easy to develop and analyse. This
is contrasted with the algebraic approach [15] which requires the behaviour of
each principal/infrastructure to be fully specified, leading to unwieldy spec-
ifications that are difficult to develop and require a high degree of expertise
to verify. The logic approach trades off completeness of analysis against ease
of use and the ability to conduct fully automatic analysis of complex systems
[5,22].

The logic of integrity outlined in this paper is an adaptation of the Simple
Logic [7] which uses an expressive but very simple logical system. We are
currently exploring automated analysis techniques; we have implemented an
automatic verification tool for the Simple Logic using Theory Generation [22].
In [38] an automatic protocol generator is described that uses synthesis rules to
compute protocols within the Simple Logic. Future research will explore how
such techniques can be used to automatically synthesis acceptable security
(integrity) policy configurations that uphold external consistency.

It is evident from the example above that if a configuration policy (of the
system/infrastructure) is to be specified in terms of low-level beliefs then the
exercise has the potential to be tedious and error prone (although, we believe
less problematic than the algebraic approach). A topic of future research is
to investigate the potential of using requirements elicitation techniques in the
specification of security policy configurations. In particular, [16] takes a Safety
Engineering approach in which Hazard Analysis is used for the elicitation of
security protocol requirements.
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